トップページ イベント・広報 R-CCS Cafe R-CCS Cafe 第213回 第2部
R-CCS Cafe 第213回 第2部
English講演題目
A Machine Learning Approach To The Observation Operator For Satellite Radiance Data Assimilation
開催日 | 2021年8月6日(金) |
---|---|
開催時間 | 16:20 - 16:40(17:00 - 17:20 講演者を交えたフリーディスカッション、17:20 - 自由討論(参加自由)) |
開催都市 | オンライン |
場所 | BlueJeansによる遠隔セミナー |
使用言語 | 発表・スライド共に英語 |
登壇者 |
講演要旨
Because the weather is a chaotic system, a small perturbation in the initial condition will grow exponentially with time. Therefore, an accurate initial condition is important for a good forecast. The initial condition can be improved by using data assimilation, which combines the model and the observations. The observed variables are not always the same as the model variables. For example, in satellite data assimilation, the model variables include temperature and pressure, but the observed variable is the satellite radiance (brightness temperature). In this case, we cannot directly compare the model variables with the observed variable. To make the data assimilation work, a process called ‘observation operator’ is required to obtain the simulated observations from the model variables, so that we can compare the simulated observations and the real observations directly and then update the model. A model called Radiative Transfer for TOVS (RTTOV) is usually used as the observation operator for brightness temperature. In addition, because there is a bias between the simulated radiance by RTTOV and the observed radiance, a bias correction procedure is applied. In this study, we developed a new observation operator using machine learning.
We first run an experiment for one month to assimilate the conventional observations and the satellite brightness temperature. The output data is used to train the machine learning model. We then run three experiments for the same month the following year to test the performance of the machine learning model. It was shown that compared to the traditional method based on RTTOV and a bias correction, our new method is slightly worse. However, compared to only assimilating conventional observations, assimilating additional brightness temperature by using the observation operator based on machine learning improves the result. Therefore, our method works well. Finally, a separate bias correction procedure is not required in our method because the machine learning model has learned the bias during the training.
注意事項
- 参加の際はPCマイクの音声・ビデオをオフにされるようお願いいたします。
- 当日の会場環境や通信状態により、やむなく配信を中止・中断する場合がございます。
- プログラムの内容、時間は予告なく変更される場合があります。
- ご使用の機器やネットワークの環境によっては、ご視聴いただけない場合がございます。
- インターネット中継に関する著作権は、主催者及び発表者に帰属します。なお、配信された映像及び音声、若しくはその内容を、理化学研究所の許可無くほかのウェブサイトや著作物等への転載,複製,改変等を行うことを禁じます。
(2021年7月26日)