トップページ
イベント・広報
R-CCS Cafe
R-CCS Cafe 特別版(2024年7月19日)
R-CCS Cafe 特別版(2024年7月19日)
English開催日 | 2024年7月19日(金) |
---|---|
開催時間 | 14:30 - 15:10 |
開催都市 | オンライン |
場所 | Zoomによる遠隔セミナー |
使用言語 | 発表・スライド共に英語 |
登壇者 |
池田 和由 HPC/AI駆動型医薬プラットフォーム部門 ![]() |
講演題目・要旨
1st Speaker: Kazuyoshi Ikeda
Title:
Accelerating Middle Molecule Drug Discovery with Evolving Next-Generation AI Platform and Databases
Abstract:
Despite the remarkable advances in AI technologies in recent years, significant challenges
remain in their application to next-generation drug discovery. These challenges include a
qualitative and quantitative lack of data in drug discovery research related to new modalities,
difficulties in domain adaptation of AI models, and the need for efficient use of computational
resources. We are developing an AI drug discovery platform that utilizes the powerful
computational resources of the supercomputer “Fugaku” to improve the efficiency of
medicinal chemistry processes and contribute to the discovery of innovative drugs.
The main goal of my research is to develop AI models for targets that are difficult to treat with
conventional small-molecule drugs, such as protein-protein interactions (PPIs), to support
the acquisition of lead molecules that will become novel drug candidates. In this seminar, I
will present my research results on the latest AI drug discovery technologies and their
validation.
I have constructed a new database of small-to-medium-sized compounds with high drug
properties and novel chemical structural information. This has enabled the development of
predictive models using deep learning and iterative screening that effectively utilize small
amounts of experimental data. Experimental validation through viral infection inhibition has
confirmed significant improvements in hit rates and led to the discovery of new inhibitors.
Additionally, we focus on developing high-quality compound design methods using medicinal
chemistry AI that leverages pharmaceutical patent data. This approach can generate novel
patented molecules in the known pharmaceutical chemical space. We intend to accelerate the
generation of research results with HPC and discuss the potential contribution of AI to
middle-molecular drug discovery.
注意事項
- 参加の際はPCマイクの音声・ビデオをオフにされるようお願いいたします。
- 当日の会場環境や通信状態により、やむなく配信を中止・中断する場合がございます。
- プログラムの内容、時間は予告なく変更される場合があります。
- ご使用の機器やネットワークの環境によっては、ご視聴いただけない場合がございます。
- インターネット中継に関する著作権は、主催者及び発表者に帰属します。なお、配信された映像及び音声、若しくはその内容を、理化学研究所の許可無くほかのウェブサイトや著作物等への転載、複製、改変等を行うことを禁じます。
(2024年7月11日)