トップページ
イベント・広報
R-CCS Cafe
R-CCS Cafe 第280回(2025年3月14日)
R-CCS Cafe 第280回(2025年3月14日)
English開催日 | 2025年3月14日(金) |
---|---|
開催時間 | 15:00 - 17:00(15:00 - 16:20 講演者4名による講演、16:20 - 17:00 自由討論(参加自由)) |
開催都市 | 兵庫県神戸市/オンライン |
場所 | 計算科学研究センター(R-CCS)6階講堂/Zoomによる遠隔セミナー
|
使用言語 | 発表・スライド共に英語 |
登壇者 |
幸 朋矢 量子HPCプラットフォーム運用技術ユニット ![]() Joao Batista 高性能人工知能システム研究チーム ![]() Rakesh Teja Konduru データ同化研究チーム ![]() Ravi Teja Ponnaganti 量子系物質科学研究チーム ![]() |
講演題目・要旨
1st Speaker: 幸 朋矢
Title:
Current Progress in the Quantum-HPC Hybrid Platform Environment Setup
Abstract:
Quantum computers have made rapid advances recently. From an HPC perspective, they can serve as accelerators for offloading specific tasks. Since quantum computers may become powerful enough for more practical use in the future, it is necessary to explore ways to facilitate cooperation between quantum and classical resources. This includes both perspectives on building the integrated platform includes quantum computers and supercomputers and on using them effectively. In this talk, I will outline the design of a multi-site Quantum-HPC Hybrid Platform that is currently under development as the JHPC-quantum project. I will focus on aspects such as resource prioritization, authentication, user-friendly programming evrinonment for seamless access to quantum resources, as well as discuss several challenges encountered during the development of the platform.
2nd Speaker: Joao Batista
Title:
Sentence-level Attribution in Large Language Models
Abstract:
While Large Language Models (LLMs) are being used in a wide range of applications in industry, academia, and by the general population, their use in high-risk applications such as medicine, or law enforcement, among others, is still constrained by the lack of trust and transparency of the models.
Attribution brings trust and transparency to the generated answers by providing a connection between generated text and official sources of information. This allows users to verify whether the generated text matches human-made texts but, it can be expensive from a human-hours point of view depending on the approach taken. Systems like Perplexity and ChatGPT add references to the generated text. However, verifying the references is time-consuming, since the systems provide references to the whole document.
In our current work, we aim to provide a sentence-level attribution system that, besides adding a reference to a document, searches that document for sentences that can back the generated statement. This way, users can verify if the generated sentence has an official source backing it with little effort.
3rd Speaker: Rakesh Teja Konduru
Title:
TBD
Abstract:
TBD
4th Speaker: Ravi Teja Ponnaganti
Title:
TBD
Abstract:
TBD
注意事項
- 参加の際はPCマイクの音声・ビデオをオフにされるようお願いいたします。
- 当日の会場環境や通信状態により、やむなく配信を中止・中断する場合がございます。
- プログラムの内容、時間は予告なく変更される場合があります。
- ご使用の機器やネットワークの環境によっては、ご視聴いただけない場合がございます。
- インターネット中継に関する著作権は、主催者及び発表者に帰属します。なお、配信された映像及び音声、若しくはその内容を、理化学研究所の許可無くほかのウェブサイトや著作物等への転載、複製、改変等を行うことを禁じます。
(2025年3月10日)