トップページ イベント・広報 R-CCS Cafe 第150回 第2部
第150回 第2部
講演題目
The Evaluation of the Chebyshev smoother and the MSDO-CG of enlarged Krylov subspace method
開催日 | 2018年10月19日(金) |
---|---|
開催時間 | 14:30 - 15:00 |
開催都市 | 兵庫県神戸市 |
場所 | R-CCS 6階講堂 |
使用言語 | 発表・スライド共に英語 |
登壇者 |
講演要旨
The first topic is the Chebyshev smoother utilized in the multigrid method. The Chebyshev smoother is derived from the Chebyshev polynomials. This smoother is the nonstationary method, unlike Jacobi and Gauss-Seidel method. It has as high parallelism as Jacobi method and has high convergence like Gauss-Seidel method. We made use of the Jacobi, Gauss-Seidel, or Chebyshev iteration as the smoother of the multigrid method, and compared the number of iterations of the multigrid preconditioned conjugate gradient method and the improvement of the eigenvalue distribution.The second topic is the enlarged Krylov subspace method. The enlarged Krylov subspace method divides the solution vector and the search direction set into spatially distinct sets. It enlarges DOF of the search direction space compared to the Krylov subspace method. On the other hand, Multiple Search Direction Conjugate Gradient method (MSD-CG), which is one of the conventional versions of the enlarged Krylov subspace CG method, does not satisfy A-orthogonality in the search direction vectors. The Multiple Search Direction Conjugate Gradient method with Orthogonalization (MSDO-CG) is adapted to A-orthogonalization processes to guarantee faster convergence. We implemented MSDO-CG, and evaluated the convergence behavior.
(2018年10月12日)