理化学研究所 計算科学研究センター

メニュー
メニュー

第200回 第1部

第200回 第1部
日時: 2020年10月9日(金)、16:20 - 16:40
(17:20 - 17:40 講演者を交えたフリーディスカッション(冒頭に1-2分の小休止を挟みます))
場所: BlueJeansによる遠隔セミナー

・講演題目:Accelerating Climate Model Computation by Neural Networks: A Comparative Study
・講演者:Maha Mdini(データ同化研究チーム)
※発表・スライド共に英語

講演要旨: 詳細を見る

In the era of modern science, scientists have developed numerical models to predict and understand the weather and ocean phenomena based on fluid dynamics. While these models have shown high accuracy at kilometer scales, they are operated with massive computer resources because of their computational complexity. In recent years, new approaches to solve these models based on machine learning have been put forward. The results suggested that it be possible to reduce the computational complexity by Neural Networks (NNs) instead of classical numerical simulations. In this project, we aim to shed light upon different ways to accelerating physical models using NNs. We test two approaches: Data-Driven Statistical Model (DDSM) and Hybrid Physical-Statistical Model (HPSM) and compare their performance to the classical Process-Driven Physical Model (PDPM). DDSM emulates the physical model by a NN. The HPSM, also known as super-resolution, uses a low-resolution version of the physical model and maps its outputs to the original high-resolution domain via a NN. To evaluate these two methods, we performed idealized experiments with a quasi-geostrophic model and measured their accuracy and their computation time. The results show that HPSM reduces the computation time by a factor of 3 and it is capable to predict the output of the physical model at high accuracy up to 9.25 days. The DDSM reduces the computation time even further by a factor of 4, but its predictability is limited to at most only within 2 days. These first results are promising and imply the possibility of bringing complex physical models into real time systems with lower-cost computer resources in the future.

注意事項:
・参加の際はPCマイクの音声・ビデオをオフにされるようお願いいたします。
・当日の会場環境や通信状態により、やむなく配信を中止・中断する場合がございます。
・プログラムの内容、時間は予告なく変更される場合があります。
・ご使用の機器やネットワークの環境によっては、ご視聴いただけない場合がございます。
・インターネット中継に関する著作権は、主催者及び発表者に帰属します。なお、配信された映像及び音声、若しくはその内容を、理化学研究所の許可無くほかのウェブサイトや著作物等への転載,複製,改変等を行うことを禁じます。