RIKEN Center for Computational Science

Menu
Menu
Events/Documents イベント・広報

R-CCS Cafe

R-CCS Cafe (formerly AICS Cafe) is a place where the researchers in R-CCS can frankly discuss about their researches beyond their own disciplinary wall in order to collaborate with each other. We plan to have it twice a month regularly. We welcome all people including the promotion office and administration division of K computer in R-CCS .

  • Purpose : In order to promote the research collaboration beyond each of existing research disciplines, this seminar provides the discussion field for exchanging information, understanding neighboring researchers, and collaboration between each other.
  • Place: Lecture Hall (6th floor) at R-CCS
  • Language : presentation in Japanese or English, the slide in English
  • Etc.: Please give your presentations clearly to researchers in other fields. Please do not hesitate to ask a question to the speakers.

The 166th R-CCS Cafe -part I
Date and Time: Mon. Mar. 25, 2019, 15:00 - 16:00
Place: Seminar room (1st floor) at R-CCS

Title: A Report of The Climate Model Development in US, from Boulder, CO.
Speaker: Ryuji Yoshida (Unversity of Colorado Boulder, CIRES/NOAA ESRL)

Presentation Language: Japanese
Presentation Material: English

Abstract:

A report about one example of the climate model development in United States of America will be made. The presenter is involved in the development of Energy Exascale Earth System Model (E3SM) through a project sponsored by the Scientific Discovery through Advanced Computing (SciDAC). E3SM is designed for a high resolution, sophisticated simulation of Earth's climate. The purposes of the development are to understand water cycle, biochemistry, and cryosphere-ocean system for the energy solution. For this goal, machine learning and GPU computing are emphasized to achieve a better physical and computational performance. This earth system model is assumed to run on the next generation of DOE's supercomputer "Shasta”, which has been just announced by Cray, and the processor will be mixed with AMD, Intel, ARM, and GPUs. Developers are seeking an appropriate approach from various ways to prepare for the next generation machine that they don't know.

The 166th R-CCS Cafe -part II
Date and Time: Mon. Mar. 25, 2019, 16:00 - 17:00
Place: Seminar room (1st floor) at R-CCS

Title: Agent-based model (ABM) for city-scale traffic simulation: a case study on San Francisco.
Speaker: Bingyu Zhao, University of California at Berkeley

Presentation Language: English
Presentation Material: English

Abstract:

Agent-Based Model (ABM) is a promising tool for city-scale traffic simulation to understand the complex behaviour of the entire urban transportation system under different scenarios. In the ABM, traffic is intuitively simulated as movements and interactions between large numbers of agents, each capable of finding the route for an individual traveller or vehicle. In this talk, the development of such an ABM simulation tool will be presented to reproduce the traffic patterns of the city of San Francisco. The model features a detailed road network and hour-long simulation time step to capture realistic variations in traffic conditions. Agent speed is determined according to a simplified volume-delay macroscopic relationship, which is more efficient than applying microscopic rules (e.g., car following) for evaluating city-scale traffic conditions. Two particular challenges of building such an ABM will be discussed in particular: data availability and computational cost. The key inputs to the ABM are sourced from standard and publicly available datasets, including the travel demand surveys published by local transport authorities and the road network data from the OpenStreetMap. In addition, an efficient priorityqueue based Dijkstra algorithm is implemented to overcome the computational bottleneck of agent routing. The ABM is designed to run on High Performance Computing (HPC) clusters, thereby improving the computational speed significantly. Preliminary validation of the ABM is conducted by comparing its results with a published model. Overall, the ABM has been demonstrated to run efficiently and produce reliable results. Use cases of the ABM tool will be demonstrated through two examples, including evaluating the value of real-time traffic information and assessing the outcomes of complex network-level emission mitigation measures.

The 165th R-CCS Cafe (Special Edition 3)
Date and Time: Mon. Mar. 18, 2019, 13:30 - 15:00
Place: Lecture Hall (6th floor) at R-CCS

Title: Extreme Data Management Analysis and Visualization for Exascale Computing and Economic Development
Speaker: Prof. Valerio Pascucci(Director of the Center for Extreme Data Management Analysis and Visualization (CEDMAV) of the University of Utah)

Presentation Language: English
Presentation Material: English

Abstract: Detail

Effective use of data management techniques for analysis and visualization of massive scientific data is a crucial ingredient for the success of any supercomputing center and cyberinfrastructure for data-intensive scientific investigation. In the progress towards exascale computing, the data movement challenges have fostered innovation leading to complex streaming workflows that take advantage of any data processing opportunity arising while the data is in motion. This technology finds practical use in a number of industry applications including precision agriculture and tele-medicine. In this talk I will present a number of techniques developed at the Center for Extreme Data Management Analysis and Visualization (CEDMAV) that allow to build a scalable data movement infrastructure for fast I/O while organizing the data in a way that makes it immediately accessible for analytics and visualization. In addition, I will present a topological analytics framework that allows processing data in-situ and achieve massive data reductions while maintaining the ability to explore the full parameter space for feature selection. Overall, this leads to a flexible data streaming workflow that allows working with massive simulation models without compromising the interactive nature of the exploratory process that is characteristic of the most effective data analytics and visualization environment.
* "The OpenViSUS tutorial" will be held on Mar.20 corresponding to this talk. Please see the following web site.
OpenViSUS ストリーミング型大規模データ可視化チュートリアル(2019年3月20日)

The 164th R-CCS Cafe (Special Edition 2)
Date and Time: Fri. Mar. 15, 2019, 13:15 - 15:00
Place: Lecture Hall (6th floor) at R-CCS

Title: Can computer simulations be regarded as science?: a perspective from philosophy of science
Speaker: Tetsuji Iseda (Associate Professor, Kyoto University)

Presentation Language: English
Presentation Material: English

Abstract: Detail

What distinguishes scientific research from other types of activities? One answer to this question is that empirical science construct theory based on experiments and observations. Then, what about 'experiments' through computer simulations, according to such a view? Can we regard simulation-based research as scientific? Computer simulations also attract attention of philosophy of science, and some of the considerations in that field are relevant to the above question. This lecture try to locate computer simulation within science properly through introducing such recent trends in philosophy of science.

The 163rd R-CCS Cafe -part I
Date and Time: Fri. Mar. 1, 2019, 13:00 - 14:00
Place: Lecture Hall (6th floor) at R-CCS

Title: Novel features of a familiar theory --- QCD near phase boundary analyzed through large scale numerical simulations
Speaker: Yasumichi Aoki(Team Leader, Field theory Research Team)

Presentation Language: English
Presentation Material: English

Abstract: Detail

Understanding the chiral symmetry and its spontaneous breakdown is essential to theoretically reveal the nature of QCD (Quantum Chromo Dynamics) in the Standard Model of particle physics. To this end non-perturbative approaches to QCD dynamics are indispensable and numerical computation based on lattice QCD is only one available method to pursue this for targeted precision in the state-of-the-art application. Ever since the first trial in this approach started in 1980, tremendous effort to improve the algorithms has been made. With that and the increased computer capability we (lattice community) now achieved percent level precision computation for not all, but, some important physical quantities. On the other hand, if one's focus is at the boundary of chiral symmetric - broken "phases", then a delicate treatment of the chiral symmetry is required to even predict the qualitative nature of the system. Such a treatment has become possible only recently in large-scale numerical simulations, which have led to some hints of novel features of QCD. Taking the latter examples, this talk describes such features of QCD, which appears in two different contexts: 1) when the numbers of quarks are increased and 2) in the finite temperature phase transition of two-flavor QCD. The implication to the physics beyond the Standard Model 1); and also the impact to the real world 2) are discussed with the results obtained from large scale numerical simulations. Finally problems which needs to be solved in the next generation supercomputers are also discussed.

The 163rd R-CCS Cafe -part Ⅱ
Date and Time: Fri. Mar. 1, 2019, 14:00 - 15:00
Place: Lecture Hall (6th floor) at R-CCS

Title: Next Generation System Software for High Performance Big Data
Speaker: Kento Sato (Team Leader, High Performance Big Data Research Team)

Presentation Language: English
Presentation Material: English

Abstract: Detail

The High Performance Big Data Research Team is investigating and developing system software to facilitate extreme-scale big data processing, machine learning and deep learning for the K computer, post-K computer and beyond. The computational power in high performance computing (HPC) systems has been dramatically increasing, driven in particular by advanced multi/many-core architectures and new memory technologies such as high bandwidth memory and hybrid memory cubes. Although these HPC systems are keeping pace with required computational and memory performance for running scientific applications, they are inadequate with respect to I/O performance required by data-intensive applications. In this talk, we briefly introduce various approaches to resolve these I/O issues and future research directions for the next generation HPC systems.

The 163rd R-CCS Cafe -part Ⅲ
Date and Time: Fri. Mar. 1, 2019, 15:15 - 16:15
Place: Lecture Hall (6th floor) at R-CCS

Title: Towards Next Generation HPC Architecture and its Power Management
Speaker: Masaaki Kondo (Team Leader, Next Generation High Performance Architecture Research Team)

Presentation Language: English
Presentation Material: English

Abstract: Detail

The continuous improvement in processing speed in high-performance computer systems has been enabled by transistor scaling known as Moore's law. However, this trend is predicted to end in the near future. It is vital to research and develop new, more efficient high performance architectures to continue realizing high performance computing systems. One of the missions of our team is to research and develop a next-generation high-performance computer architecture together with strategies to improve the power efficiency of exascale supercomputer systems. Our research focus includes non-von Neumann architectures, integrating next generation non-volatile memories and/or various types of accelerators into a general-purpose processor, acceleration of machine learning computations, and hybrid computing architectures that combine new and classical computing models. In this talk, we briefly introduce our recent research efforts on next generation high-performance architectures. We also present a power-aware resource management framework which have been developed by our JST CREST project. The developed framework controls power allocation among co-scheduled jobs to optimize total system throughput and power-efficiency within a given power constraint. We have tested this framework on a large-scale HPC cluster system with about 1000 compute-nodes and showed that it can successfully manage the system's power consumption.

The 162nd R-CCS Cafe(Special Edition 1)
Date and Time: Fri. Feb. 22, 2019, 10:40 - 11:40
Place: Lecture Hall (6th floor) at R-CCS

Title: An Introduction to Quantum Computing and Its Application, Probably
Speaker: Bo Ewald(President, D-WAVE INTERNATIONAL)

Presentation Language: English
Presentation Material: English

Abstract: Detail

This presentation will briefly introduce the ideas behind quantum mechanics and its possible application in quantum sensing, communication and computing. We’ll then discuss the ideas and principles that have enabled the world’s first quantum computers. We’ll briefly review the technologies and architectures, then dive a little more deeply into how the D-Wave quantum annealing computer works. We’ll survey the “proto-applications” that customers have been developing in areas of optimization, machine learning and material science that point the way to production use of quantum computers in the next few years. Finally, we’ll discuss some of the future directions of quantum computing.

The 161st R-CCS Cafe
Date and Time: Fri. Feb. 15, 2019, 15:30 - 16:30
Place: Lecture Hall (6th floor) at R-CCS

Title: Recent advances in MXenes: From fundamentals to applications
Speaker: Mohammad Khazaei (Computational Materials Science Research Team)

Presentation Language: English
Presentation Material: English

Abstract: Detail

The family of MAX phases — with chemical formula of Mn+1AXn, where n = 1, 2, or 3, “M” is an early transition metal (Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo), "A" is A group elements (Al, Si, P, S, Ga, Ge, As, In, Sn) and "X" is carbon and/or nitrogen — are a large family of layered ceramics with structural applications. Recently, MAX phases have been exfoliated into 2D single and/or multi Mn+1Xn layers by using appropriate acid solutions. The resulting 2D-Mn+1Xn transitional metal carbides and nitrides have been named as MXenes. Considering a large number of compositional possibilities of MAX phase compounds, a large number of MXenes with unprecedented properties could also be obtained in the future. Owing to their large surface area, hydrophilicity, adsorption ability, and high surface reactivity, 2D MXenes have experimentally attracted attention for many potential applications, e.g., catalysts, ion batteries, gas storage media, and sensors. Given the fast progress of MXene-based science and technology, in this presentation, I would like to update your knowledge of electronic properties and some of the possible applications of MXenes.

The 160th R-CCS Cafe -part I
Date and Time: Fri. Feb. 1, 2019, 13:00 - 14:00
Place: Lecture Hall (6th floor) at R-CCS

Title: Regional-scale data assimilation with Himawari-8 satellite radiances
Speaker: Takumi Honda (Data Assimilation Research Team)

Presentation Language: English
Presentation Material: English

Abstract: Detail

In this talk, we review our achievement in regional-scale data assimilation with Himawari-8 satellite radiances. In July 2015, the Japan Meteorological Agency (JMA) started full operations of their new geostationary satellite “Himawari-8”, the first of a series of the third-generation geostationary meteorological satellites. Himawari-8 can produce high-resolution observations with 16 frequency bands every 10 minutes for full disk. To assimilate Himawari-8 radiances, we implemented a radiative transfer model into a regional-scale data assimilation system known as SCALE-LETKF, consists of the Scalable Computing for Advanced Library and Environment-Regional Model (SCALE-RM) and the Local Ensemble Transform Kalman Filter (LETKF). We assimilated all-sky every-10-minute infrared (IR) radiances from Himawari-8. The results showed that assimilating the every-10-minute Himawari-8 IR radiances improves the analyzed tropical cyclone (TC) structure and intensity forecasts. In another case in September 2015, the heavy precipitation forecasts are greatly improved by assimilating the Himawari-8 IR observations. We ran a rainfall-runoff model using the improved precipitation forecasts and found that assimilating the Himawari-8 observations frequently may give longer lead times in terms of the flood risk. We also show other case studies on a different TC case and the extremely-heavy precipitation event in July 2018.