Appendix 4. REMD of protein G with implicit solvent or CG models
Although REMD is a powerful tool to overcome energy barriers in MD sampling, sometimes people want to accelerate further, by decreasing the degree of freedom of the target system. One way is to keep the atomistic resolution but treating all the solvent molecules implicitly. GENESIS can perform simulations with the GB/SA implicit solvent model, please see Tutorial 8.1. An alternative way is to use a coarse-grained (CG) representation of all the biomolecules, including water and ions. GENESIS also supports simulations with such CG models, including MARTINI and SPICA (tutorials in preparation). Residue-level CG models embody both two features (lower resolution and implicit solvent). Please refer to Tutorials 11.1, 11.2, 11.3, and 11.4 to learn how to run simulations with these CG models in GENESIS.
Here, we show a simple example of running REMD with the residue-level CG models. Generally speaking, there is no big difference between CG REMD and all-atom REMD simulations. Therefore, we will briefly describe the main steps and focus on the distinctions between CG and all-atom simulations.
This example is to simulate the folding/unfolding dynamics of protein G. In principle, for such a simple CG system, a constant temperature run is enough to capture the folding/unfolding events, as shown in tutorial 11.1. Nevertheless, we think this system is good to illustrate how to carry out REMD simulations in couple with the residue-level CG models. You can also compare the results of this section with those from tutorial 11.1.
0. Preparations
0.1 Install necessary software
As introduced in tutorial 11.1, we use the GENESIS-CG-tool to generate CG MD files. Please install dependencies (programming language Julia and some packages) to run this tool.
0.2 Download the files for this tutorial
Let’s download the tutorial file (tutorial22-A.4.zip). This tutorial consists of three parts: 1) system setup, 2) REMD simulations, and 3) trajectory analysis.
# Download and unarchive the tutorial files
$ cd /home/user/GENESIS/Tutorials
$ unzip tutorial22-A.4.zip
$ cd tutorial-A.4
$ ls
01_build 02_REMD 03_analysis
1. Setup
You can go through section 0 and 1 of tutorial 11.1 to prepare the topology and coordinate files for the following simulations.
Basically, we execute the following commands to create the necessary files (1PGB_cg.top
, 1PGB_cg.itp
, and 1PGB_cg.gro
):
# download the PDB file (PDB code 1PGB)
$ cd 01_build
$ wget https://files.rcsb.org/download/1PGB.pdb
$ /home/user/genesis_cg_tool/src/aa_2_cg.jl 1PGB.pdb
$ ls
1PGB.pdb 1PGB_cg.gro 1PGB_cg.itp 1PGB_cg.top
2. REMD Simulations
Since we are going to start from the native structure (global energy minimum), we don’t perform energy minimization and equilibration runs in this tutorial. However, generally speaking, it is highly recommended to go through those steps.
Now let’s change to the REMD directory and take a look at the files:
$ cd ../02_REMD
$ ls
remd.inp param/
In the “param/
” directory there are standard parameter files for the CG models. The file “remd.inp
” is the control file that contains the information for GENESIS to perform the REMD simulations:
[INPUT]
grotopfile = 1PGB_cg.top
grocrdfile = 1PGB_cg.gro
[OUTPUT]
pdbfile = gb1_remd_run_rep{}.pdb
dcdfile = gb1_remd_run_rep{}.dcd
rstfile = gb1_remd_run_rep{}.rst
remfile = gb1_remd_run_rep{}.rem
logfile = gb1_remd_run_rep{}.log
[ENERGY]
forcefield = RESIDCG
electrostatic = CUTOFF
[DYNAMICS]
integrator = VVER_CG
nsteps = 100000000
timestep = 0.010
rstout_period = 100000
crdout_period = 1000
eneout_period = 1000
nbupdate_period = 20
[CONSTRAINTS]
rigid_bond = NO
[ENSEMBLE]
ensemble = NVT
tpcontrol = LANGEVIN
temperature = 320
gamma_t = 0.01
[BOUNDARY]
type = PBC
box_size_x = 300.0
box_size_y = 300.0
box_size_z = 300.0
[REMD]
dimension = 1
exchange_period = 5000
type1 = temperature
nreplica1 = 16
parameters1 = 320.00 \
330.00 \
340.00 \
350.00 \
360.00 \
370.00 \
380.00 \
390.00 \
400.00 \
410.00 \
420.00 \
430.00 \
440.00 \
450.00 \
460.00 \
470.00
Please refer to tutorial 12.1 for the detailed explanations of the directives, especially those in the “[REMD]
” block. The most important thing is to choose the temperature range and the number of replicas, which is dependent on the a priori knowledge. Based on the results of tutorial 11.1, we have a good guess of the “folding temperature” (, defined as the temperature where folded and unfolded states have equal probabilities), which is around 400K. Therefore, here we want to use a range of temperatures to cover 400K (). To determine the number of replicas, one way is to first run simulations at constant temperatures and estimate the overlap of energy distributions at the neighboring temperatures. Here we choose an interval of 10K. As will be shown later in this tutorial, this choice produce a good energy overlap.
# copy necessary files
$ cp ../01_build/1PGB_cg.* .
# Run REMD production
$ export OMP_NUM_THREADS=2
$ mpirun -np 16 /home/user/GENESIS/bin/atdyn remd.inp | tee remd_master.log
On a workstation with 32 CPU cores, it takes around 1.5 hours to finish the simulation.
3. Analysis
In this tutorial, we aim at calculating the potential-of-mean-force (PMF) of the Q-value (nativeness) at 400 K. Same as tutorial 12.1, we are going to utilize the MBAR re-weighting method.
$ cd ../03_analysis
$ ls
1_calc_ratio 2_plot_index 3_sort_dcd 4_plot_potential 5_q_val 6_MBAR 7_PMF
3.1 Calculate the acceptance ratio
Let’s first calculate the acceptance ratio to get an estimation of the REMD efficiency:
# change directory
$ cd 1_calc_ratio
$ ls
$ calc_ratio.sh
# make the file executable and use it
$ chmod u+x calc_ratio.sh
$ ./calc_ratio.sh
1 > 2 0.7788
3 > 4 0.7764
5 > 6 0.7709
7 > 8 0.688
9 > 10 0.4993
11 > 12 0.7869
13 > 14 0.8171
15 > 16 0.831
As can be seen, almost all the acceptance ratio are above 0.5, showing quite high-efficient exchange between replicas.
3.2 Plot time courses of replica indices and temperatures
We next examine the “random-walk” of each replica in the temperature space by plotting the time courses of replica indices (for each temperature) and temperatures (for each replica).
# change directory
$ cd ../2_plot_index
$ ls
01_extract_index_temperature_info.sh 02.1_plot_rep_exchange.py 02.2_plot_temperature_exchange.py
The first file 01_extract_index_temperature_info.sh
gets replica IDs and temperatures from the “master” log file. Its content is like this:
#!/bin/bash -f
# get replica IDs in each snapshot
grep "ParmIDtoRepID:" ../../02_REMD/remd_master.log | sed 's/ParmIDtoRepID://' > T-REMD_parmID-repID.dat
# get replica temperatures in each snapshot
grep "Parameter :" ../../02_REMD/remd_master.log | sed 's/Parameter ://' > T-REMD_repID-Temperature.dat
# get step number and combine to replica index
grep "REMD> Step:" ../../02_REMD/remd_master.log | cut -c 12-25 > step.log
# adding simulation steps in the beginning
paste step.log T-REMD_parmID-repID.dat > T-REMD_parmID-repID.log
paste step.log T-REMD_repID-Temperature.dat > T-REMD_repID-Temperature.log
# remove tmp files
rm -f T-REMD_parmID-repID.dat T-REMD_repID-Temperature.dat step.log
We then use two python scripts to plot the time series of repclia IDs and temperatures. If you are not familiar with python and matplotlib
, we provide a simple introduction to data analysis with python in tutorial 4.3.
Content of 02.1_plot_rep_exchange.py
:
#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
parm_rep_data = np.loadtxt("./T-REMD_parmID-repID.log")
N_REP = 16 # total number of replicas
n_row = 4 # number of subplot rows
n_col = 4 # number of subplot columns
fig, axes = plt.subplots(n_row, n_col, figsize=(n_col * 4, n_row * 3), constrained_layout=True, sharex=False, sharey=False)
X = parm_rep_data[:, 0] # common X-axis data: time step
for i_ax in range(N_REP):
m, n = i_ax // n_col, i_ax % n_col
Y = parm_rep_data[:, i_ax + 1] # Y-axis data: repID
axes[m, n].plot(X, Y, ".", c="red")
axes[m, n].set_xticks([20000000 * j for j in range(6)])
axes[m, n].set_xticklabels([0, 2, 4, 6, 8, 10], fontsize=12)
axes[m, n].set_xlim(0, 1e8)
axes[m, n].set_xlabel(r"MD steps ($\times 10^7$)", fontsize=16)
axes[m, n].set_yticks([j for j in range(1, 17)])
axes[m, n].set_yticklabels(["", "", "", "4", "", "", "", "8", "", "", "", "12", "", "", "", "16"], fontsize=12)
axes[m, n].set_ylim(0, 17)
axes[m, n].set_ylabel("Replica ID", fontsize=16)
title_text = "Temperature = {0} K".format(i_ax * 10 + 320)
axes[m, n].set_title(title_text, fontsize=16)
plt.savefig("Replica_exchange_all.png")
Content of 02.2_plot_temperature_exchange.py
:
#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
rep_parm_data = np.loadtxt("./T-REMD_repID-Temperature.log")
N_REP = 16 # total number of replicas
n_row = 4 # number of subplot rows
n_col = 4 # number of subplot columns
fig, axes = plt.subplots(n_row, n_col, figsize=(n_col * 4, n_row * 3), constrained_layout=True, sharex=False, sharey=False)
X = rep_parm_data[:, 0] # common X-axis data: time step
for i_ax in range(N_REP):
m, n = i_ax // n_col, i_ax % n_col
Y = rep_parm_data[:, i_ax + 1] # Y-axis data: repID
color_ax = [i_ax / N_REP, 1, 1 - i_ax / N_REP]
axes[m, n].plot(X, Y, "-", c=color_ax)
axes[m, n].set_xticks([20000000 * j for j in range(6)])
axes[m, n].set_xticklabels([0, 2, 4, 6, 8, 10], fontsize=12)
axes[m, n].set_xlim(0, 1e8)
axes[m, n].set_xlabel(r"MD steps ($\times 10^7$)", fontsize=16)
axes[m, n].set_yticks([j * 10 + 320 for j in range(16)])
axes[m, n].set_yticklabels(["320", "", "", "", "360", "", "", "", "400", "", "", "", "440", "", "", ""], fontsize=12)
axes[m, n].set_ylim(315, 475)
axes[m, n].set_ylabel("Temperature (K)", fontsize=16)
title_text = "Replica = {0}".format(i_ax + 1)
axes[m, n].set_title(title_text, fontsize=16)
plt.savefig("Temperature_exchange_all.png")
Now, let’s execute these scripts:
$ ./01_extract_index_temperature_info.sh
$ ./02.1_plot_rep_exchange.py
$ ./02.2_plot_temperature_exchange.py
These commands will create two text files (T-REMD_parmID-repID.log
and T-REMD_repID-Temperature.log
) and two figures (Replica_exchange_all.png
and Temperature_exchange_all.png
).
This figure shows that each temperature visits every replica randomly.
This figure shows the random walk of each replica in the temperature space.
3.3 Sort coordinates in DCD trajectory files by parameters
We next use GENESIS analysis tool remd_convert
to sort the frames in the trajectories based on their temperature.
# change directory
$ cd ../3_sort
$ ls
log_convert.inp remd_convert.inp
# Sort frames by parameters
$ /home/user/GENESIS/bin/remd_convert log_convert.inp | tee log_convert.log
$ /home/user/GENESIS/bin/remd_convert remd_convert.inp | tee remd_convert.log
3.4 Plot potential energy distribution for each temperature
Now we have got all the log files sorted and will next plot potential energy distributions to make sure that there are sufficient overlaps in energy between simulations at different temperatures.
# change directory
$ cd ../4_plot_potential
$ ls
01_extract_potential_energy.sh 02_plot_potential_energy_temperature.py
The script 01_extract_potential_energy.sh
get potential energies from simulations at each temperature:
#!/bin/bash
# get potential energy of each replica
for i in {1..16}
do
grep "INFO:" ../3_sort_dcd/remd_paramID$i.log | tail -n +2 | awk '{print $5}' > potential_energy_rep$i.dat
done
# insert step number to the beginning of each line
grep "INFO:" ../3_sort_dcd/remd_paramID1.log | tail -n +2 | awk '{print $2}' > step.log
for i in {1..16}
do
paste step.log potential_energy_rep$i.dat > potential_energy_rep$i.pot
done
# cleaning
rm -f potential*.dat step.log
The python script 02_plot_potential_energy_temperature.py
plot the energy distributions at each temperature:
#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
N_REP = 16 # total number of replicas
fig, axes = plt.subplots(1, 1, figsize=(6, 4), constrained_layout=True, sharex=False, sharey=False)
for i_rep in range(N_REP):
potential_data_fname = "./potential_energy_rep{0}.pot".format(i_rep + 1)
pot_energy = np.loadtxt(potential_data_fname, usecols=(1))
color_tmp = [i_rep / N_REP, 1 - i_rep / N_REP, 0]
hist, edge = np.histogram(pot_energy, bins=50, density=True)
X = 0.5 * (edge[:-1] + edge[1:])
axes.plot(X, hist, "-", color=color_tmp)
axes.set_xticks([-300 + 50 * j for j in range(6)])
axes.set_xticklabels([-300 + 50 * j for j in range(6)], fontsize=12)
axes.set_xlim(-310, -40)
axes.set_xlabel(r"Potential Energy ($kcal/mol$)", fontsize=16)
axes.set_yticks([0.02 * j for j in range(4)])
axes.set_yticklabels(["0", "0.02", "0.04", "0.06"], fontsize=12)
axes.set_ylim(0, 0.07)
axes.set_ylabel("Probability", fontsize=16)
plt.savefig("potential_energy_temperature.png")
This figure shows the potential energy distribution at each temperature (indicated by the colors).
3.5 Calculate the Q values
We use the GENESIS analysis tool qval_residcg_analysis
to calculate the nativeness (Q-value) of each simulated protein structure.
# change directory
$ cd ../5_q_val
$ ls
05_qval_residcg_analysis.inp 05_calculate_qval.sh
Please refer to tutorial 11.1 for the explanation of the control file 05_qval_residcg_analysis.inp
.
Don’t forget to change the path of GENESIS in line 6 of the bash script 05_calculate_qval.sh
:
#!/usr/bin/bash
for irep in {1..16}; do
cp 05_qval_residcg_analysis.inp tmp.inp
sed -e "s/RUNID/ID$irep/g" -i tmp.inp
/home/user/GENESIS/bin/qval_residcg_analysis tmp.inp
rm -f tmp.inp
done
Now, let’s execute the Q-value calculations:
$ ./05_calculate_qval.sh
3.6 MBAR analysis
Now let’s carry out the MBAR analysis:
# change directory
$ cd ../6_MBAR
$ ls
mbar.inp
$ /home/user/GENESIS/bin/mbar_analysis mbar.inp | tee mbar.log
3.7 Calculate PMF of Q-value
Finally, we use the GENESIS analysis tool pmf_analysis
to get the PMF of Q-value:
# change directory
$ cd ../7_PMF
$ ls
pmf.inp 01_remove_first_line_of_weight_files.sh 02_plot_PMF_Q.py
We use the script 01_remove_first_line_of_weight_files.sh
to remove the first line of the “weight” files, to be consistent with the CV (Q-value) files. The script has the following content:
#!/bin/bash
for j in {1..16}; do
sed "1d" ../6_MBAR/weight$j.dat > weight$j.dat
done
We then calculate the PMF:
$ /home/user/GENESIS/bin/pmf_analysis pmf.inp | tee pmf.log
This command generates a new file, qval.pmf
. We can now plot the PMF with the python script 02_plot_PMF_Q.py
. The content of 02_plot_PMF_Q.py
is:
#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
pmf_data = np.loadtxt("./qval.pmf")
fig, ax = plt.subplots(1, 1, figsize=(6, 4), constrained_layout=False, sharex=False, sharey=False)
ax.plot(pmf_data[:, 0], pmf_data[:, 2], "r-")
ax.set_xticks([0.2 * i for i in range(6)])
ax.set_xticklabels(["0.0", "0.2", "0.4", "0.6", "0.8", "1.0"], fontsize=12)
ax.set_xlim(-0.02, 1.02)
ax.set_xlabel("Q value", fontsize=16)
ax.set_yticks([1 * i for i in range(6)])
ax.set_yticklabels([1 * i for i in range(6)], fontsize=12)
ax.set_ylim(-0.2, 4.2)
ax.set_ylabel("PMF (kcal/mol)", fontsize=16)
plt.savefig("qval_pmf.png", dpi=150)
Now let’s plot the PMF:
$ ./02_plot_PMF_Q.py
This figure shows the PMF of Q value at 400K.
Written by Cheng Tan@RIKEN Center for Computational Science, Computational Biophysics Research Team
June, 2022