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Aya Motohashi (Assistant)

15.2 Research Activities

The research and development activities of this team, in these six years of continuous activities, have covered a
broad range of the end-to-end simulation pipeline, focusing on the study, design, and development of effective
tools and mechanisms for enabling high performance visualization functionalities on the K computer opera-
tional environment. The resulting libraries, tools, and applications have been publicly released as open-source
software codes via GitHub, and they are listed in the deliverables subsection. In this final year of the contin-
uous activities, we focused on enhancing the functionalities of the HIVE (Heterogeneously Integrated Visual
analytics Environment) visualization application, including the input (xDMlib: Data Management Library),
output (ChOWDER: Cooperative Tiled Display System), and rendering (PBVR: Particle Based Volume Ren-
dering) capabilities. In addition, we have also worked on a workflow management system (WHEEL), and on a
performance measurement and visualization tool (PMlib).

15.2.1 Heterogeneously Integrated Visual-analytics Environment (HIVE)

HIVE has been one of the main developments of this team, and was designed to run in the heterogeneous
environments of traditional HPC infrastructures, which obviously includes the K computer environment that is
composed of the supercomputer itself, the post-processing servers, and a research-oriented visualization cluster.
As shown in Fig. 15.1, the HIVE is composed of several modules, most of them were internally developed
and some are third-party developed modules, each possessing different functionalities. The HIVE adopted the
Client/Server approach, and currently the HIVE Server is able to run on SPARC64fx and x86 hardware systems
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running Linux, MacOSX andWindows (via Windows Subsystem for Linux). On the other hand, the HIVE Client
only requires a Web browser and an appropriate network connection to the HIVE Server. The aforementioned
HIVE modules are loosely-coupled via Lua scripting language, and the communication between the HIVE Server
and Client is executed via Websocket connection. The Web-based user interface can serve as a user friendly GUI
for selecting the visualization parameters for preparing the “Visualization Scenes” to be used in the large-scale
parallel rendering job submissions via Command Line Interface (CLI). The right side of the Figure. 15.1 shows an
visualization example of this CLI-based visualization of a large-scale particle-based simulation result rendered
by using the data loading mechanism of PDMlib (Particle Data Management Library), and the ray-tracing
rendering functionality of SURFACE (Scalable and Ubiquitous Rendering Framework for Advanced Computing
Environments). In this rendering, the buildings are treated as particle data and the particle data representing
tsunami was converted to polygonal data, via own developed OpenVDB-based polygonal data converter, and
rendered as a semi-transparent object.

Figure 15.1: An overview of the HIVE software stacks showing the main modules, and a visualization example
of a particle-based tsunami simulation rendered by the HIVE (using PDMlib and SURFACE functionalities).

As described in the previous paragraph, two of the most important characteristics of the HIVE are the
Server/Client architecture and the loosely-coupled module integration via Lua scripting language. By taking
advantage of these two characteristics, in this fiscal year, we focused on enhancing the HIVE functionality by
including the Particle-Based Volume Rendering (PBVR), and mechanisms for visual causal exploration. For this
purpose, we utilized the functionalities provided by the KVS (Kyoto Visualization System) initially developed at
the Kyoto University, and currently maintained by the Kobe University. For the PBVR framework, we utilized
the particle generation functionality of KVS, and stored the generated particle data as PDMlib (Particle Data
Management library) data. For the visual causal exploration framework, we utilized the causality volume data
generation functionality of KVS, and stored as CDMlib (Cartesian Data Management library) data. We also
developed some shader codes for rendering these data sets via SURFACE ray-tracing functionalities, and these
examples are shown in Fig. 15.2.

Figure 15.2: HIVE Functionality Enhancements: Distributed Particle-Based Volume Rendering (PBVR) Frame-
work and a Visual Causal Exploration Framework.
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15.2.2 Data Management Library (xDMlib)

The xDMlib data management library has been designed to support the I/O during simulations, such as the
restart with different resolution size or number of computational nodes, and also to make a bridge between the
I/O of simulation and visualization applications. The “x” in the xDMlib represents the type of data format:
“C” for the Cartesian Data (CDMlib) such as voxel data; “P” for the Particle Data (PDMlib); “U” for the
Unstructured Data (UDMlib) such as defined by the CGNS (CFD General Notation System) library; and “H” for
the Hierarchical Data (HDMlib) such as the hierarchical block-structured data. One of the main characteristics
of this library is the data aggregation and repartition mechanism for providing a flexible data I/O functionality,
which can absorb the difference between the number of files (M) and the number of nodes (N) for reading or
writing as shown in the Fig. 15.3.

Considering that the number of nodes available in hardware systems for post processing is usually much
smaller than the number of generated files during the large job runs, the M × 1 and M ×N loading mechanism
becomes the most important features from the visualization point of view. As shown in Fig. 15.3, the M ×N
data loading can be aligned or unaligned based on the selected partitioning parameters, and it is worth noting
that unaligned data partitioning can impact the I/O performance. Another important mechanism of xDMlib is
the use of lightweight meta-information for the distributed data management in order to maintain the original
simulation data intact while extracting only the necessary data for the analysis and visualization processes. For
this purpose, xDMlib utilizes two meta-information for managing the distributed files: information related to
the contents of the data (index.dfi); and the information related to the data distribution among the processes
(proc.dfi).

Among the several simulation codes running on the K computer, the SCALE (Scalable Computing for
Advanced Library and Environment) is one of the representative large-scale simulation codes. This is a compu-
tational climate simulation code, and has been generating a vast amount of time-varying, multivariate simulation
results. Therefore, a flexible data loading mechanism for the visualization and analysis of the already stored
data sets as well as the upcoming simulation results becomes highly valuable. However, the file I/O is based on
the NetCDF (Network Common Data From) file format, and can use the HDF5 for storing the compressed data
as NetCDF4/HDF5 data. As a result, we extended the CDMlib library by including the necessary functionali-
ties provided by the NetCDF (Version 4.2) and HDF5 (Version 1.8.10 patch 1) libraries. Figure 15.3 shows an
overview of the implemented “metadata” generator (netcdf2dfi), and the extended CDMlib API for enabling
the flexible data I/O of NetCDF4/HDF5-based computational climate simulation results.
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Figure 15.3: An overview of the data loading mechanism and the metadata generation process.

15.2.3 Cooperative Tiled Display System (ChOWDER)

ChOWDER (Cooperative Workspace Driver) is a web-based Tiled Display Wall (TDW) system that can be
used to enhance collaborative works among multiple sites over the internet. By using the concept of “Virtual
Display Area (VDA)”, it can dynamically change the size of display area and the magnification ratio of the
contents without the constraints on the limitations of the resolution on the physical display side reffig:VDA.
When sharing a VDA among multiple sites, even they having TDW with different resolutions or aspect ratios,
the ChOWDER can appropriately adjust the display magnification ratio of the VDA for each of the sites.
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Besides, the ChOWDER was designed to allow dynamic change of participants, that is, any remote participant
can dynamically add or remove their physical displays to the VDA even during the run-time.

Figure 15.4: The concept of Virtual Display Area (VDA).

In this fiscal year, we developed some additional functionalities to the ChOWDER for enabling contents
sharing of Movies, Screens, and Webcams. These functionalities are built using the P2P data transmission
protocol called WebRTC, and the contents data is sent directly from the sender device to the display devices
where the contents will be displayed. As a real-world usage scenario, we evaluated the effectiveness of these new
functionalities by setting up an collaborative work scene using the TDWs placed at the Team’s Laboratory, here
in Kobe, and at the RIIT (Research Institute of Information Technology) at Kyushu University, in Fukuoka, as
shown in Fig 15.5.

Figure 15.5: Distributed collaboration between Kyushu University (1) and RIKEN R-CCS (2) using ChOWDER.

15.2.4 Workflow Management System (WHEEL)

Typical end-to-end processing workflow on the HPC systems is just a repetition of a routine involving pre-
processing and post-processing. The repetitive execution of this kind of workflow may waste the time of
researchers and engineers and reducing the time for analysis and understanding of the simulated phenomenon,
and interfering in the knowledge acquisition process. In order to solve this problem, this team has worked
on a workflow management system named WHEEL (Workflow in Hierarchical distributEd parallEL), and is
supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) as one of the
“Priority Issue on Post-K computer”.

The WHEEL is based on another workflow management system named SWF, jointly developed by our
team and the Kyushu University in last fiscal year. The developments have been focused on the refinement
of the web-based user interface, and the addition of new functionalities. The WHELL can be defined as a
multi-platform automated job preparation environment, including pre- and post-processing, for the efficient job
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execution on the HPC systems. Since it uses web-based GUI, and run on web browser, thus it does not depend
on the executing hardware platform. The main processing is handled by the Node.js, which is a cross-platform
runtime environment, and enables its use on the Linux, Mac, and Windows hardware platforms. Users can
define the “tasks” for each of the processing units via this web-based GUI, and can define the execution order
by connecting these tasks under the GUI workspace, as shown in Figure 15.6.

Figure 15.6: An overview of the WHEEL and its web-based GUI.

One of the distinctive features of the WHEEL is its parameter study execution component. By editing the
parameter file of the simulation software inside the text editor incorporated in the WHEEL, and designating
the sweep range of arbitrary parameter value, the simulation jobs for the specified parameter combinations
are automatically executed. After the job execution, the users will receive the result data files that the users
specified in advance for receiving after the execution. Compared to the SWF, some components have been added:
Iterative processing; Conditional branching; and Sub-workflow. By using these components, in a combined
manner, users can also build multi-objective design exploration workflow by using evolutionary calculation
module based on genetic algorithm. In this fiscal year, we built and evaluated the operation of this workflow,
using the evolutionary calculation module named “cheetah”, which is provided by the JAXA.

15.2.5 Performance Monitoring Library (PMlib)

PMlib is designed to monitor the computational performance of scientific applications and to visualize their
characteristics. The computational performance information such as flops and/or bandwidth can be obtained
from the actually executed system workload which is automatically read through the hardware performance
counters embedded in the modern CPUs. The alternative performance information can be obtained based on
the theoretical requirement by the source program. The PMlib accepts the explicitly provided user arguments
for such purposes.

The development effort during this fiscal year was focused on expanding the support of new CPU prod-
ucts such as the Intel Skylake and SPARC64 XIfx (Fujitsu PRIMEHPC FX100) which have new hardware
instructions and corresponding event sets. By covering those event sets, the PMlib provides useful information
regarding the effective computational performance for the specific micro architecture such as wide SIMD com-
putation. As an example, the net computational performance of the loop body of the following basic kernels
will be shown.
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do i=1,n ; c(i)=a(i)+b(i) ; end do

do i=1,n ; c(i)=a(i)+b(i)*d ; end do

do i=1,n ; c(i)=b(i)/a(i) ; end do

do i=1,n ; c(i)=sqrt(a(i)) ; end do

All of the computations are performed with a unit stride with the innermost loop length of n = 1, 2, 3, .., 50.
The SIMD instructions are generated by the compilers for such non-recurrent loops. Figure 15.7 shows the
performance results on FX100 with the variables defined as double precision. The curves show non-monotonic
increase, which are often observed on SIMD implemented CPU architectures. The performance jumps according
to the SIMD width (SIMD bit width / data bit width), and on the FX100, these jumps occurred at loop length
of 256/64 = 4 ’s multiple. This fig 15.7 indicates that a careful programming practice will lead to the significant
performance difference in short loops. Figure 15.8 shows the results of the same kernel with variables defined as
single precision. A major impact was observed for the loop lengths which coincides with multiple of 256/32 = 8
.

Figure 15.7: PMlib-fx100-R8 Figure 15.8: PMlib-fx100-R4

We also made some enhancements to the Web-based visualization package, named TRAiL, and designed for
the PMlib. In addition to the default PMlib report, users can now produce the time dependent performance
trace files in the open trace format, which can be visualized using the TRAiL. Figure reffig:TRAiL-512MPI
shows a partial TRAiL view of a 512 process PMlib job.

Figure 15.9: PMlib-TRAiL visualization
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15.2.6 Summary

The Advanced Visualization Research Team has actively conducted the research and development of visualiza-
tion related techniques from 2012 to 2018. The team has aimed to derive and promote scientific discovery and
explore the essence of the simulated phenomenon inside the large-scale data sets generated from huge compu-
tational resources such as the K computer, and hence, to assist the knowledge creation and improvement of
industrial design. Visualization and data processing are interdisciplinary research area among the information
science, computational science, and computer science. Our team has been intensively focused and researched
the methodologies to efficiently handle, analyze, and visualize data from various application fields. Therefore,
our research area covered a wide range of topics, e.g., visualization of large-scale dataset, data compression
with sparse modeling, parallel data management, execution environment for large-scale parallel computation,
performance monitoring during the application run-time, performance visualization, and the parallel time inte-
gration technique. The Advanced Visualization Research Team can be characterized not only by the conducted
research activities, but also for being conscious of the importance to feedback the research results to the society,
and has conducted a wide range of activities, and our main contribution can be summarized as follows:

[1] We developed some core technologies and an integrated system which is capable of efficiently assist the
visualization and data analysis on large-scale HPC environment such as the K computer environment, and
potentially on the coming Post-K computer.

[2] The developed visualization system has been applied to the post-processing of the simulation results
generated from various applications, and contributed to the outreach of the K computer.

[3] The developed visualization system has been continuously enhanced and maintained, and the users has
also benefited from the visualization support and assistance.

[4] The team has contributed to the human resource development, and our team fostered over eight re-
searchers, two technical staffs, and five student trainees, including some from overseas.

In addition to the R-CCS internal budget, our team successfully obtained more than five competitive external
funds from MEXT and JSPS. Some collaborative research projects have been conducted with academia and
private companies, including the University of Utah, in the USA, and the Federal University of Santa Catarina,
in Brazil.
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