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6.2 Research Activities

Our research field is physics of elementary particles and nuclei, which tries to answer questions in history of
mankind: what is the smallest component of matter and what is the most fundamental interactions? This
research subject is related to the early universe and the nucleosynthesis through Big Bang cosmology. Another
important aspect is quantum properties, which play an essential role in the world of elementary particles and
nuclei as well as in the material physics at the atomic or molecular level. We investigate nonperturbative prop-
erties of elementary particles and nuclei through numerical simulations with the use of lattice QCD (Quantum
ChromoDynamics). The research is performed in collaboration with applied mathematicians, who are experts
in developing and improving algorithms, and computer scientists responsible for research and development of
software and hardware systems.

Lattice QCD is one of the most advanced case in quantum sciences: interactions between quarks, which
are elementary particles known to date, are described by QCD formulated with the quantum field theory. We
currently focus on two research subjects: (1) QCD at finite temperature and finite density. We try to understand
the early universe and the inside of neutron star by investigating the phase structure and the equation of state.
(2) First principle calculation of nucleon form factors. Proton and neutron, which are called nucleon, consist of
three quarks. We investigate their internal structure and low energy properties by the measurement of various
form factors.

Successful numerical simulations heavily depend on an increase of computer performance by improving
algorithms and computational techniques. However, we now face a tough problem that the trend of computer
architecture becomes large-scale hierarchical parallel structures consisting of tens of thousands of nodes which
individually have increasing number of cores in CPU and arithmetic accelerators with even higher degree of
parallelism: we need to develop a new type of algorithms and computational techniques, which should be
different from the conventional ones, to achieve better computer performance. For optimized use of K computer
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Figure 15: Cutoff dependence of
√
t0TE (top) mPS,E/TE (middle) and

√
t0mPS,E (bottom).

Results for Nf = 3 [2] are also shown.
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Results for Nf = 3 [2] are also shown.
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Figure 6.1: Continuum extrapolation of the critical point
√
t0mPS,E (left) and

√
t0TE (right) with

√
t0 the

Wilson flow scale. Red and blue symbols denote 4 and 3 flavor cases, respectively.

our research team aims at (1) developing a Monte Carlo algorithm to simulate physical system with negative
weight effectively and (2) improving iterative methods to solve large system of linear equations. These technical
development and improvement are carried out in the research of physics of elementary particles and nuclei based
on lattice QCD.

6.2.1 QCD at finite temperature and finite density

Establishing the QCD phase diagram spanned by the temperature T and the quark chemical potential µ in
a quantitative way is an important task of lattice QCD. We have been working on tracing the critical end
line in the parameter space of temperature, chemical potential and quark masses in 4, 3 and 2+1 flavor QCD
using the O(a)-improved Wilson quark action and the Iwasaki gauge action. We have determined the critical
end point at zero chemical potential µ = 0 in 3 flavor case. Our strategy is to identify at which temperature
the Kurtosis of physical observable at the transition point on several different spatial volumes intersects. This
method is based on the property of opposite spatial volume dependence of the Kurtosis at the transition point
between the first order phase transition side and the crossover one. We have carried out a systematic study of
the critical end point changing the temporal lattice size from Nt = 4 to 10 in 3 flavor case, which corresponds
to change the lattice spacing. In Fig. 6.1 (left and right panels) we show the continuum extrapolation of the
critical pseudoscalar meson mass mPS,E and the critical temperature TE normalized by

√
t0, where

√
t0 denotes

the Wilson flow scale. We also make the same study in 4 flavor case for comparison. We observe that the
critical temperature seems to follow the O(a2) scaling property both in 3 mad 4 flavor cases. On the other
hand,

√
t0mPS,E shows significantly large scaling violation and its continuum extrapolation gives different values

for 3 and 4 flavor cases: rather close to zero for the former and sufficiently deviated from zero for the latter.
The origin of the difference between 3 and 4 flavor cases and ,especially, whether mPS,E in 3 flavor case may
vanish in the continuum limit are intriguing theoretical issues. Currently we are performing a simulation at
finer lattice spacing to investigate the possibility that mPS,E may vanish in the continuum limit.

6.2.2 Nucleon form factors

Nucleon form factors are good probes to investigate the internal structure of the nucleon which is a bound state
of quarks. Study of their properties requires nonperturbative method and much effort has been devoted to
calculate them with lattice QCD since 1980’s. Unfortunately, the current situation is that we are still struggling
for reproducing the well-established experimental results, e.g., the electric charge radius and the axial vector
coupling. This means that we have not yet achieved proper treatment of a single hadron in lattice QCD
calculation. The left panel of Fig. 6.2 shows a summary plot of the electric charge radius calculated with lattice
QCD as of 2014. We focus on two major systematic uncertainties in the current lattice QCD simulations: one
is heavier quark masses than the physical values and the other is finite spatial volume effects. In order to get
rid of them we have carried out calculation of the nucleon form factors on a (10.8 fm)4 lattice at the physical
point in 2+1 flavor QCD. Thanks to the large spatial volume we can get access to small momentum transfer
region up to q2 = 0.013 GeV2. The right panel of Fig. 6.2 plots our results for the electric charge radius, whose
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Figure 10: Dirac (left) and Pauli (right) radii as a function of mπ . The lattice data correspond to:
Nf=2+1 DWF (RBC/UKQCD [12, 39]), Nf=2 TMF (ETMC [40]), Nf=2+1 DWF (LHPC [41]), Nf=2+1
DWF on asqtad sea (LHPC [15]), Nf=2 Clover (QCDSF/UKQCD [17], QCDSF [42], CLS/MAINZ [43]),
Nf=2+1+1 TMF (ETMC [24]), Nf=2+1+1 HISQ (PNDME [25]), Nf=2+1 Clover (LHPC [33]), Nf=2
TMF with Clover (ETMC [34]). The experimental points have been taken from Refs. [2, 3].

In the left panel of Fig. 11 we plot r1 for a range of pion mass as the sink-source separation
increases. The study is carried out by LHPC [33] and ETMC [34] and it include the result of the
summation method. There is a clear upward tendency as the sink-source time separation increases.
Although the results from the summation method agree with the value extracted from the plateau
method for the largest sink-source time separation, the errors on the results at lowest values of the
pion masses are still large and currently do not allow to reach a deÞnite conclusion.
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Figure 11: Left: Isovector ⟨r2
1⟩ for various ensembles and different source-sink separations [33, 34]. Right:

Isovector GM for TMF extracted from a position space method [44].

In order to extract the anomalous magnetic moment one needs to Þt theQ2-dependence of GM .
Typically one employs a dipole form to extrapolate at Q2 = 0 introducing a model-dependence.
Exploratory studies based on a position space method can yield GM(0) directly without having to
perform a Þt. This method involves taking the derivative of the relevant correlator with respect
to the momentum, allowing access to zero momentum data. Thus, there is no need to assume a
functional form for the momentum dependence. Such a study is performed for GM [44] and the
results are shown in the right panel of Fig. 11.
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Figure 6.2: Summary plot of lattice QCD results for electric charge radius presented in the international
conference of “Lattice 2014” (left) and our result on a (10.8 fm)4 lattice at the physical point in 2+1 flavor
QCD (right). Experimental results for e-p scattering and muonic hydrogen spectroscopy are represented by “∗”
and “×” symbols in the left panel and gray and black horizontal bands in the right panel.

four data represent four types of analyses to extract the electric charge radius from the form factor. Comparing
the left and right panels in Fig. 6.2 our results show a remarkable improvement. We are now trying further
reduction of the magnitude of the error.

6.2.3 Tensor network scheme in path-integral formalism

The Monte Carlo simulation of lattice gauge theory is quite powerful to study nonperturbative phenomena of
particle physics. However, when the action has an imaginary component like the θ term, it suffers from the
numerical sign problem, which is failure of importance sampling techniques. The effect of the θ term on the
non-Abelian gauge theory, especially quantum chromodynamics (QCD), is important, because it is related to a
famous unsolved problem,“ strong CP problem ”. The difficulty is also shared with the finite density lattice
QCD. So development of effective techniques to solve or by-pass the sign problem leads to a lot of progress
in the study of the QCD phase diagram at finite temperature and density. The tensor network scheme is a
promising theoretical and computational framework to overcome these difficulties. So far we have developed
the Grassmann version of the tensor renormalization group (GTRG) algorithm in the tensor network scheme,
which allows us to deal with the Grassmann variables directly. The GTRG algorithm was successfully applied
to the analysis of the phase structure of one-flavor lattice Schwinger model (2D QED) with and without the
θ term showing that the algorithm is free from the sign problem and the computational cost is comparable to
the bosonic case thanks to the direct manipulation of the Grassmann variables. This was the first successful
application of the tensor network scheme to a Euclidean lattice gauge theory including the relativistic fermions
in path-integral formalism. Toward the final target of 4D QCD we are currently working on three research
subjects in the tensor network scheme: (i) non-Abelian gauge theories, (ii) higher dimensional (3D or 4D)
models, and (iii) development of computational techniques for physical observables. In 2017 we have succeeded
in applying the tensor network scheme to three dimensional finite temperature Z2 gauge theory. The left panel
of Fig. 6.3 shows the Nσ dependence of the specific heat as a function of 1/β at Nτ = 3, where Nσ and Nτ

denote the spatial and temporal extent of the lattice, respectively, and 1/β is proportional to temperature. We
observe the clear peak structure at all the values of Nσ and the peak height Cmax(Nσ) grows as Nσ increases.
We can determine the critical exponent ν from the finite size scaling behavior of the peak position βc(Nσ).
In the right panel of Fig. 6.3 we plot the Nσ dependence of βc(Nσ) at Nτ = 3. The solid curve represents

the fit result obtained with the fit function of βc(Nσ) = βc(∞) + BN
1/ν
σ for Nσ ∈ [512, 4096], which gives

βc(∞) = 0.711150(4) and ν = 0.99(4). The value of the critical exponent is consistent with ν = 1 in the
universality class of the two dimensional Ising model as expected by the Svetitsky-Yaffe conjecture. Next step
may be an application of the tensor network scheme to non-commutative gauge theories.
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that the value of (lnZ)/V monotonically converges as
D

2

increases. Since we find similar behaviors at other β
values, we take the results with D
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= 128 as the central
values and their errors are estimated by the di↵erence
from those with D
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= 144.
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FIG. 7. D
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dependence of (lnZ)/V (top) and δF (bottom)
at β = 0.71115 on the 40962 ⇥ 3 lattice.

B. Results

In Fig. 8 we plot the specific heat of Eq. (15) as a
function of 1/β. We observe the clear peak structure at
all the values of N

σ

and the peak height C
max
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) grows
as N

σ

increases. In order to determine the peak position
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FIG. 8. Specific heat C(Nσ) at N⌧ = 3 as a function of 1/β
with Nσ 2 [32, 4096].

with P another constant. This procedure su↵ers from
less uncertainties associated with the numerical deriva-
tive compared to the direct fit of the specific heat itself.

We expect that the peak height C
max

(N
σ

) scales with
N

σ

as

C
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) / N

↵/⌫

σ

, (16)

with the critical exponents ↵ and ⌫. We plot the peak
height C

max

(N
σ

) at N

⌧

= 3 as a function of N

σ

in
Fig. 9. We observe a clear logarithmic N

σ

dependence
for C

max

(N
σ

). We have found similar features at other
N

⌧

. These observation indicates ↵ ' 0. We can de-
termine another critical exponent ⌫ from the finite size
scaling behavior of the peak position β
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Figure 10 shows N

σ

dependence of β

c

(N
σ

) at N

⌧

= 3
as a representative case. The solid curve represents the
fit result obtained with the fit function of β

c

(N
σ

) =

β

c

(1)+BN

�1/⌫

σ

. In Table I we list the fit range at each
N

⌧

which is chosen to avoid possible finite size e↵ects due
to the smaller N

σ

. The fit results for β

c

(1), B, ⌫ and
χ

2

/d.o.f. are summarized in Table I. The values of β
c

(1)
at N

⌧

= 2, 3, 5 estimated in Ref. [19] are systematically
smaller than ours beyond the error bars. This may be at-
tributed to the narrow range of N

σ

employed in Ref. [19].
For the values of ⌫ we observe that both of our results
and those in Ref. [19] are consistent with ⌫ = 1, which is
the expected critical exponent in 2D Ising model. This
also satisfies the Josephson law of d⌫ = 2−↵ with d = 2
in the two-dimensional case. These are supporting evi-
dences for Svetitsky-Ya↵e conjecture that the finite tem-
perature transitions in (d + 1)-dimensional SU(N) and
Z
N

lattice gauge theories belong to the same universal-
ity class of those in the corresponding d-dimensional Z

N

spin models [20]. In our case the universality class for
the finite temperature Z

2

lattice gauge theory should co-
incide with that for the 2D Ising model whose critical
exponents are ↵ = 0 and ⌫ = 1.

5

TABLE I. Fit results for the critical point βc(1) and the critical exponent ⌫ at N⌧ = 2, 3, 5. The value of ⌫ at N⌧ = 2 in
Ref. [19] is evaluated using the pair of data at Nσ = 16 and 32.

This work Ref. [19]

N⌧ Nσ βc(1) ⌫ B χ2/d.o.f. Nσ βc(1) ⌫

2 [512, 4096] 0.656097(1) 1.00(1) 0.116(6) 0.086 4, 8, 16, 32 0.65608(5) 1.012(21)

3 [512, 4096] 0.711150(4) 0.99(4) 0.10(3) 0.047 24 0.71102(8)

5 [512, 4096] 0.740730(3) 0.96(5) 0.08(3) 0.012 40 0.74057(3)
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FIG. 9. Peak height of specific heat C
max

(Nσ) at N⌧ = 3 as a
function of Nσ. The horizontal axis is logarithmic. Solid line
is to guide your eyes.
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FIG. 10. Peak position of the specific heat βc(Nσ) at N⌧ = 3
as a function of 1/Nσ. Solid curve represents the fit result.

IV. SUMMARY AND OUTLOOK

We have applied the tensor network scheme to a study
of 3D finite temperature Z

2

gauge theory. Its e�ciency is
demonstrated by a numerical study of the critical prop-
erties of the 3D Z

2

gauge theory. The tensor network
scheme enables us to make a large scale of finite size scal-
ing analysis with the wide range of N

�

thanks to the lnV
dependence of the computational cost, which allows us a
precise and reliable estimation of the critical point and
the critical exponent at the thermodynamic limit. This
is the first successful application of the tensor network
scheme to one of the simplest 3D lattice gauge theories.
Next step may be the extension of this approach to the
gauge theories with continuous groups.
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Figure 6.3: Nσ dependence of specific heat as a function of 1/β (left) and scaling property of βc(Nσ) (right).

6.3 Schedule and Future Plan

6.3.1 QCD at finite temperature and finite density

We are performing a systematic study of the critical end point in 4 flavor QCD in comparison with 3 flavor
case. We also investigates whether or not mPS,E in 3 flavor QCD vanishes in the continuum limit.

6.3.2 Nucleon form factors

We are trying to reduce the statistical error of the nucleon form factors on a (10.8 fm)4 lattice at the physical
point. After that we plan to investigate the cutoff effect.

6.3.3 Tensor network scheme in path-integral formalism

As stated above, there are three important subjects in research and development of tensor network scheme in
path-integral formalism: (i) non-Abelian gauge theories, (ii) higher dimensional (3D or 4D) models, and (iii)
development of computational techniques for physical observables. Future research keeps to follow these three
directions.
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