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16.2 Overview of Research Activities

Data Assimilation Research Team (DA Team) was launched in October 2012 and is composed of 22 research and
technical staff including 11 visiting members as of March 2020. Data assimilation is a cross-disciplinary science
to synergize computer simulations and real-world data, using statistical methods and applied mathematics.
As computers become more powerful and enable more precise simulations, it will become more important to
compare the simulations with actual observations. DA Team performs cutting-edge research and development
on advanced data assimilation methods and their wide applications, aiming to integrate computer simulations
and real-world data in the wisest way. Particularly, DA Team tackles challenging problems of developing
efficient and accurate data assimilation systems for “big simulations” with real-world “big data” from various
sources including advanced sensors. The specific foci include 1) theoretical and algorithmic developments for
efficient and accurate data assimilation, 2) data assimilation methods and applications by taking advantage of
powerful supercomputers and “big data” from new advanced sensors, and 3) exploratory new applications of
data assimilation in wider simulation fields. These advanced data assimilation studies will enhance simulation
capabilities and lead to a better use of supercomputers including the K computer and its successor “Fugaku.”

In FY2019, we continued on the ongoing data assimilation research in the following aspects: 1) theoretical
research on challenging problems, 2) leading research on meteorological applications, 3) optimization of compu-
tational algorithms, and 4) exploratory research on wider applications. We also explored close collaborations
with several research teams within the R-CCS. We have made substantial progress on the following research
items:

Theoretical research

• A particle filter was applied to the cellular automata of 3 state sheep model.
• Model bias correction using a machine learning method (Long Short Term Memory, LSTM) was explored

with the Lorenz96 model.
• Denial of detrimental observations based on the Ensemble Forecast Sensitivity to Observation (EFSO)

was investigated (1 paper in revision).
• Weight structure of the Local Ensemble Transform Kalman Filter (LETKF) was investigated with a

simplified atmospheric general circulation model (GCM) (1 paper in revision).
• A local particle filter (LPF) was developed and tested with a simplified GCM.
• An LPF was developed for GPGPU.
• Ensemble Kalman filters (EnKFs) and LPFs were compared using the Lorenz96 model.
• Reservoir computing and EnKF were combined to predict spatio-temporal chaotic systems (1 paper in

preparation).
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Leading research on meteorological applications

• A 30-second-update, real-time prediction system was deveoped with the SCALE-LETKF.
• The SCALE-LETKF realtime system toward a very short-term localized rainfall forecast was ported to

Oakforest-PACS and tested in a realtime manner using the Multi-Parameter Phased Array Weather Radar
(MP-PAWR) at Saitama University.
• The observational operator for PAWR in SCALE-LETKF was improved, and its impact on forecasts was

investigated (1 paper published).
• An impact of a new observation system using a kite on a forecast of hevey rainfall was investigated.
• Impact of 30-second-update PAWR DA was investigated using the 100-m-mesh SCALE-LETKF for the

west Japan heavy rainfall event in July 2018.
• An observation operator for high frequent lightning data assimilation was developed.
• Model acceleration by machine learning was investigated; convolutional neural networks were used to

accelerate quasi-geostrophic model.
• To improve 3D precipitation nowcasting, neural networks were used to predict 3D radar images.
• Impact of assimilating lightning observations was investigated with the SCALE-LETKF.
• Efficient operation of water dam was investigated.
• Impact of assiilating Himawari-8 observations on precipitation events in Taiwan was investigated.
• Satellite observations at visible bands were simulated with the 1000-member SCALE-LETKF.
• Non-Gaussian PDF in DA was investigated using 1000-member, 1km-resolution assimilation experiments

with assimilation windows ranging from 30 seconds to 5 minutes and assimilating PAWR observations in
the SCALE-LETKF system. (1 paper in preparation)
• Conventional radar data assimilation experiments using the SCALE-LETKF system and RELAMPAGO

field campaign observations. Analysis of the performance of the analysis and short range forecasts. (1
paper in preparation)
• Impact of dual phased array assimilation to severe convective weather forecasts investigated with the

SCALE-LETKF was investigated.
• Sensitivity tests to optimize localication in the real-time SCALE-LETLF system were performed.
• We kept running the three-dimensional precipitation nowcasting system with the PAWR at NICT Kobe.

A new system was developed for the MP-PAWR.
• A machine-learning system for the three-dimensional precipitation nowcasting system was developed with

Convolutional LSTM.
• The sensitivity of a WRF-based convective-scale assimilation system on an afternoon thunderstorm in

northern Taiwan was investigated (1 paper in press).
• Hybrid gain data assimilation using variational corrections in the subspace orthogonal to the ensemble

was investigated (1 paper in press).
• Evaluation of stochastic perturbed parameterization tendencies on convective-permitting ensemble fore-

casts of heavy rainfall events in New York and Taiwan was performed (1 paper published).
• Convective-scale sampling error and its impact on the ensemble radar data assimilation system were

investigated with a case study of heavy rainfall event on 16th June 2008 in Taiwan (1 paper in press).
• Impact of tropical cyclone initialization on its convection development and intensity was investigated with

a case study of typhoon Megi (1 paper published).
• Convective-scale assimilation with the GNSS-ZTD and radar data was performed, and its impact on heavy

rainfall prediction in Taiwan was investigated (1 paper published).
• Including the observation error correlation in DA was investigated with the NICAM-LETKF system. We

found that reconditioning the observation error covariance matrix stabilizes the data assimilation and
improves the analyses.
• Ensemble-based observation impact estimates was incorporated into the NICAM-LETKF (1 paper pub-

lished).
• GPM/DPR-sensed heavy ice precipitation was compared with a 3.5-km NICAM simulation to design

better cloud microphysics (1 paper in revision).
• We kept running the global precipitation nowcasting system with the Global Satellite Mapping of Precip-

itation (GSMaP) by JAXA, and the prediction was disseminated on our website and JAXA’s website (1
paper published).
• Precipitation forecasts were improved by merging NICAM and spatio-temporal extrapolation forecasts (1

paper published).
• Spatially-varying model parameter was estimated with NICAM-LETKF (1 paper published).
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• Survey of ensemble-covariance of CH4-emission and wind velocity with NICAM-RM-LETKF to evaluate
unfavorable impacts of observation densities between PREPBUFR-wind and GOSAT-CH4 data.
• An observation operator for a new space-borne precipitation radar was developed (1 paper accepted).
• Impact of oversampling observations from a geostationary precipitation radar satellite to tropical cyclone

forecasts was invesigated (paper to be submitted).
• An object-based verification method of precipitation pattern was investigated using pattern recognition

techniques (1 paper published).
• An LETKF system to assimilate pattern features of precipitation areas was implemented with an inter-

mediate atmospheric GCM. A feature based on the fractions skill score was investigated.
• Impact of the ocean mixed layer model in a regional atmospheric DA system was investigated for a case

of typhoon Soudelor in 2015.
• Water level change in Lake Biwa under Typhoon Jebi in 2018 was reproduced by using SCALE and the

Regional Ocean Modeling System (ROMS).
• Current filed in Lake Kinneret was simulated with 50-m mesh ROMS.
• A LETKF based ocean DA system was developed and tested with Argo assimilation in the western North

Pacific.
• Bio-chemical fields in Tokyo-Bay are simulated to predict blue-green algae bloom.
• Relaxation methods of dynamical imbalance for ocean data assimilation systems were implemented.
• Performance of regional ocean data assimilation systems between 3D-VAR and LETKF was compared.
• Uncertainty quantification of a land surface model by machine learning based surrogate modelling was

investigate (1 paper submitted).
• A prototype system of machine-learning-based dam operation optimization was developed in collaboration

with Tokyo Electric Power Company Holdings, Incorporated.
• Land-atmosphere-coupled DA system was developed based on the NICAM-LETKF (1 paper in revision).
• Online- and offline-DA for paleoclimate reconstruction and its relation to the predictability were compared

(1 paper in prep.).
• Observation operators for paleoclimate reconstruction were developed (1 paper accepted).

Computational optimization

• The NICAM-LETKF system was developed for “Fugaku” as a target application in collaboration with the
Computational Climate Science Research Team and FS2020 (1 application submitted to Gordon Bell).
• The just-in-time data transfer (JIT-DT) of PAWR observations from NICT and Saitama University to

R-CCS was improved in collaboration with the System Software Development Team.

Wider applications

• DA experiments were performed with the Moderate resolution Imaging Spectroradiometer (MODIS) leaf
area index (LAI) observations and the Spatially-Explicit, Individual-Based Dynamic Global Vegetation
Model (SEIB-DGVM) over Siberia.
• SEIB-DGVM DA experiments were performed with the MODIS LAI observations at Takayama Flux site

in Japan.
• A particle filter was applied to a press-forming manufacturing simulation.

Several achievements are selected and highlighted in the next section.

16.3 Research Results and Achievements

16.3.1 Development of a real-time workflow of the big data assimilation system

In FY2019, we developed a 30-second-update, real-time prediction system assimilating the Phased Array
Weather Radar (PAWR) observations by fully utilizing the Oakforest-PACS. In the previous fiscal year, we
achieved a real-time execution of a 30-second-update PAWR DA cycle with a 250-m mesh on the supercom-
puter K. However, the computational domain was limited to the PAWR observation range of 60 km, and the
boundary conditions for this domain were not provided in real time; a real-time system for the outer regions
was yet to be developed. We also ported the entire system to the Oakforest-PACS in response to the upcoming
shutdown of the K computer. In FY2019, we started to use the Oakforest-PACS as the main platform. Our
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Figure 16.1: Workflow and computational domains of the 30-second-update, real-time SCALE-LETKF system.

Figure 16.2: Elapse times of each DA and 30-minute forecast with a 250-m mesh. DA was performed for 64
cycles, and forecasts were performed for 50 initial conditions. Left: a test run in August 2019, right: a test run
in November 2019.

system receives and assimilates PAWR observations every 30 seconds, and performs 30-minute deterministic
forecasts from the analyses. Figure 16.1 presents the system design. The system consists of four computational
domains. The outermost domain (D1, 18-km mesh) is the near-real-time SCALE-LETKF system developed by
Lien et al. (2017), assimilating conventional observations provided by the National Center for Environmental
Prediction (NCEP) every 6 hours. From the analyses by D1, ensemble forecasts over Japan (D2, 6-km mesh) and
Kanto (D3, 1.5-km mesh) are performed to provide initial and boundary conditions for the innermost domain
(D4). The D4 covers a region of 120 km×120 km with a 500-m mesh or a 250-m mesh, assimilating observations
of PAWR at Saitama University every 30 seconds. The data transfer of PAWR uses the Just-In-Time Data
Transfer (JIT-DT) developed by the System Software Development Team, R-CCS.

In FY2019, the 30-minute deterministic forecasting from the analyses of D4 was implemented as follows.
Here, 10 MPI processes are assigned to the 30-minute forecasts in addition to the MPI processes for the 52
ensemble members. MPI communicators are prepared for DA and the 30-minute forecasts separately; compu-
tations are independent except for the exchange of DA analyses. The SCALE and LETKF are combined as
a single binary file to avoid data exchange via file IO; data are exchanged on memory. Figure 16.2 displays
the execution time for DA and forecast. An earlier version of DA did not run stably in 30 seconds, and the
corresponding 30-minute forecasts took long (left). The system was updated to solve these problems; the latest
version runs stably within 30 seconds. The first cycle of DA takes longer to initialize the system, and from the
second cycle, the DA finishes stably within 30 seconds. The 30-minute forecasts also runs in 4 minutes (right).
This is a big step to the real time prediction. We will prepare a dissemination system and web page for this
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Figure 16.3: Spatial patterns of locally-estimated B1, averaged over 12 months from January to December 2015
for the experiments with the horizontal localization scales of (a) 400, (b) 200, and (c) 100 km (LWP-L400km,
LWP-L200km, and LWP-L100km, respectively). Red and blue colors indicate increases and decreases from the
default value of B1 = 0.10 due to parameter estimation. Adopted from Kotsuki et al. (2020).

prediction. We also need to verify and improve the prediction accuracy.

16.3.2 Model parameter estimation with data assimilation using NICAM-LETKF

This study aims to improve forecasts of numerical weather prediction (NWP) models by optimizing model
parameters with data assimilation. Kotsuki et al. (2018) succeeded in improving global precipitation forecasts
at 112-km-resolution NICAM (Nonhydrostatic ICosahedral Atmospheric Model) by estimating a parameter
called B1 of Berry (1967)’s large-scale condensation scheme using satellite-observed precipitation data and the
Ensemble Transform Kalman Filter (ETKF).

Extending the previous study, this study explores to use the model parameter estimation for mitigating
radiation bias. Kotsuki et al. (2020, JGR) estimated the parameter B1 as a global-constant parameter with
cloud liquid water (CLW) data observed by GCOM-W/AMSR2. The parameter estimation successfully reduced
excessive bias in CLW, and mitigated overestimated outgoing shortwave radiation (OSR) bias of the NICAM.
In addition, Kotsuki et al. (2020, JGR) extended to estimate spatially-varying B1 parameters using the Local
ETKF (i.e., LETKF) (Fig. 16.3). The local parameter estimation resulted in better cloud representations and
improved OSR bias in regions where shallow clouds are dominant (Fig. 16.4).

16.3.3 Application of machine learning methods to model bias correction: ideal-
ized experiments with the Lorenz-96 model

Model bias correction has been studied as an important subject in data assimilation. Model bias can be effec-
tively alleviated by statistical model bias correction methods combined with a variational or sequential (Kalman
filter-based) data assimilation method (Dee, 2005). Conventional methods have assumed a bias correction term
of simple functional form such as a constant or a linear dependence on model state variables (Dee and Da Silva,
1998, Danforth et al., 2007). Recently, the data-driven forecast and estimation of governing functions of the
system in arbitrary form, known as ‘model detection’ or ‘system identification,’ has been rapidly developed
with the use of machine learning (Brunton et al. 2016, Vlachas et al. 2018). The application of such machine
learning methods to data assimilation is a potential solution to model bias correction with unknown complexity.

In this study, an application of Long-Short term memory (LSTM) on model bias correction problems is
explored in the context of data assimilation using the Local Ensemble Transformed Kalman Filter (LETKF).
The proposed method is applicable for model bias which is dependent on current and past model states in an
arbitrarily nonlinear manner. Localization of bias correction treatment is also implemented. The new method
is examined by idealized numerical experiments using a multi-scale Lorenz-96 model (Lorenz 1996; Wilks 2005).

As the first step, LSTM-based scheme is examined in the case of offline bias correction, where the network
is trained with the pair of forecast and analysis time sequence produced by LEKTF without correction. The
bias correction with LSTM worked well and showed slightly better performance than simple polynomial fitting.
However, the improvement is very subtle in the case of coupled Lorenz96 system, which have been used in
previous studies. Therefore, experimental settings in which the use of LSTM has a clear advantage will be
studied further. Figure 16.5 presents such an example; here, the “shear-Lorenz96” by Pulido et al. (2018) is
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Figure 16.4: Global patterns of the time-mean bias relative to CERES data for (a, b, c) outgoing short wave
radiation (OSR; W m−2), and (d, e, f) outgoing long wave radiation (OLR; W m−2), averaged over 12 months
from January to December 2015. Panels (a, d), (b, e) and (c, f) show CTRL, LWP-Global (estimating B1 as
a global constant), and LWP-L200km experiments, respectively. Warm (cold) color represents overestimated
(underestimated) outgoing radiations relative to CERES data. Adopted from Kotsuki et al. (2020).
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Figure 16.5: The comparison of average RMSE over 100 forecasts from different initial conditions in “shear-
Lorenz96 (Pulido et al., 2018)” experiments. Each line corresponds to the experiment with different bias
correction schemes; no correction, linear regression, 4th order polynomial regression, neural networks with
dense layers, and LSTM. All bias correction schemes use the spatial localization with 5 neighboring grid points.

used. The next step will be the online bias correction, where the bias correction function is estimated with state
variables by LETKF simultaneously, and the consideration of partial and noisy observation.

16.4 Schedule and Future Plan

DA Team aims to explore the frontier of large-scale DA problems, and to be a world’s leader in DA research. With
the goals in mind, we plan to continue working on the three fundamental foci: 1) theoretical and algorithmic
developments for efficient and accurate DA (core focus), 2) DA methods and applications by taking advantage of
the Japan’s flagship supercomputer and “Big Data” from new advanced sensors (lead focus), and 3) exploratory
new applications of DA in wider simulation fields (pioneer focus). We have very strong projects in weather
forecast applications, and we will enhance the leading research to the world’s top level. Also, we will pioneer
new application fields that have direct connection with societal benefits. For direct benefit to society, “real-
time” application is essential with efficient computational algorithms, which are also an important aspect of our
research.

“Big Data Assimilation” (BDA) is one of the major activities that we have developed in the past years.
The prototype system showed promising results, but the physical performance for the 30-minute forecast of
precipitation patterns can be improved. We will continue to work on the development of the BDA system to
further improve the computational and physical performances toward the upcoming “Fugaku” era.

Beyond the direct future of the BDA effort, we can extend the idea of BDA to a broader perspective:
integration of “Big Data” and “Big Simulation.” New sensors provide orders of magnitude more data, and
simulations become more precise. Collaborative work with computer scientists will be essential to utilize the
complex high-performance computer systems effectively. In addition, dense sensor data tend to have complicated
error structures such as correlated errors, and the proper treatment is necessary to fully utilize the “Big Data.”
The current DA methods usually assume no observation error correlation. Based on our previous theoretical
research on the observation-error correlations, we plan to develop methods to consider the observation error
correlations in realistic NWP applications.

Treating the model errors and non-Gaussian probability distribution has been grand challenges in DA.
“Big Ensemble Data Assimilation” with the largest-ever 10240 samples was a milestone providing fundamental
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data to investigate the non-Gaussian probability distribution. We have developed expertise and exclusive
dataset to tackle these challenges. We have been pioneering a new implementation of Local Particle Filter
(LPF) in collaboration with German Weather Service. We will continue the LPF development toward realistic
applications.

DA is a cross-disciplinary science based on statistical mathematics and dynamical systems theory. In ad-
dition, DA connects simulations and real-world data. Therefore, it is naturally beneficial to enhance close
collaborations with experts in mathematics, sensor technology, and various application fields. The current
weather-forecast projects involve active collaborations with observation experts. In addition, we have been
teaching semester-long courses on DA at the Department of Mathematics, Kyoto University, and this will lead
to more collaborations with mathematicians. Moreover, TL Miyoshi has joint appointments at RIKEN iTHEMS
(Interdisciplinary Theoretical and Mathematical Sciences Program) and RIKEN CPR (Cluster for Pioneering
Research), and these will enhance broader collaborations. Collaborations with other R-CCS Research Teams
will also be beneficial. The challenges for future DA systems require cross-disciplinary collaborations to most
effectively use the massive supercomputers with more heterogeneous architecture design. Further, RIKEN’s
Engineering Network already gave us opportunities to collaborate among different disciplines among RIKEN
centers. RIKEN President’s Initiative for “DA innovation hub” also helped expand collaboration. We also
started collaborations with industry partners for more direct benefit to society. Enhancing the broader col-
laborations is a key to success, i.e., to make a new scientific movement across the borders through DA as an
innovation hub, to establish DA as a new scientific paradigm, and to change the world through innovation and
education of DA.
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