
Chapter 5

HPC Usability Research Team

5.1 Members

Hiroya Matsuba (Team Leader)

Motohiko Matsuda (Research Scientist)

Masatoshi Kawai (Postdosctoral Researcher)

5.2 Research Activities

The mission of the HPC Usability Team is to develop a software platform that contributes to increasing the
number of uses of K computer. This team focuses on Cyber-physical systems as potential new use cases of
supercomputers, expecting that simulation of infrastructure facilities will provide valuable information for its
operation. For example, if a simulator of a cooling facility is available, the operator can search for an energy-
efficient combination of parameters such as a temperature of cooling water, power of pumps, and positions of
valves. Simulation is especially valuable because it enables operators to test parameters that are impossible to
apply to the real facilities because of safety reasons.

The main obstacles in utilizing simulation technologies in cyber-physical systems are the difficulties in
developing simulation programs. Although there are many simulator products, many of them focus on a specific
technical aspects such as fluid dynamics or structural analysis, whereas simulation of industrial facilities requires
a combination of various simulation techniques, such as a 1-D circuit, discrete event, or agent simulations as
well as fluid or structural simulations. No one commercial software covers such a wide range of simulation
techniques. The HPC Usability Research Team aims to develop a new programming framework that enables
rapid development of simulation programs or programs that connect existing simulators, especially those for
parallel computers. We assume engineers of companies who provide, for example, consulting service for factory
management, use this programming framework.

We also aim to contribute to improving operational efficiencies of the K computer by actually adopting the
techniques of the cyber-physical systems. By developing a simulator of the cooling and electric facilities of the
supercomputer K or Fugaku, we expect we can improve operational efficiencies by, for example, reducing safety
margins while ensuring the safety of the operation by using the simulator.

5.2.1 Development of the Pyne Parallel Programming Framework

We are developing a Pyne framework, which is a programming framework that enables ones to develop parallel
programs as if they were sequential programs. The main objective of this framework is to improve the produc-
tivity of parallel programs, including simulation programs or programs for connecting existing simulators with
another simulator or machine learning frameworks.

5.2.1.1 Basic Concepts of Pyne

Pyne enables higher productivity of parallel programs by enabling programmers to write parallel programs as if
they were sequential ones. Because parallelizing arbitrary sequential programs efficiently is almost impossible,
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Figure 5.1: Example of Pyne’s abstraction of a parallel program

def main:
  v1 = edds.createVector(init=readStream)
  v2 = v1.manipulate(neighSize=1, func=avgFunc)
  v3 = edds.createVector(init=init3)
  v4 = edds.join(operands=(v2, v3), 
                 neighSize=(0,0), func=addFunc,
                 dist=[1000])
  v5 = v4.out(func=writeStream)
  edds.final(v5)

def avgFunc(neigh):
  return (neigh[0] + neigh[1] + neigh[2]) / 3.0

def addFunc(neigh):
  return neigh[0][0] + neigh[1][0]
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Figure 5.2: Example source code of a Pyne program

Pyne introduces an appropriate restriction on the type of supported application while maintaining as much
flexibility as possible. To be specific, Pyne applications are required to be a series of operations on the data
structures called the implementation independent data structure (IIDS). Figure 5.1 shows an example of the
structure of a simple Pyne program. In this program, after the creation of an IIDS called v1, which is a
vector (creation is also an operation but omitted from the figure), manipulate operation is applied to this IIDS.
This operation generates the resulting IIDS v2. What is done in this manipulate operation is specified by
the programmer as a sequential procedure. Then, after the creation of another IIDS called v3, this program
performs the join operation. Finally, the resulting IIDS, which is v4, is generated by this operation.

Figure 5.2 shows the source code to express this program (unimportant details are omitted). The above-
described operations are written at Lines 2 to 7, which is the main part of the program. The functions
avgFunc and addFunc are to specify the concrete calculation that should be done during the manipulate and
join operations, respectively. The important point is the fact that this program can be run with a huge size of
vectors. In such a case, vectors are automatically distributed across multiple nodes. How to distribute the vector
is determined by Pyne, not by programmers. Therefore, programmers do not have to care about the parallel
implementation of the vector, which is why the data structure of Pyne is named implementation independent
data structure.

The problem of Pyne is that it is practically valuable only when many kinds of IIDS operations are provided
as a library. If this were possible, Pyne would have become an attractive parallel application development
framework. However, the team has been terminated due to management problems, and has not developed
an actual library. Nevertheless, we think it is worthwhile to have designed a novel interface for the simple
development of parallel applications.
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5.2.1.2 Interface Improvement

This year, we tried to improve productivity of Pyne by allowing users to write pure Python programs. Last year,
we developed Pyne using Cython, which is a technique to compile Python-like programs into native code. We
used Cython, not pure Python, to obtain acceptable performance as an HPC infrastructure software. However,
writing Cython programs requires knowledge of C language, which diminishes the productivity of Python.

The improved version of Pyne uses Numba, which is a Just-in-Time (JIT) compiler for Python. By specifying
Python functions to be compiled at run-time, Numba generates native code using LLVM. The advantage of
Numba over Cython is that it does not require uses to rewrite their programs. Although Numba only supports
a subset of Python language, its functionality is generally enough to compile the user-defined part of IIDS
operations.

Numba is usually used by adding @jit annotation to Python functions that should be compiled. However,
using Numba with Pyne is not straightforward. Adding the annotation to the user-defined part of IIDS op-
erations provides no performance improvement because the overhead to pass Python objects to native code is
involved at the innermost loop. Python specific objects are necessary when Pyne runtime library calls the user-
defined functions. Specifically, because the number of arguments and return values varies with the function, a
generic logic to call user-defined functions will have to manipulate variable-length lists, which incurs handling
of Python-specific objects.

To avoid using Python-specific objects when Pyne runtime calls user-defined functions, Pyne dynamically
generates an interface function, which is specific to each user-define function. Because the interface function is
generated for a particular user-defined function, the number of arguments and return values is also fixed, and
no variable-length data structure is required. Such an interface function can be compiled by Numba, and fast
execution is realized.

Figure 5.3 shows the example of IIDS usage and generated code. Pyne generates the function named
caller calcTentVelocity 1013. This generated function embeds the information of, for instance, how many
operands are necessary for user-defined part, or how many values are returned from the function. The generated
function and the user-defined function are optimized by Numba (JIT). Because these functions generally include
only simple loops and numerical calculations, these functions are efficiently converted to native code at run-time.

5.2.1.3 Performance Evaluation

We ran a fluid simulation application at two different sizes, 2700 × 900 and 900 × 300, for large and small
configurations, respectively. There is an obstacle in the space. Fluid flows around this object. We ran this
simulation program for 10,000 time-steps so that we can see meaningful simulation results, the appearance of
Kármán’s vortexes. We used a 16-node cluster. Each node had an 8-core Xeon Platinum 8280 processor, with
376 GB of memory, and an Intel Omini-Path (100Gbps) interconnect.

Figure 5.4 shows the strong scaling performance obtained by executing the Pyne and PETSc versions with
the two problem sizes and with 3, 12, 48, 75, and 108 processes. As shown in the figure, the Pyne version
performed as well as the PETSc version when the number of processes is small, but Pyne performs worth than
the PETSc version when the number of processes is large. This performance difference comes from the overhead
of code generation. Because Pyne generates Python code as described above, and Numba generates native code
at run-time, the time for code generation is included in the benchmark results.

5.2.2 A Digital Twin for Operation Planning of the Cooling Facility

HPC Usability Research Team is collaborating with Operations and Computer Technologies Division on creating
a real cyber-physical system. Our target is the cooling facility of Fugaku. By reproducing the behavior of
the cooling facility of Fugaku with a simulator, we can do trial and error in searching for efficient operation
parameters, such as temperature settings of cooling water. The cyber-physical system that virtually experiment
potentially dangerous operations is often called a digital twin. This project is to utilize a digital twin for
contribution to the efficient operation of supercomputers. We also collaborate with AIST (National Institute
of Advanced Industrial Science and Technology), who operates ABCI, to utilize the experiences of both parties
for the efficient operation of the supercompuers.

5.2.2.1 Simulation Modeling of the Cooling Facility

The digital twin of the cooling facility will facilitate the mission of delivering a continuous operation of a
supercomputer. It allows operation planning for efficiency optimizations and decision making at failure situations
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# Global part

NX=900; NY=300

vT = gridInLoop.setNodeValue(

func=calcTentVelocity,

range=((1, 1), (NX-2,NY-2)),

neigh=["v"], out=["vT"])

# Local part

def calcTentVelocity(cdn,myself,neigh):

i, j = cdn

uc, vc = neigh[0]

ue, ve = neigh[1]

.... (calculation) ...

return (u, v)

# Generated code

def caller_calcTentVelocity_1013(

exeFunc,n_0,n_1,o_0,o_1):

for j in range(1, 299):

for i in range(1, 899):

r=exeFunc((i+0,j+0),(),((

(n_0[j,i],n_1[j,i]),

(n_0[j,i+1],n_1[j,i+1]),

(n_0[j+1,i],n_1[j+1,i]),

(n_0[j,i-1],n_1[j,i-1]),

(n_0[j-1,i],n_1[j-1,i]))))

o_0[j,i]=r[0]

o_1[j,i]=r[1]

Figure 5.3: IIDS Usage and Generated Code

which require a study on the behaviors of the cooling system. The key points of using the digital twin are the
following.

• Cooling devices are slow and autonomous. That causes overshooting/undershooting of water temperatures.
Minimizing deviations reduces energy consumption.

• Human operators need to prepare for faulty situations for prompt responses. Time bounds of tolerance
are the keys to an operation protocol design.

• The facility designers, however, mainly concerns static, capacity-based limits. An analysis of dynamic
behaviors is the responsibility of the operators.

We are working on simulation modeling with the focus on the dynamic behaviors, and performed some
analysis on some artificial faulty situations. Figure 5.5 shows the simulation model of the cooling system
modeled in Modelica. The model is still for K computer, currently. The enhancements of the cooling system
from K to Fugaku are relatively minor, and the model will be updated for Fugaku after some actual operation
data of Fugaku is collected.

5.2.2.2 Simulation result validation in failure situations

Figures 5.6 show temperature variations of the cooling water at an event of turning off a power generator at a
time around 2,000 seconds. In the event, the absorption chillers stopped working due to the lack of the steam
from the power generator. During the event, a human operator promptly responded by starting additional
chillers, and canceled the all submitted jobs as an emergency safety measure. The figures show good matches
between the model simulation (solid lines) and the actual measurement (dotted lines).
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Figure 5.4: Performance (fluid simulation)
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Figure 5.6: Water temperatures at a turning off event of a power generator

The model has well reproduced the behaviors in the situations of an event on a power generator as well as
normal operations, where the temperature variations are unexpectedly complex. The next step is artificially
sets up failure situations.

5.2.2.3 Case: An operator would not cancel jobs

The first artificially set-up case is that the jobs are not canceled at turning off a power generator. In the
validation case above, a human operator took a safety measure of canceling the all submitted jobs. But it was
not necessary as a hindsight. The temperature variations are very similar without a cancellation. The behaviors
of the water temperatures when the job cancellation is skipped are shown in Figures 5.7.



60 CHAPTER 5. HPC USABILITY RESEARCH TEAM

system
gdefaults

HCR1a

V=PV.hcr1a_volume

HCR2a

V=PV.hcr2a_volume

HCS1a

V=PV.hcs1a_volume

HCS2a

V=PV.hcs2a_volume

HCR1b

V=PV.hcr1b_volume

HCR2b

V=PV.hcr2b_volume

HCS1b

V=PV.hcs1b_volume

HCS2b

V=PV.hcs2b_volume

HCR2ab

V=PV.hcr2ab_volume

HCS2ab

V=PV.hcs2ab_volume

tank_atank_a
level	=

PV.tank_level_setup

tank_btank_b
level	=

PV.tank_level_setup

onoff

pump_RH1
onoff

pump_RH2

onoff

pump_RH3
onoff

pump_RH4
onoff

pump_RT5

onoff

pump_RT6
onoff

pump_RT7

pump_ab

pump_a

pump_b

valve_ab_to_a

const_valve_ab_to_a

k=1

valve_ab_to_b

const_valve_ab_to_b

k=1

valve_bypass_a

const_valve_bypass_a

k=bypass_a_opening

valve_bypass_b

const_valve_bypass_b

k=bypass_b_opening

pi
pe
_b
rid
ge
_h
cr

pi
pe
_b
rid
ge
_h
cs

pipe_hcs_ab

pipe_ab

pipe_ab_to_a

pipe_ab_to_b

pipe_2f_depart_a

pipe_2f_depart_b

pipe_2f_return_a

pipe_2f_return_b

pipe_hcr_a

pipe_hcr_b

pipe_RH1

pipe_RH2

pipe_RH3

pipe_RH4

pipe_RT5

pipe_RT6

pipe_RT7

pipe_hcs_a

pipe_hcs_b

pipe_bypass_a

pipe_bypass_b

pipe_bf_depart_a

pipe_bf_depart_b

pipe_tank_a

pipe_tank_b

pipe_CPU1_in

pipe_CPU1_out

pipe_CPU2_in

pipe_CPU2_out

pipe_CPU3_in

pipe_CPU3_out

pipe_CPU4_in

pipe_CPU4_out

pipe_CPU5_in

pipe_CPU5_out

te
e_
ab

AC
BF1

AC
BF2

AC
AC1

AC
AC2

CH
RH1

CH
RH2

CH
RH3

CH
RH4

CH
RT5

CH
RT6

CH
RT7

CPU
CPU1

CPU
CPU2

CPU
CPU3

CPU
CPU4

CPU
CPU5

T
tp_temperature_2f_return_a

T
tp_temperature_2f_return_b

T
tp_temperature_HCR_a

T
tp_temperature_HCR_b

pipe_a_to_ab

pi
pe
_b
_t
o_
ab

load_sumload_sum

load_adjust_a
k=1/3

load_adjust_b
k=1/3

rx_setpoint_1267x345

rx_setpoint_pass0[]
rx_setpoint_pass0[]

rx_pum
p_1267x345

rx_setpoint_pass1[]
rx_setpoint_pass1[]

cpu_load_distribute

cpu_t_setpoints_a[]cpu_t_setpoints_a[]

cpu_t_setpoints_b[]cpu_t_setpoints_b[]

cpu_t_setpoint_distribute

rx_pum
p_onoff0[]

rx_pum
p_onoff0[]

rx_pum
p_onoff1[]

rx_pum
p_onoff1[]

pipe_cpu_a_in
pipe_cpu_a_out

pipe_ac_a_in
pipe_ac_a_out

pipe_cpu_b_in
pipe_cpu_b_out

pipe_ac_b_in
pipe_ac_b_out

Stm
steam_source

rx_t_setpoint[]

rx_pum
p[]

cpu_load[]

cpu_t_setpoint[]

steam
_am

ount

Figure 5.5: The model of the primary water loops in Modelica
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Figure 5.7: No cancellation of jobs at a turn off event

5.2.2.4 Case: An operator would not react forever

The second artificially set-up case is that a human operator would not not react forever. In the validation case
above, a human operator reacted very quickly in less than 10 minutes. The loss of a power generator is a fatal
event for the cooling system, and the temperatures went higher quickly when an operator did not react at all.
The simulation was stopped at a certain time before reaching the presupposed upper limit of the temperatures
because that causes a simulation error (about 30 degrees Celsius). The behaviors of the water temperatures
with no operator reactions are shown in Figures 5.8.
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Figure 5.8: A human operator would not react

5.2.2.5 Case: An operator would react 30 minutes late

The third artificially set-up case is that a human operator reacted very late. Actually, the system could tolerate
the delay of 30 minutes, keeping the water temperatures of CPU cooling below 30 degrees Celsius. The behaviors
of the water temperatures with late operator reactions are shown in Figures 5.9.
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Figure 5.9: A human operator would react 30 minutes late

5.3 Schedule and Future Plan

This teams has been closed at the end of FY2019. There are no future plans.
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