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3.2 Overview of Research Activities

3.2.1 Aim of Team

The aim of the processor research team is to explore and establish data-flow-based parallel computing models
and high-performance computer architectures which are promising and necessary as next-generation computing
technologies in the forthcoming post-Moore era. We are researching and developing general-purpose processor
architectures with their programming model different from existing multi/many-core processors, hardware and
system software for reconfigurable computing, and any specific custom computing machines, as well as system
software for data/task-flow-based high-performance computing to efficiently utilize large-scale parallel machines
such as the supercomputer Fugaku.

In the next decade, sooner or later, the Moore’s law as planar lithography-scaling is going to end and therefore
we will be no longer able to rely on two-dimensional scaling of CMOS devices. In this ”post-Moore” era, tran-
sistor integration, power consumption per transistor, and relative latency of data movement to the transistor’s
switching speed are not sufficiently improved. Consequently, it is predicted that the conventional approaches
cannot increase the performance and performance per power, which have been so far improved mainly by the
semiconductor scaling. Accordingly, we will need to more efficiently and effectively utilize available hardware
resources, i.e., transistors on chips, to achieve target performance. In particular, the conventional many-core
architectures and large-scale systems based on the parallel computing model and global synchronization will be
confronted with limitation in increasing computing performance due to the following reasons:

1) dark silicon problem where most of transistors cannot be utilized due to the upper limit of on-chip power
consumption. Since power per transistor does not decrease, we need to inactivate a large portion of
transistors even if we have more transistors integrated on a chip,
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2) relatively-increasing latency to transistor’s switching speed. Due to the increasing latency, we can no longer
shorten cycle time to update memory elements used for computing, cycle time to control computation
based on some decision, and synchronization time among a large number of physically-distributed processor
chips,

3) inefficient data-movement among on-chip cores via a memory subsystem or through a global network in a
system, and

4) a large overhead in global synchronization for large-scale parallel computation which is affected by
relatively-increasing delay of data transfer through a system-wide network.

That is, the existing approaches/architectures are not designed to scale the performance under these critical
conditions. For example, the von-Neumann architecture is based on two cycles of ”memory-element update” and
”control” which cannot be accelerated any more, and therefore parallel processing is introduced as pipelining,
super-scalar, and many cores as well as latency-hiding techniques of memory hierarchy with cache memories,
speculative execution with branch prediction, and simultaneous multi-threading. These additional mechanisms
make semiconductor resource utilization much worse for target processing and computing. In addition, the
global barrier in parallel computation degrades overall performance as more nodes are utilized.

The custom computing/reconfigurable computing/spatially-mapped computing (spatial computing) allow us
to efficiently utilize hardware resources for target computation while architectural overhead for reconfiguration,
which can be seen in a field-programmable gate array (FPGA) device, is also suitable for the dark silicon
problem. The spatial computing with the data-driven model (or data-flow model) allows us to avoid or mitigate
cycles in processing. By spreading a sequence of operations onto space on hardware with a data flow, we can
avoid instruction execution cycles with memory-element update and control so that we can increase a computing
throughput with fine-grain parallelism increased naturally.

The data-flow or task-flow approach can also make it easier to avoid the global synchronization in large-
scale parallel computing. If we automatically schedule and control task execution based on task-flow with task
dependency, we can efficiently execute tasks without global synchronization when they become ready to be
executed. Thus, we believe that the custom computing/reconfigurable computing/spatial computing with these
localized control and synchronization is essentially necessary for future computer architectures in the post-Moore
era, and therefore we are researching them.

Since researches on these themes require broad range of expertise, we are collaborating with other research
teams in R-CCS, universities in Japan (Tohoku university, University of Tsukuba, Nagasaki university, Ku-
mamoto university, Hiroshima city university, Kyoto university, and Japan advanced institute of science and
technology; JAIST), and a research institute out of Japan, such as Argonne national laboratory, US.

3.2.2 Overview of Research Activities FY2019

Toward the aim of our team described above, we have conducted the following researches in the fiscal year of
2019.

1. Investigation and exploration of coarse-grained reconfigurable architectures (CGRAs)

2. Research and development of FPGA cluster

3. FPGA-based Applications

The background, motivation, objectives, and achievement of each research subject follow in the next section.
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3.3 Research Results and Achievements

3.3.1 Investigation and exploration of coarse-grained reconfigurable architectures
(CGRAs)

As the achievement which was mainly published in [2], we conducted architectural investigation of CGRA
with past related work for the last three decades. With the end of both Dennard’s scaling and Moore’s law,
computer users and researchers are aggressively exploring alternative forms of computing in order to continue
the performance scaling that we have come to enjoy. Among the more salient and practical of the post-
Moore alternatives are reconfigurable systems, with CGRAs seemingly capable of striking a balance between
performance and programmability.

In this work [2], we surveyed the landscape of CGRAs. We summarized nearly three decades of literature
on the subject, with a particular focus on the premise behind the different CGRAs and how they have evolved.
Next, we compiled metrics of available CGRAs and analyze their performance properties in order to understand
and discover knowledge gaps and opportunities for future CGRA research specialized towards High-Performance
Computing (HPC). We found that there are ample opportunities for future research on CGRAs, in particular
with respect to size, functionality, support for parallel programming models, and to evaluate more complex
applications.

As the achievement which was mainly published in [5], we also conducted architectural exploration framework
by developing a CGRA simulator. CGRAs are being considered as a complementary addition to modern
High-Performance Computing (HPC) systems. These reconfigurable devices overcome many of the limitations
of the (more popular) FPGA, by providing higher operating frequency, denser compute capacity, and lower
power consumption. Today, CGRAs have been used in several embedded applications, including automobile,
telecommunication, and mobile systems, but the literature on CGRAs in HPC is sparse and the field full of
research opportunities.

In this work [5], we introduced our CGRA simulator infrastructure for evaluating future HPC CGRA systems.
The simulator is built on synthesizable VHDL and is highly parameterizable, including support for connectivity,
SIMD, data-type width, and heterogeneity. Unlike other related work, our framework supports co-integration
with third-party memory simulators, DRAMSim3, or evaluation of future memory architecture, which is crucial
to reason around memory-bound applications. We demonstrated how our framework can be used to explore the
performance of various kernels, showing the impact of different configuration and design-space options.

3.3.2 FPGA cluster

We have been developed an FPGA Cluster of Fig.3.1 as a research platform for high-performance reconfigurable
computing with FPGAs. We have conducted the following sub-topics for the FPGA cluster.
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Figure 3.1: Organization of FPGA Cluster developed in Processor research team.
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Figure 3.2: Two types of inter-FPGA netwotrs considered.

3.3.2.1 Research on inter-FPGA networks

As the achievement which was mainly published in [6], we conducted the following research on inter-FPGA
networks of Fig.3.2. As FPGAs become a favorable choice in exploring new computing architectures for the
post-Moore era, a flexible network architecture for scalable FPGA clusters becomes increasingly important in
high performance computing (HPC). In this work [6], we introduced a scalable platform of indirectly-connected
FPGAs, where its Ethernet-switching network allows flexibly customized inter-FPGA connectivity. However,
for certain applications such as in stream computing, it is necessary to establish a connection-oriented data-
path with back-pressure between FPGAs. Due to the lack of physical back-pressure channel in the network, we
utilized our existing credit-based network protocol with ow control to provide receiver FPGA awareness and
tailored it to minimize overall communication overhead for the proposed framework.

To know its performance characteristics, we implemented necessary data transfer hardware on Intel Arria 10
FPGAs, modeled and obtained its communication performance, and compared it to a direct network. Results
showed that our proposed indirect framework achieves approximately 3% higher effective network bandwidth
than our existing direct inter-FPGA network, which demonstrates good performance and scalability for large
HPC applications.

As the achievement which was mainly published in [7], we also researched hybrid utilization approaches with
an inter-FPGA network and a host server network. A tightly coupled FPGA cluster is a promising approach for
large-scale parallel processing with application specialized hardware. Along with the advantages of FPGA-based
custom computing, such as high power efficiency, a customized network subsystem with efficient communication
through direct Inter-FPGA links allows an FPGA cluster to be an effective platform for large-scale parallel
processing. However, the cluster can suffer from substantial communication costs when a cluster becomes larger
to obtain higher computing performance.

In this work [7], we propose to exploit the communication capacity of a host server network to improve
communication performance. Besides, we show estimations for practical communication patterns on a network
model in which we efficiently use both the FPGA and the host networks.

3.3.2.2 Research on software-bridged FPGA driver

As the achievement which was mainly published in [9], we researched and developed a remoted FPGA driver as a
software bridge through a general-purpose network. A heterogeneous system with FPGAs is gathering attention
in High-Performance Computing (HPC) area. When FPGAs are used as an accelerator attached to the host
CPU, there can be many configurations such as network topology to construct FPGA cluster. Sustained data
transfer bandwidth between FPGA memory and CPU memory on a distant node is one of the most important
factors to decide a topology of FPGA cluster. In order to explore the best topology, a quantitative evaluation
of bandwidth is required.

In this work [9], we developed a remoted FPGA driver as a software bridge through a Infiniband EDR (100
Gbps) network, which is commonly used as a general-purpose system network in HPC systems. We conducted
bandwidth measurement on two host nodes; both nodes are connected via 100 Gbps Infiniband cable and one
host node has PCIe Gen3 x8-based FPGA accelerator card. We implemented a Direct Memory Access (DMA)
function on an FPGA-attached node and a software bridged data transfer function to transfer data between
two nodes. The result shows that DMA function and software bridged data transfer function achieve 82.2 %
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and 69.6 % of the theoretical bandwidth of PCIe Gen3 x8, a bottleneck of data transfer path, respectively.

3.3.2.3 Research on high-level synthesis (HLS) compiler for FPGA

As the achievement which was mainly published in [3], we researched and developed an extension of an existing
HLS compiler with visualization and profiling tool. The recent maturity in High-Level Synthesis (HLS) has
renewed the interest of using FPGAs FPGAs to accelerate High-Performance Computing (HPC) applications.
Today, several studies have shown performance- and power-benefits of using FPGAs compared to existing
approaches for a number of application kernels with ample room for improvements. Unfortunately, modern
HLS tools offer little support to gain clarity and insight regarding why a certain application behaves as it does
on the FPGA, and most experts rely on intuition or abstract performance models.

In this work [3], we hypothesize that existing profiling and visualization tools used in the HPC domain
are also usable for understanding performance on FPGAs. We extend an existing HLS tool-chain to support
Paraver – a state-of-the-art visualization and profiling tool well-known in HPC. We describe how each of the
events and states are collected, and empirically quantify its hardware overhead. Finally, we practically apply our
contribution to two different applications, demonstrating how the tool can be used to provide unique insights
into application execution and how it can be used to guide optimization.

As the achievement which was mainly published in [4], we also researched OpenMP-based task offloading for
FPGA with an HLS compiler. Next to GPUs, FPGAs are an attractive target for OpenMP device offloading, as
they allow to implement highly efficient, application-specific accelerators. However, prior approaches to support
OpenMP device offloading for FPGAs have been limited by the interfaces provided by the FPGA vendors’ HLS
tool interface or their integration with the OpenMP runtime, e.g., for data mapping.

This work [4] presents an approach to OpenMP device offloading for FPGAs based on the LLVM compiler
infrastructure and the Nymble HLS compiler. The automatic compilation flow uses LLVM IR for HLS-specific
optimization and transformation and for the interaction with the Nymble HLS compiler. Parallel OpenMP
constructs are automatically mapped to hardware threads executing simultaneously in the generated FPGA
accelerator and the accelerator is integrated into libomptarget to support data-mapping. In a case study, we
demonstrate the use of the compilation flow and evaluate its performance.

3.3.3 FPGA-based Applications

3.3.3.1 Highly-pipelined stream computation of Tsunami simulation with a ringed FPGAs

As the achievement which was mainly published in [1], we researched stream computation of Tsunami simulation
with multiple FPGAs connected with a ring network. Since the hardware resource of a single FPGA is limited,
one idea to scale the performance of FPGA-based HPC applications is to expand the design space with multiple
FPGAs. In this work [1], we present a scalable architecture of a deeply pipelined stream computing platform,
where available parallelism and inter-FPGA link characteristics are investigated to achieve a scaled performance.

For a practical exploration of this vast design space, a performance model was presented and verified with
the evaluation of a tsunami simulation application implemented on Intel Arria 10 FPGAs. Finally, scalability
analysis was performed, where speedup is achieved when increasing the computing pipeline over multiple FPGAs
while maintaining the problem size of computation. Performance was scaled with multiple FPGAs; however,
performance degradation occurred with insufficient available bandwidth and large pipeline overhead brought by
inadequate data stream size.

Tsunami simulation results showed that the highest scaled performance for 8 cascaded Arria 10 FPGAs is
achieved with a single pipeline of 5 stream processing elements (SPEs), which obtained a scaled performance
of 2.5 TFlops and a parallel efficiency of 98%, indicating the strong scalability of the multi-FPGA stream
computing platform.

3.3.3.2 Highly-pipelined stream computation of fluid simulation with a ringed FPGAs

As the achievement which was mainly published in [10], we researched stream computation of Fluid simulation
with multiple FPGAs connected with a ring network. Stream computing is a suitable approach to improve both
performance and power efficiency of numerical computations with FPGAs. To achieve further performance
gain, temporal and spatial parallelism were exploited: the first one deepens and the latter duplicates pipelines
of streamed computation cores. These two types of parallelism were previously evaluated with Arria 10 FPGA.
However, it has not been verified if they are also effective for the latest FPGA, Stratix 10, which has a larger
amount of logic elements (i.e., 2.4x of Arria 10) and is equipped with a new feature to improve the maximum
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clock frequency (i.e., HyperFlex architecture). To show the scalability for such state-of-the-art FPGAs, in this
paper, we firstly implemented a streamed fluid simulation accelerator with both parallelism types for Stratix
10.

We then thoroughly evaluated it by obtaining computational performance (FLOPS), power efficiency (FLOP-
S/W), resource utilization, and maximum clock frequency (Fmax). From the results, we found that this imple-
mentation excessively used DSP blocks due to inefficient mapping of floating-point operations, which reduced
Fmax and the number of pipelined cores. To improve the scalability, we optimized the implementation to
reduce the DSP block usage by utilizing a Multiply-Add function in a single DSP block. As a result, the op-
timized fluid simulation achieves 1.06 TFLOPS and 12.6 GFLOPS/W, which is 1.36X and 1.24X higher than
the non-optimized version, respectively. Moreover, we estimate that the fluid simulation with Stratix 10 could
outperform GPU-based implementation with Tesla V100 by optimizing it for HyperFlex architecture.

3.3.3.3 Scalable N-body stream computation with a ringed FPGAs

As the achievement which was mainly published in [8], we researched N-body stream computation with multiple
FPGAs connected with a ring network. FPGAs offer a fairly non-invasive method to specialize custom archi-
tectures towards a specific application domain. Recent studies has successfully demonstrated that single-node
FPGAs can be a rival to both CPUs and GPUs in performance. Unfortunately, most existing studies limit
themselves to using a single FPGA devices, and their scalability requires more investigation.

In this work [8], we practically demonstrated how to scale the important n-body problem across a compar-
atively large FPGA cluster. Our design composed of up to 256 processing elements achieved near-linear strong
scaling, with performance-levels comparable to that of custom Application-Specific Integrated Circuits (ASICs).

We further developed an analytical performance model, which we use to predict the performance of our
solution onto future upcoming Intel Agilex FPGAs. Our system reached up to 47 Giga-Pairs/second, and using
our performance model we predicted that we can reach up-to 0.142 Tera-Pairs/second peak performance with
next-generation FPGAs.

3.4 Schedule and Future Plan

In addition to the researches and development done in FY2019, we are planning to conduct the following
researches in the next fiscal year, some of which are newly started and some are continuous work to the present
subjects.

1. Further exploration of CGRAs, and development of its place-and-route compiler. We will extend CGRAs
and evaluate their performance by benchmarking with some computing kernels. For this, we will develop
a compiler for our CGRAs.

2. Research and development of system hardware for FPGA cluster. We will develop a system-on-chip (SoC)
on an FPGA device in the cluster, which is called AFU Shell. The developed AFU Shell will support
fundamental data-movement among a host CPU and FPGA, and inter-FPGA networks of a direct and an
indirect topologies. For the indirect topologies, SoC will provide a virtualized circuit switching mechanism
on the top of the packet switching mechanism of 100 Gbps Ethernet.

3. Research and development of system software for FPGA cluster. We will develop an FPGA-object class
library as a hardware-abstraction layer which allows us to easily use FPGAs. We are also developing a
resource manager software for FPGA resources in the cluster. With this resource manager, we will be
able to exclusively utilize a part of FPGA resources in a system with configuration of the Ethernet-based
inter-FPGA network based on a request from a user program.

4. Research on utilization of FPGA cluster with an existing HPC machines without FPGAs. We will exper-
imentally connect the FPGA cluster to the supercomputer Fugaku by using 100 Gbps Infiniband network
and the software bridge of FPGA driver described in Section 3.3.2.2, so that we can offload tasks to the
FPGA cluster from MPI processes running on Fugaku. This also demonstrates that the FPGA cluster
with the software bridge is very flexible and available to extend no-FPGA machines.

5. Researches on more FPGA-based applications. We are going to develop and evaluate the following appli-
cations and benchmarks for FPGA cluster: 3D FFT, Genome sequence matching, stream computing of
Fluid simulation in a different parallelism from deeper pipelining, breadth first search of a graph, and so
on. We will mainly use Intel’s HLS compiler to implement them.
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