
Erik Lindahl

HPC Software Engineering
XSEDE/PRACE/RIKEN/SciNet HPC Summer School Kobe, Japan 2019

Experiences from 25 years of
GROMACS development

• Simulation hardware project, turned software
• Early development based on our own needs
• Turned GPL in 2001, LGPL in 2012
• Organic growth of development

• Roughly 10-15 core developers
• Another 15-20 active contributors

• Currently 3,076,420 lines of C++11 code (“C++11”)
• Over the years we have used Fortran, C, Assembly

• Lots of old code. Lots of new code. Lots of complicated
(read: bad) code written by scientists

Source code repository: CVS
Build Chain:
Automake/Autoconf/libtool
Bug Tracking:
Bugzilla
Testing:

2011: Successful, but increasingly painful?

“The application of a systematic, disciplined, quantifiable
approach to the development, operation and maintenance of

software, and the study of these approaches, that is, the
application of engineering to software.”

Scientist 
mentality

Software engineer
mentality

• Trained in physics, 
chemistry, etc.

• Cares about their problem
• Cares about short-term  

deadlines
• New code = asset
• Writes more code than  

she reads

• Trained in CS/software 

• Cares about their code
• Cares about long-term 

maintenance
• New code = liability
• Reads much more code  

than she writes

Without proper software engineering, you are taking on a  
technical debt that sooner or later will have to be repaid

“Technical Debt is a wonderful metaphor developed by Ward
Cunningham to help us think about this problem. In this metaphor,
doing things the quick and dirty way sets us up with a technical debt,
which is similar to a financial debt. Like a financial debt, the technical
debt incurs interest payments, which come in the form of the extra
effort that we have to do in future development because of the quick and
dirty design choice. We can choose to continue paying the interest, or
we can pay down the principal by refactoring the quick and dirty
design into the better design. Although it costs to pay down the
principal, we gain by reduced interest payments in the future.”

[Martin Fowler]

Why Open Source & Software Engineering Matter

Physics Today, Aug 22: Recollection of Chandler/Limmer vs.
Debenedetti 7-year fight over supercooled water; turned out to be
algorithm implementation issue in code authors resisted sharing.

The main point of open software is not cost, but that colleagues can check
each other’s code & assumptions and advance science by correcting flaws.

DOI:10.1063/PT.6.1.20180822a

“One of the real travesties is that
there’s no way you could have
reproduced [the Berkeley team’s]
algorithm—the way they had
implemented their code—from
reading their paper. If this had been
disclosed, this saga might not have
gone on for seven years.”

https://github.com/IHPCSS/software-engineering

When that is not advanced enough:
http://www.gromacs.org

git://git.gromacs.org
http://gerrit.gromacs.org

http://redmine.gromacs.org
http://jenkins.gromacs.org

 
… or browse GitHub for a huge number of other projects.

Check that your open souce license matches, then copy-refine-improve.

Please DO steal this and use it as a template for your own project!

https://github.com/IHPCSS/software-engineering
http://www.gromacs.org
http://gerrit.gromacs.org
http://redmine.gromacs.org
http://jenkins.gromacs.org

49 commits
183 files changed
5,375 line insertions
3,320 line deletions

What changed in our code last week?

How would you start debugging if the new version crashes?

You have probably all seen this: Your program worked last
week, but now there is something wrong

What if it crashes with “-O3”, but when you try to debug it works fine?

671 commits
5,752 files changed
157,177 line insertions
1,622,410 line deletions*

What changed in our code since Jan 1?

*Temporarily removed a bunch of kernels

Better source control: GIT

GIT
GIT

(Free energy repo)

GIT (AVX2 repo) GIT

GIT

GIT (GPU repo)
GIT (Verlet kernel repo)

GIT

Use gitlab.com, or github.com!
New example software engineering project for you to play around with: 
https://github.com/IHPCSS/software-engineering

http://gitlab.com
http://github.com
https://github.com/IHPCSS/software-engineering

What git will give you
• Handles multiple developers beautifully
• Handles multiple feature branches in

parallel with a stable production-quality one
• Develop based on features, not source files
• Pull/push patches between branches
• Revert a specific stupid thing I did 6

months ago, without changing subsequent
patches

• Bisect changes to find which one of (say)
1,500 patches caused a bug

Drawback: Git is a VERY
powerful tool, but the  
advanced features can be
difficult to understand

One Possible Git Workflow: 
Multiple branches & merging

• Each feature is a new branch
• Think of the hybrid challenge:

• Common base is the scalar version
• Feature 1: MPI
• Feature 2: OpenMP
• Feature 3: OpenACC

• Imagine that these features have now been
developed/improved over  
3 months.

• Each feature branch works great, but major
pains when you need to combine them &
release

Better approach: (Constant) rebasing
• Think of feature commits as work-in-progress

(e.g. on my laptop) that have not yet made it
into our common master branch

• A large project like GROMACS can have
hundreds of such work-in-progress commits;
each of them is independent of all other feature
commits

• When one feature commit is ready & merged
into master, the other features should rebase
to instead be a difference relative to the
updated master state

• You can continue to work with the old base
while developing, but before committing your
feature it has to be rebased

• Advantage: Clean changes, rapid deployment

Good git commits are
• Small (think 10-100 lines, not 1000)

• Decomposed as far as possible

• Limited to address a single issue

• Well documented

• Tested to work

This type of commit will also
be close to trivial to rebase!

Have a look at some of the commits 
in the IHPCSS-laplace repo!

Is your code portable?
Does your code compile on

windows (MSVC)?
PGI Compilers? Pathscale?

Blue Gene?
K computer (Fujitsu compilers)?

ARM? AArch64? With the ARM compiler? Clang? Gcc?
PowerPC (big endian)?
Google NativeClient?

OpenPower (little endian?)

What is a build chain?

• Issue compiler commands manually

• Start using Makefiles, edit Makefiles, give up

• Automate the generation of Makefiles

The typical user progression:

Configuration
• “Where is the X11 library? MKL? LibXML?”
• “Is this the buggy version 3.3.7 of the FFTW library?”
• “Is the Intel Math Kernel Library installed?”
• “Do we use that buggy gcc version?”
• “Does this compiler understand Xeon Phi AVX512?”
• “Which flags should be used to enable C++11 for this compiler?”
• “Is this a big or small endian system?”
• “Is a long integer 4 or 8 bytes on this host?”
• “How do we build a shared library here?”
• “How do we turn on OpenMP? OpenACC?”
• “What library should I link with to have gettimeofday() available?”
• “What C backend compiler is used with CUDA-8.0?”
• “What underscore naming standard does this Fortran compiler use?”
• “Is Doxygen available? Sphinx? Dot?”

CMake: Cross-platform replacement for
Autoconf, Automake, Libtool
(instead of ./configure; make; make install)

GROMACS has ~100 CMake tests for features/bugs/libraries/compilers

Optional components (FFT libs) and extensive regressiontests can
be downloaded automatically

Generators: Makefiles, Eclipse, Xcode,
VisualStudio, nmake, CodeBlocks, KDevelop3, etc.

But don’t start with GROMACS: Look at the CMakeLists.txt in the
IHPCSS/software-engineering example: 75 lines and a few modules for
complete detection of compilers, OpenMP, OpenACC, MPI, and
everything else you’ll see on the next few slides!

The complete CMakeLists.txt for the IHPCSS Laplace code

Out-of-source builds
/home/lindahl/code/IHPCSS-laplace

source code

OpenACC CPU build

OpenACC GPU build

OpenMP build with clang-4

OpenMP Debug build

MPI build

OpenMP build with gcc-9.1

Make a small change, 
run “make” in three build 
directories, done.

$ ~> mkdir build-openacc
$ ~> cd build-openacc
$ build-openacc> cmake -DOPENACC=ON ../path/to/source/directory

Living with your code for years: 
Documentation

decades

Direct source code documentation should stay in the source!

Doxygen example - our random module:

The best comments don’t explain what your code 
does, they explain WHY you do it this way!
The IHPCSS/software-engineering example comes with full Doxygen integration - but we have not yet
had time to document the code! CMake finds “doxygen” automatically so you can do “make doxygen”

High level non-source-code documentation: SPHINX (from Python)

Fully integrated into IHPCSS-laplace. 
Check out the docs folder, and if you have 
sphinx/latex installed you can type 
“make sphinx-html” or “make sphinx-pdf”.

… and we have integrated it with readthedocs.org! Any time a new change is pushed to the
gibhub repo, documentation is built automatically at http://software-engineering.readthedocs.org

http://readthedocs.org
http://software-engineering.readthedocs.org

Finding & 
Preventing Bugs

Modularization
• Avoid code inter-dependencies
• Have modules doing clearly separate tasks
• Have a clear (documented) API for each module
• Make sure all code is thread-safe!
• Strict code organization:

• One directory per module, e.g. src/foo - with documentation for that module
• The ‘bar’ class is declared in src/foo/bar.h, implemented in src/foo/bar.cpp

• Write unit tests, not only regression tests
• Unit tests for ‘bar’ class are placed in src/foo/tests/bar.cpp

• Design-for-Testability (DFT):  
Write unit test first, then the code implementation

Controversial (?): Move to C++

Languages?
• “REAL PROGRAMMERS CAN WRITE FORTRAN IN ANY LANGUAGE”

• "C combines the flexibility and power of assembly language with the
user-friendliness of assembly language."

• “C makes it easy to shoot yourself in the foot; C++ makes it harder, but
when you do it blows your whole leg off.”

• The actual C++ nightmare: You accidentally create a dozen instances
of yourself and shoot them all in the foot. Providing emergency medical
care is impossible since you can't tell which are bitwise copies and
which are just pointing at others and saying, "That's me over there."

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
C++ Core guidelines (Herb Sutter & Bjarne Stroustrup):

The Case for C++
Modern: Threads, atomics, etc. part of C++11

Very powerful library with containers, algorithms
Strongly typed language

Still a low-level language - you control data exactly

Templates avoid code duplication
Some very advanced parallelization libraries: Intel TBB

Modern C++ has gotten rid of pointers, memory errors

Rapidly developing language, large ISO committee

Negative: It is a VERY complex language to master
Parallel Standard Template Library (STL) in C++17

class Lock {
public:
 explicit Lock(Mutex *pm)
 : mutexPtr(pm)
 { lock(*mutexPtr); }

 ~Lock() { unlock(*mutexPtr) };

private:
 Mutex *mutexPtr;
}

Mutex m;

…

{
 Lock ml(&m);
 …
}

Example: If you have ever worked with mutex:es to make sure only one thread
accesses a critical region, you have likely bumped into race conditions or deadlocks
e.g. when you forget to release a mutex in complex code.
These errors are insanely difficult to debug, since it depends in dynamic
timing events - when you run it in the debugger there won’t be any error!

Definition: Usage in client code:

class Lock {
public:
 explicit Lock(Mutex *pm)
 : mutexPtr(pm, unlock)
 { lock(mutexPtr.get()); }

 ~Lock() { unlock(*mutexPtr) };

private:
 std::shared_ptr<Mutex> mutexPtr;
}

Mutex m;

…

{
 Lock ml(&m);
 …
}

One more problem: What happens if you copy that class? Then the first object to
go out of scope will release the mutex, while the second thinks it’s still locked (=bad)!

Definition: Usage in client code:

Easy to fix in C++11: Just use a reference-counted shared pointer.  
Note: no change to the client code.

int
myFunc(obj_t obj, int choiceA, int choice B)
{
 for(int i=0;i<obj.N;i++)
 {
 if(choiceA==1)
 {
 if(choiceB==1)
 {
 kernelcode1;
 }
 else if(choiceB==2)
 {
 kernelcode2;
 }
 }
 else if(choiceA==2)
 {
 if(choiceB==1)
 {
 kernelcode3;
 }
 else if(choiceB==2)
 {
 kernelcode4;
 }
 }
 }
}

calling code in different translation unit:

myFunc(obj,2,3);

template <int choiceA, int choice B>
int
myFunc(obj_t obj)
{
 for(int i=0;i<obj.N;i++)
 {
 if(choiceA==1)
 {
 if(choiceB==1)
 {
 kernelcode1;
 }
 else if(choiceB==2)
 {
 kernelcode2;
 }
 }
 else if(choiceA==2)
 {
 if(choiceB==1)
 {
 kernelcode3;
 }
 else if(choiceB==2)
 {
 kernelcode4;
 }
 }
 }
}

calling code in different translation unit:

extern template int myFunc<2,3>(obj_t obj)
myFunc<2,3>(obj);

C/FORTRAN C++11
Surprise: C++ can be (much) faster than FORTRAN or C!

This C++ code will
be fully expanded by the
compiler. No conditionals
present in the generated
assembly code.

“It has been discovered that C++ provides a remarkable facility for concealing
the trivial details of a program - such as where its bugs are.” (David Keppel)

Circular dependencies are bad. If a test fails, where is the bug here?

Modularization: Just say ‘no’ to circular dependencies
Classes

Headers

For our project (GROMACS), our code management system will not
allow any developer to submit a file with a circular dependency.

This is hard, but Doxygen helps you detect it!

Google Test

Aggressive unit testing: “Trust, but verify”

Example Gromacs unit tests: The idea is that you should test everything

Do you think it’s overkill to test that hardware rounding works? In March 2014, this very test caught that
IBM Power7 VMX uses different rounding modes for SIMD and normal floating-point to integer
conversions…
Spring 2018: Our unit tests caught that IBM had semi-silently had to change their binary ABI for 
Power8/9 since their compiler specifications partly violated the C++ standard. Fedora running all our unit  
tests caught it immediately, and a few hours later we had a workaround in the code.

Spring 2019: Our unit tests failed on the specific combination of gcc-7 and Intel AVX-512 hardware, but
only with -O3 flags. Turned out to be a bug in the gcc-7 AVX-512 loop unrolling optimization.

Good unit tests should isolate bugs to tiny parts of your code

Test that a simple call to a normal distribution random generator returns the expected 10 numbers.

Why? Because we found that libstdc++ and libcxx do not use the same algorithm, so code will not
produce the same results. We need to use our own algorithm - make sure it keeps working.

In C++, each method in a class should ideally have exhaustive unit tests
Are you aware of the
peculiarities of rounding
differences depending
on whether your CPU hardware
uses fused multiply-add (FMA)
vs. separate multiply & add?

No need to ask: Of course we have integrated GoogleTest support into the IHPCSS/software-engineering
repo - but I have not had time to write the actual tests yet. However, as you add more tests, they will all
execute if you just issue “make check”.

Imagine a project with ~1000 classes, and that the class diagram below is a small excerpt (it’s from Gromacs).

All classes have close-to-exhaustive unit tests - but your latest build now fails the unit test.  
Green means the unit test for this class was OK, red means it failed. 

Where do you look for the bug?

If each unit test targets a
small method/function, you
have isolated the bug to
within ~50 lines-of-code
before even opening your
editor.

Commits - how code
makes it into Gromacs

Who is allowed to write to your code repository?

Problems if you think some  
less talented developers 
might submit buggy code

Such as this
one

Gerrit Code Review

Nobody can commit directly to our central Git repo anymore
... which means we can allow anybody to commit in gerrit!

Roland has approved
Mark’s patch. Anybody can
add comments. When two
trusted developers say OK,
the patch is committed.

Multiple patches in-flight
Gerrit/git do dependency tracking, patches can
be rebased onto others by hitting a rebase
button, or even edited on-the-fly in the window

Extensive comments on
code during review

Maintaining quality &
avoiding breaking stuff

How do I make sure that *I* don’t make mistakes?

Jenkins Continuous Integration

Every single
commit is tested
automatically on
our build farm,
including both
builds and
regression tests.

Results are
integrated into the
gerrit review

• Catches Cmake build errors
• Catches Google test unit test failures

https://jenkins.io

https://jenkins.io

GROMACS CI tests for every commit
• Unit Tests: Do modules reproduce reference values?
• Integration tests: Does a normal full run work?
• Regression tests: Are previous simulation results identical?
• Physical validation tests: Do we reproduce statistical ensemble fluctuations?
• Clang AddressSanitizer: Catch simple memory errors
• Clang MemorySanitizer: Like Valgrind - memory debugging
• Clang/GCC ThreadSanitizer: Thread synchronization errors
• Clang Static Analyzer: Logical execution dependency errors
• Cppcheck: Another static analyzer
• Uncrustify: Proper code formatting, no tabs, brace standards?
• Doxygen: All classes/methods/arguments/variables documented?
• Coming: Performance regression testing

Pre-submit GROMACS testing:
Changes cannot be committed in
Gerrit until this matrix is all-green.
Tests of a bunch of common
compiler/OS/hardware/acceleration
options.

Post-submit GROMACS testing:
Rare hardware and longer-running
performance tests are performed
once each patch has been
approved.

Travis CI
https://travis-ci.org

• Jenkins is very powerful, but you need to set it up yourself to do
advanced stuff, and/or arrange access to special hardware

• If your needs are more modest, Travis-CI is a much simpler
environment that offers free CI testing of open source GitHub
repositories

• Of course this is enables for the IHPCSS-laplace 
repo: Every time I push an update, the code is built, followed by
execution of the unit tests.

• If you look at the two badges at GitHub, green colors 
mean both the Travis CI and ReadTheDocs builds  
are OK.

• Suggested exercise: Clone/rename the repo, and turn on both
Travis & ReadTheDocs automated builds in your version of it!

https://travis-ci.org

Redmine issue tracking

Automatic referencing 
in commit messages!

• Version 1.2.3 has bug X!
• Windows builds broke
• How is the work going on  

refactoring module Y?
• Should we improve  

scaling by method Z or W? 

• Why did we decide to modify
that loop in file F in git change
Icfca5a?

For IHPCSS/software-engineering, we use the simpler integrated issue tracker in
GitHub, but this too supports automated referencing e.g. for closing bugs.

http://randomascii.wordpress.com/category/floating-point/
Series of blog posts by
Bruce Dawson about
IEEE754 floating point You should read this if

you are working with
scientific codes using

floating-point!

More worthwhile reading:
“What every computer scientist should  
 know about floating-point arithmetic”

[David Goldberg]

Teaser - this might not always return x = 0:

x = a ⋅ b − a ⋅ b

http://randomascii.wordpress.com/category/floating-point/

• Working effectively with legacy code [Michael Feathers]
• Large-scale C++ software design [John Lakos]
• Design Patterns - Elements of Reusable Object-oriented software [Gamma, Helm,

Johnson, Vlissides] “Gang of four”
• Refactoring to Patterns [Joshua Kerievsky]
• Refactoring - improving the design of existing code [Martin Fowler]
• Effective C++ - 55 specific ways to improve your programs and design [Scott Meyers]
• Patterns for concurrent, parallel, and distributed systems:  

http://www.cs.wustl.edu/~schmidt/patterns-ace.html
• What everybody should know about floating-point math:  

http://randomascii.wordpress.com/category/floating-point/

Some good reading

http://www.cs.wustl.edu/~schmidt/patterns-ace.html
http://randomascii.wordpress.com/category/floating-point/

GROMACS: Berk Hess, Szilard Pall, Mark Abraham, Aleksei Iiupinov, 
John Eblen, Roland Shultz, Christian Wennberg, Viveca Lindahl
RELION: Dari Kimanius, Björn Forsberg, Sjors Scheres,  
Alexey Amunts, Marta Carroni, Shintaro Aibara 
NVIDIA: Mark Berger, Duncan Poole, Julia Levites, Jiri Kraus, Nikolay Markovskiy
INTEL: Charles Congdon, Sheng Fu, Kristina Kermanshahche, Yuping Zhao
CSCS: Thomas Schulthess, Victor Holanda, Prashant Kanduri PDC: Erwin Laure

Acknowledgments

