International HPC Summer School 2019

Kinetic Transport Simulation of Chemotactic Bacteria

Shugo YASUDA

Graduate School of Simulation Studies, University of Hyogo

July 9, 2019

Shugo YASUDA (Univ. Hyogo)

Contents

1 Introduction

2 Monte Carlo Method(*J. Comput. Phys.* (2017))

Pattern Formation (with B. Perthame, Nonlinearity (2018))

Contents

Introduction

2 Monte Carlo Method(*J. Comput. Phys.* (2017))

3 Pattern Formation (with B. Perthame, Nonlinearity (2018))

4 Summary

Shugo YASUDA (Univ. Hyogo)

Collective Motion of Bacteria

Budrene & Berg, Nature 349 (1990).

• Traveling Pulse in Micro Channel

J. Saragosti, et al., PNAS (2011).

• Swarm Band Marine Bacteria

Barbara & Mitchell, Microb. Ecol. (2003). Aggregation, Traveling Wave, Swarm...

Individual Motion

Escherichia coli

http://www.rowland.harvard.edu

Run-and-Tumble motion

Run

- Ochemical Sensing
- (Occasionally) Tumble

Chemotaxis

Schematic of Chemotaxis S(x) Chemoattractant

Change run length according to the temporal sensing along pathway.

Chemotactic response of E. Coli

[Block, Segall, &Berg, (1983).] Stiff & Bounded Response Understanding the multiscale mechanism between collective phenomena and individual motions.

- How the chemotactic response strategy affects the pattern formation?
- Which traits are important for efficient collective motions?
- How macroscopic models are derived from microscopic or mesoscopic models?

Kinetic Transport Theory of Bacteria

• Kinetic transport equation for run-and-tumble bacteria

$$\underbrace{\partial_t f(t, \mathbf{x}, \mathbf{v}) + \mathbf{v} \cdot \nabla_x f}_{\text{Run with velocity } \mathbf{v}} = \int \underbrace{\left[\underbrace{\Lambda(\mathbf{v}, \mathbf{v}', \mathbf{C}) f(\mathbf{v}')}_{\text{Gain Term: } \mathbf{v}' \to \mathbf{v}} - \underbrace{\Lambda(\mathbf{v}', \mathbf{v}, \mathbf{C}) f(\mathbf{v})}_{\text{Loss Term: } \mathbf{v} \to \mathbf{v}'} \right] d\mathbf{v}$$

 $f(t, \mathbf{x}, \mathbf{v})$: Density of Bacteria with Velocity \mathbf{v} ; $\Lambda(\mathbf{v}, \mathbf{v}', \mathbf{C})$: Tumble from \mathbf{v}' to \mathbf{v} ; $\mathbf{C} = \{S(t, \mathbf{x}), N(t, \mathbf{x}), \dots\}$: External Chemical Cues.

• Reaction Diffusion Equation

 $S(t, \mathbf{x})$:Concentration of Chemical product; $N(t, \mathbf{x})$:Concentration of Food; $\rho(t, \mathbf{x}) = \int f(t, \mathbf{x}, \mathbf{v}) d\mathbf{v}$: Population Density of Bacteria.

Shugo YASUDA (Univ. Hyogo)

IHPCSS 2019@Kobe

Multiscale Aspect

From Meso (kinetic) to Macro (continuum)

• Internal states m and velocity v (Erban & Othmer (2004))

$$\partial_t g(t,x,v,m) + v \nabla_x g + rac{1}{t_a} \nabla_m \dot{M}(m,S)g = \Lambda(m,S)(\int g(v')dv' - g(v)).$$

• Fast adaptation $t_a \ll 1$ (Dolak & Schmeiser (2005),Perthame, Tang, Vauchelet (2016))

$$\partial_t f(t,x,v) + v \cdot \nabla_x f = \frac{1}{k} (\int \lambda(D_t S|_{v'}) f(v') dv' - \lambda(D_t S|_v) f(v)).$$

 Sequential tumbling k le 1, Keller-Segel type equation (Hillen & Othmer (2000, 2002), Chalub, Markowich, Perthame, Schmeiser (2004), Tang & Yang (2014), etc.)

$$\partial_t \rho(t,x) + \nabla_x \cdot (U(\nabla_x S)\rho) = \Delta \rho.$$

Contents

Introduction

2 Monte Carlo Method(J. Comput. Phys. (2017))

3 Pattern Formation (with B. Perthame, Nonlinearity (2018))

4 Summary

Basic Equation

Kinetic Chemotaxis Model (KCM)

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \int_V \lambda(\mathbf{v}', S, N) K(\mathbf{v}, \mathbf{v}') f' d\mathbf{v}' - \lambda(\mathbf{v}, S, N) f(\mathbf{v}),$$

$$\lambda(\mathbf{v}, S, N) = \lambda_0 \left(1 - \chi_S \tanh\left(\frac{D_t \log S|_{\mathbf{v}}}{\delta}\right) - \chi_N \tanh\left(\frac{D_t \log N|_{\mathbf{v}}}{\delta}\right) \right),$$

$$K(\mathbf{v}, \mathbf{v}') \propto \exp\left(\frac{1 - \mathbf{v} \cdot \mathbf{v}'}{\sigma^2}\right), \quad (\text{Probability Density, i.e., } \int K(\mathbf{v}, \mathbf{v}') d\mathbf{v} = 1),$$

 λ_0 : Mean Tumbling Rate; χ : Modulation Amplitude; δ : Stiffness; σ : Variance; Logarithmic sensing: $D_t \log S|_{\mathbf{v}} = \frac{\partial_t S + \mathbf{v} \cdot \nabla_x S}{S}$ (Kalinin, et.al, Biophys. J. (2009))

DSMC-like MC method

- Divide the spatial domain into a lattice system.
- MC particles are distributed according to $f(x_i, v)$.
- Chemical concentrations $S(x_i)$, $N(x_i)$ are calculated by Finite Volume method on the lattice system.

- 0 Initial positions and velocities, r_i^0 and v_i^0 are stochastically determined according to $f^0(x_i, v)$.
- 1. Move particles in Δt , i.e., $\mathbf{r}_l^{n+1} = \mathbf{r}_l^n + \mathbf{v}_l^n \Delta t$.
- 2. Count the population density $\rho^{n+1}(x_i)$.
- 3. Calculate chemical cues $S^{n+1}(x_i)$ and $N^{n+1}(x_i)$ by FVM.
- 4. Judge tumbles by $\lambda(D_t \log S, N|_{\nu})k^{-1}\Delta t$. The material derivative is calculated as

$$D_t \log S|_{\mathbf{v}} \simeq rac{\log S^{n+1}(\mathbf{r}_l^{n+1}) - \log S^n(\mathbf{r}_l^n)}{\Delta t}.$$

- 5. New velocities \mathbf{v}_l^{n+1} are given by the probability $K(\mathbf{v}_l^{n+1}, \mathbf{v}_l^n)$.
- 6 Division or Death of each particle is judged by $P(\rho_i)\Delta t$.
- 7. Return to 1.

Application to Traveling Pulse

• Traveling pulse of chemotactic bacteria in micro channel

by J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguinn, and P. Silberzan, PNAS (2011)

• Initial and Boundary Conditions

• Parameters $\lambda_0 = 3.0 \ [1/s], \ \chi_S = 0.2, \ \chi_N = 0.6, \ \delta = 0.125 \ [1/s], \ L = 1.8 \ {\rm cm}.$

Monte Carlo Result

Traveling Speed V_{wave} =4.0 μ m/s (4.1 μ m/s in Experiment).

Shugo YASUDA (Univ. Hyogo)

IHPCSS 2019@Kobe

Comparison to Keller-Segel equation

Fig. 1: Comparison of MC vs. K-S model. MC results asymptotically approach to the KS result.

Contents

Introduction

2 Monte Carlo Method(*J. Comput. Phys.* (2017))

3 Pattern Formation (with B. Perthame, Nonlinearity (2018))

4 Summary

Colony Pattern of E. Coli

Variety of Pattern

Budrene & Berg, Nature 349 (1990).

Pattern Formation Dynamics

1D Channel

Petri Dish

Lie et. al., Science 334 (2011).

Aggregation (Instability) & Traveling Wave

Shugo YASUDA (Univ. Hyogo)

IHPCSS 2019@Kobe

Basic Equation

• Kinetic Chemotaxis Model

$$\partial_t f(t, \mathbf{x}, \mathbf{v}) + \mathbf{v} \cdot \nabla f = \frac{1}{k} \left\{ \int_{|\mathbf{v}'|=1} \lambda(D_t \log S|_{\mathbf{v}'}) f(\mathbf{v}') d\mathbf{v}' - \lambda(D_t \log S|_{\mathbf{v}}) f(\mathbf{v}) \right\} + P(\rho) f(\mathbf{v}).$$

Uniform Scattering K(v, v')=const. $k = \lambda_0^{-1}$.

- Response Function

$$\lambda(X) = 1 - F_{\delta}(X),$$
 $F_{\delta}(X) = F\left(rac{X}{\delta}
ight), \quad F'(X) > 0, \quad F(X) o \pm \chi.$

- Proliferation (ho < 1) and Saturation (ho = 1)

$$P(
ho) = \left\{ egin{array}{cc} > 0 & (0 \leq
ho \leq 1) \ < 0 & (1 <
ho). \end{array}
ight.$$

Ex) $P(\rho) = 1 - \rho$.

• Chemoattractant S

$$- \frac{D_s}{\Delta S} + S = \rho.$$

• Key Parameters related to the instability k^{-1} (Tumbling Rate), χ_S (Modulation), δ^{-1} (Stiffness), D_S (Diffusion).

Perthame & Yasuda, Nonlinearity (2018)

The uniform state $\rho = S = 1$ is linearly unstable when the stiffness of the response $F'_{\delta}(0)$ is so large as,

$$rac{F_{\delta}'(0)}{k} > \left(1 + rac{k}{rac{k\lambda}{ ext{arctan}(k\lambda)} - 1}
ight)(1 + D_{\mathcal{S}}\lambda^2).$$

Furthermore, the unstable mode λ is always bounded as in *Turing instability*.

• Take small perturbation and linearize the kinetic chemotaxis equation

$$egin{aligned} f(t,m{x},m{v}) &= 1 + g(m{x},m{v}) e^{\mu t}, \ S(t,m{x}) &= 1 + S_g(m{x}) e^{\mu t}, \
ho(t,m{x}) &= 1 +
ho_g(m{x}) e^{\mu t}. \end{aligned}$$

Seek the instability condition $\operatorname{Re}(\mu) > 0$.

••••

Instability Diagram

Fig. 2: Neutral curves for different k. The upper side of the curve is the instability regime.

Monte Carlo Results

1D lattice system (i.e., $\partial_y S = \partial_z S = 0$), Periodic B.C.

Table 1: The parameter sets.

Motions of MC particles in one-dimensional lattice system (i.e, $\partial_y S = \partial_z S = 0$). The case with strong chemical response ($\chi/\sqrt{k} = 2.06$, k = 0.1).

Shugo YASUDA (Univ. Hyogo)

IHPCSS 2019@Kobe

Narrow Channel

Dirichlet in x, Neumann in y.

 $k=0.04, \delta=0.25, \chi_{S,N}=0.1, D_{S,N}=0.04.$

 $10^3 \ \text{particles}$ in each lattice site

Time evolution of population density

Two Dimensional Results

Narrow Channel

Dirichlet in x, Neumann in y. k=0.04, δ =0.25, $\chi_{S,N}$ =0.1, $D_{S,N}$ =0.04.

 10^3 particles in each lattice site

Time evolution of population density

Snapshots for different prameters

Table 2: Pattern formation in narrow channel. The channel width $W/\sqrt{k} = 10$ and channel length $L/\sqrt{k} = 100$ are fixed. The snapshots of population density at t = 50 are shown in the third and forth columns for different parameters.

Square

Dirichlet B.C. in x and y. $k = 0.02, D_S = 0.04, \chi_S = 0.1, \delta = 0.25.$

Time evolution

 10^3 particles in each lattice site

Square

Dirichlet B.C. in x and y. $k = 0.02, D_S = 0.04, \chi_S = 0.1, \delta = 0.25.$

Dependence on k $D_{S,N} = 0.04$, $\chi_{S,N} = 0.1$, $\delta = 0.25$ are fixed.

Contents

Introduction

2 Monte Carlo Method(*J. Comput. Phys.* (2017))

3 Pattern Formation (with B. Perthame, Nonlinearity (2018))

- MC simulation for run-and-tumble chemotactic bacteria was developed based on a kinetic chemotaxis model.
- Some collective behaviors of chemotactic bacteria were well reproduced by the MC simulation.
- Comparison to the theoretical analysis verified the accuracy of the MC method.
- A novel instability mechanism, i.e., *stiff-response-induced instability*, was discovered both theoretically and numerically.

Thank you for your attention

Collaborators: Benoît PERTHAME (LJLL, Paris06), Vincent Calvez (ENS, Lyon)

References

- B. Perthame and SY, "Stiff-response-induced instability for chemotactic bacteria and flux-limited Keller-Segel equation", Nonlinearity **31**, 4065–89 (2018).
- V. Calvez, B. Perthame, and SY, "Traveling wave and aggregation in a flux-limited Keller-Segel model", Kinet. Relat. Mod. **11**, 891–909 (2018).
- SY, "Monte Carlo simulation for kinetic chemotaxis model: an application to the traveling population wave", J. Comput. Phys. **330**, 1022–42 (2017).