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What is                         ?
2Go AI development

before 2005, 3kyu (weak amateur)
2006 breakthrough 1, MCTS
2011 breakthrough 2, DCNN
2016 Beat former champion
2017 beat top players 60-0
2017 super human without using

human game records

A Go program developed by Google DeepMind
which beat former and current Go champions

Deep Learning
Recognize / Evaluate Go board

(applied to Go on 2014)

[Silver, Huang et al. 2016] Fig. 1b

MCTS
Monte-Carlo Tree Search
probabilistic tree search

(invented on 2006)

Reinforcement Learning
Learn from

State, Action, and Reward
(old invention, combined with DNN)

[Coulom 2006]

https://deepmind.com/research/dqn/

https://github.com/mgbellemare/Arcade-Learning-Environment
https://www.youtube.com/watch?v=nzUiEkasXZI

Arcade Learning 
Environment



Scalable Parallel Graph Search
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What is Graph Search?

Graph Search finds 

Explicitly given Graph

Generated Graph

Road map social
network

Combinatorial
optimization

Games

SAT, CSP

Node or path shows
ü “shortest path”
ü “optimal combination”
ü “best play in games”

Trains

(Set of) node(s)
or path(s)

from a given Graph

2003 nicolas p. rougier (CC BY-SA 4.0)



Parallelizing Search Algorithms
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Therefore, simply splitting 
search spaces cause highly 
unbalanced workloadsPractical search algorithms 

“prune” search spaces to 
focus on promising part.

Parallel Depth-First Search 
(DFS) and applications

- Frequent Itemset Mining
- Statistical Pattern Mining

- Constraints Satisfaction

- Continuous Optimizations
[Ishii, Yoshizoe, Suzumura 2014]

[Yoshizoe, Terada, Tsuda 2018]

[Izumi, Yoshizoe, Ishii 2018]

Parallel A* search and MCTS
- Parallel A* using

hash distributed data structure
- Parallel MCTS based on

distributed tree and
depth-first reformulation

[Yoshizoe, et al. 2011]



Parallel Search Methods
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If each node is 
visited at most once,
reformulate and do 

work stealing

Can be applied to
Depth-First Search (DFS)

and its applications

If nodes are
visited twice or more,
use hash distributed

data structures

Can be applied to
Bellman-Ford, A* search,

and Monte-Carlo Tree Search

Simpler,
easier to parallelize

Complex, but
more applications



Frequent Itemset Mining
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database
items

tra
ns

ac
tio

ns
ex1. Market Basket Analysis
items: products
trans.: customers
x: purchased items

ex2. Genomics (GWAS)
items: SNPs
trans.: human
x: SNP

Counting / Enumerating
Frequent itemsets

from a given database

{1}, {2}, {3}, {4}, {5}, {6},{1,4}, 
{1,6}, {2,4}, {2,5}, {4,6}, {1,4,6}

ex. itemsets with freq. 3 or higher

…GTCTAAAACATGATT…

…GTCTGAATCATGATT…

…GTCTGAAACATGATT…

…GTCTGAATCATCATT…
SNP: Single Nucleotide Polymorphism
GWAS: Genome-Wide Association Studies

1 2 3 4 5 6
A x x x x x x +
B x x x +
C x x -
D x x x x x +
E x x -
F x x x -
G x x x +

Statistical Pattern Mining

[Yoshizoe, Terada, Tsuda 2018] Bioinformatics

Fundamental problem in data mining

Finding combination of multiple SNPs
(not one or two SNPs)

Depth-First Search Applications



Depth First Search (w/o threshold)
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DFS() {
Recur(r)

}
Recur(node n) {
foreach (child c of n) {

// do something for c
Recur(c)

}
}

Back tracking DFS
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back tracking can be naturally
implemented with recursive call

Memory usage O(d)
Only current path is needed

Simply traverses
all nodes in the tree

Frequent Itemset Mining can be solved using DFS w/o threshold



Depth First Search with threshold update
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DFS() {
Recur(r)

}
Recur(node n) {

foreach (child c of n) {
// do something for c
if (c is within threshold) Recur(c)

UpdateThreshold()
}

}

DFS with threshold
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Prune search space by
dynamically updating threshold

Ex. finding top-k nodes

Statistical Patten Mining can be implemented in DFS with threshold.
Significance threshold is updated and propagated.

Update threshold during search.
More branches are pruned in the right.
(Search progresses from left to right.)



Parallel DFS, preparation
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DFS() {

Recur(r)
}

Recur(node n) {

foreach (child c of n) {

// do something for c
if (c is within threshold) Recur(c)

UpdateThreshold()

}

}
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pros: O(d) memory
cons�difficult to parallelize

StackDFS() {

push(r)
Loop()

}

Loop() {

while(stack not empty) {

pop n from stack
foreach (child c of n) {

// do something for c
if (c is within threshold) push(c)

UpdateThreshold()

}

}

}

cons: O(db) memory

pros: easy to parallelize

For depth d, branch nu. b search space

convert recursion to

stack + loop
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Convert recursive call
to stack + loop
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pushing to stack in reversed order, preserves search order

DFS() {
Recur(r)

}
Recur(node n) {
foreach (child c of n) {

// do something for c
if (c is within threshold) Recur(c)
UpdateThreshold()

}
}

StackDFS() {
push(r)
Loop()

}
Loop() {

while(stack not empty) {
pop n from stack
foreach (child c of n) {

// do something for c
if (c is within threshold) push(c)

UpdateThreshold()
}

}
}

foreach in
reverse order

Note: Must use stack. Using FIFO increases memory usage.

h

r c



Work Stealing based parallelization
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re
qu

es
t

re
je

ct

request

give Receiver initiated Work stealing
Workers with empty stack (empty job)
1, Select a victim worker
2, Send job request to the victim
3, The victim gives jobs if available. Rejects otherwise
(details are omitted)

Lifeline graph [Saraswat et al. 2011]

Simple method for victim selection
“Select randomly”

1 4

32

5 8

76

Steal work from “victim”

A better method
Select victims from neighbors on hypercube
(virtual hypercube is prepared ignoring actual topology)



Threshold Broadcast / Reduce and DTD

Work stealing
on hypercube

Threshold broadcast/reduce and DTD
on spanning tree

request

reject
2 3

41

6 7

85

2 3

41

6 7

85

master
2 3

41

6 7

85

master(2)

IV
III
II
I

re
qu

es
t

gi
ve

 II
, I

V

(1)

Applied DTD on spanning tree  [Mattern 1990]

Proof is needed to confirm all stacks are empty
in distributed environment (details omitted).

Distributed Termination Detection



Work stealing and broadcast/reduce

Massive Parallel Statistical Pattern Mining
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Frequent Itemset Mining based on
Closed Itemset

[Pasquier, Bastide, Taouil, Lakhal 1999]

Apply reverse search technique
(LCM algorithm)

[Uno, Kiyomi, Arimura 2004]

Applied to Statistical Pattern Mining
LAMP algorithm

[Terada, Okada-Hatakeyama, Tsuda, Sese, 2014]

Faster LAMP using DFS with threshold
[Minato, Uno, Tsuda, Terada, Sese 2014]

Massive Parallel LAMP (MP-LAMP)
[Yoshizoe, Terada, Tsuda 2018]

[Avis, Fukuda 1996]

re
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re
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request

give1 4

32

5 8

76

Root
1 4

32

5 8

76

Reformulate algorithm
from recursive call

to stack + loop

hardware/middleware
aware algorithm
and implementation

Parallelization Method

For solving GWAS and others

This slides is just
for references
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Statistical Pattern Mining: Speedup
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JPN dom. 10%
item: 11253, trans:697, dens:1.0%

JPN dom. 20%
item:11914, trans:697, dens:1.9%

Alz. dom. 5%
item:44052, trans:364, dens:5.4%

Alz. dom. 10%
item: 91126, trans: 364, dens:9.8%

Alz. rec. 30%
item: 250120, trans:364, dens:2.9%

Speedup for Finding combination
of SNPs related to Alz. or Japanese

On K-Computer
Used Max. 140K cores,
110-120K-fold estimated speedup
in the best case (unpublished)

126s

0.444s
258s

0.409s
4361s

9.58s

48285s

41.1s

17646s

16.0s



A* search and MCTS
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A* search
(pronounced “A star”)

Dijkstra’s algorithm
+ heuristic
50 years old

MCTS
Monte Carlo Tree Search

2003 nicolas p. rougier (CC BY-SA 4.0)

[Tanabe, Yoshizoe, and Imai 2009] 
“A study on security evaluation methodology for
image-based biometrics authentication systems”

biometric security

[Chevelu, Putois, Lepage 2010] 
“The true score of statistical paraphrase generation”

NLP

[Cazenave, Balbo, Pinson 2009] 
“Monte-Carlo bus regulation”

scheduling

“God’s number is 20”

DNA sequence alignment

Shortest
path search

Random sampling
based search
invented on 2006

material 
science

games



What’s Needed for Non-Depth First Search?
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Nodes can be visited multiple times
Result are recorded and reused later

queue or
hash table

DFS_Recur(node n) {
foreach (child c of n) {

// do something for c
DFS_Recur(c)

}
}

NonDFS(node n) {
while(not_finished) {

ReadFromTable(n)
foreach (child c of n) {

// do something for c
}
WriteToTable(n)

}
}

re
qu

es
t

re
je

ct

request

give1 4

32

5 8

76

?
Distributed Hash Table
Distributed Queue

using either
- Priority Queue (A* search)
- Hash Table (MCTS, IDA*)
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0 2

3 1

0110011101001011
worker 3

1011001011010001

1011000110001110

worker 2

worker 1

worker0
hash table

Distributed Hash Table Driven Parallelization
Transposition table Driven Scheduling

worker1
hash table

worker2
hash table

worker3
hash table

send message to 
other worker

[Romein et al. 1999]

0 1 2 3
Each node has a signature

Part of the signature shows
the “home worker” 

Uniform load balancing

Frequent 1-to-1 comm.

signature is calculated
by a hash function

tradeoff

workers sends messages
to home worker of children



Hash driven Parallel Search Performance
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[Romein+ 1999] Fig. 4 (c)

work stealing

hash driven

TDS algorithm
(Parallel IDA*)

 -

 800

 1,600

 2,400

 3,200

 4,000

 4,800

0 800 1600 2400 3200 4000 4800

TDS-df-UCT algorithm
(Parallel MCTS)

2003 nicolas p. rougier (CC BY-SA 4.0)

[Yoshizoe+ 2011]

HDA*
(Parallel A*)

[Kishimoto+ 2012]

Note: These performances are
achieved if communication congestion
is removed by reformulations of algorithms

Applied to puzzles,
planning, and sequence 

alignment

synthesized game tree
(benchmark problem)

Go program
(Fuego)



Parallel Training of Deep Neural Networks

20



What Deep Learning can do?
21

2003 nicolas p. rougier (CC BY-SA 4.0)

[K. He et al. 2015, Microsoft Research Asia]

Image recognition

Natural Language Processing

Games

Sound / Voice recognition

Image recognition by ResNet model

Material Science

Won ILSVRC (ImageNet Large Scale Visual Recognition Challenge)
in 2015. The goal is to recognize 1,000 object types



What is Neural Network?
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A algorithm inspired by mechanism of neurons

input
layer

output
layer

�
�
�

hidden
layer

hidden
layer

A neuron outputs
• small value for small input
• large value for large input

Shallow

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

input

ou
tp

ut

outputinput
f

activation function

sigmoid

ReLU



Convolutional Filters for Images
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0 1 0

1 -4 1

0 1 0

8.2. Convolution Matrix http://docs.gimp.org/en/plug-in-convmatrix.html

0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0

-2 -1 0

-1 1 1

0 1 2

Examples of filters

Neural Networks
can calculate

Convolutional Filters

Multiply and add surrounding pixel values

Examples are from the manual of GIMP

Or
ig

in
al

 im
ag

e

blur edge
detect emboss

Many types of
operations are possible

by adjusting
filters’ weights and size



CNN: Convolutional Neural Network
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Famous benchmark

28 pixels

vertical line filter (3x3)

Three layer CNN can recognize

numbers if filters are adjusted.

2
8

x2
8

1
0

ca
se

s

input layer output layer

hidden layer

-1 2 -1

-1 2 -1

-1 2 -1

horiz. line filter (5x5)

1 1 1

-1 -1 1

-1 -1 1

corner filter (3x3)

0 0 0 0 0

-1 -1 -1 -1 -1

2 2 2 2 2

-1 -1 -1 -1 -1

0 0 0 0 0

MNIST handwritten digit database

http://yann.lecun.com/exdb/mnist/
I made these filters up

in my head



DCNN: Deep Convolutional Neural Network
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ResNet-152 has 152 layers [K. He et al. 2015]

(ResNet-50 has 50 layers)

dog 0.94

cat 0.03

aircraft 0.01

ship 0.01

Complex shape can be recognized with multiple layers of simple filters

(e.g. edge recognition followed by line detection)

An example is the “cat neuron” found in DCNN

for image recognition (by google)
https://googleblog.blogspot.jp/2012/06/using-large-scale-brain-simulations-for.html

“Cat neuron”



Training of Neural Network
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forward (inference, prediction)

backward (backpropagation)

training data

minibatch

shuffle

compare with
training data

calculate
error E

validation data

Repeat until
validation error
stops improving

update weights

Calculate gradient 
!"
!# for each connection



Learning Curve Example and Learning Rate
27

Minibatch size is small.
Typically 32 – 256.
So, losses are very noisy,
small “learning rate” is used.

training loss
validation loss

An example from
training on human 
move prediction in Go
(by us, unpublished)

!"#$%& = () * +)$#
Initial learning rate is 0.01 or less
and gradually decreased.

For non-DL machine learning methods,
higher LR can be used for larger batch
because the gradient is more accurate
but …



Training: Single GPU, Multi-GPU
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Forward Backward

Forward Backward Update

All-Reduce
(reduce gradients

and update)
Forward Backward

Forward Backward

Forward

Forward

Forward

Forward

Single GPU

Multi GPUs

Note: It is a “synchronous” approach. “asynchronous” approach is omitted because it‘s simply worse.



Large Batch Problem
29

Around 100 GPU is the limit
of the simple approach. Why?

Larger batch results in greater validation error!
(long known phenomenon [Lecun+ 1998])

[Hoffer+ 2017] arXiv:1705.08741
Train longer, generalize better: closing the generalization gap 
in large batch training of neural networks

Synchronous parallel training makes
the batch size greater
(N-fold for N GPUs)

The paper partly solved it, but not enough for
larger scale parallelization.

training error validation error

b=2048

b=64Er
ro

r 
ra

te

Er
ro

r 
ra

te

[Hoffer+ 2017] Figure 1



Training ResNet-50 for
ImageNet benchmark

30

4 GPUs x 32 nodes = 128 GPUs 
NVIDIA GeForce Titan X (Maxwell)

Learning Curve

ChainerMN: https://github.com/chainer/chainermn
Performance of Distributed Deep Learning using ChainerMN
https://chainer.org/general/2017/02/08/Performance-of-Distributed-Deep-Learning-Using-ChainerMN.html

NCCL (Nvidia Collective Comm. Library)

CUDA Aware MPI (uses GPUDirect)

Chainer (a DL framework)

[Akiba 2017]
© Preferred Networks, inc. mpi4py (MPI for python)

Two years ago, June 2017, the record was 4.4hour using 128GPUs



ResNet-50 ImageNet Training Records
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Date Authors Main Organization GPU/TPU Batch size Time Accuracy

Jun. 2017 Goyal et al. Facebook P100 x 256 8,192 1 hr. 76.3%

Nov. 2017 Akiba et al. Preferred Networks P100 x 1024 32,768 15 min. 74.9%

Jul. 2018 Jia et al. Tencent Inc. P40 x 2048 65,536 6.6 min. 75.8%

Nov. 2018 Mikami et al. Sony V100 x 2176 34K → 68K 3.8 min. 75.03%

Nov. 2018 Ying et al. Google 1024chip TPUv3 32,678 2.2 min. 76.3%

Mar. 2019 Yamazaki et al. Fujitsu V100 x 2048 81,920 74.7 s. 75.08%

Osawa et al. Titech, NVIDIA, RIKEN ---- 131,073 ---- 75.0%

Key techniques: warm start, efficient gradient 
distribution, hyperparameter tuning,
and 2nd order optimization

[Goyal et al.] https://arxiv.org/abs/1706.02677
[Akiba et al.] https://arxiv.org/abs/1711.04325
[Jia et al.] https://arxiv.org/abs/1807.11205
[Mikami et al.] https://arxiv.org/abs/1811.05233
[Ying et al.] https://arxiv.org/abs/1811.06992
[Yamazaki et al.] https://arxiv.org/abs/1903.12650
[Osawa et al.] https://arxiv.org/abs/1811.12019

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1711.04325
https://arxiv.org/abs/1807.11205
https://arxiv.org/abs/1811.05233
https://arxiv.org/abs/1811.06992
https://arxiv.org/abs/1903.12650
https://arxiv.org/abs/1811.12019


2003 nicolas p. rougier (CC BY-SA 4.0)

discover new molecules using Search + DL + HPC
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O

N

N
Cl

N

Cl

Cl

O

F

F

O=C(Nc1cc(Nc2c(Cl)cccc2NCc2ccc(Cl)cc2Cl)c2ccccc2c1OC(F)F)c1cccc2ccccc12

sampling molecules with RNN

feed back score
calculated by

physical simulation

N C

s n

C F

O

F = cMonte-Carlo
Tree Search

RAIDEN
(RIKEN AIP supercomputer)

High Performance
Computing

Search algorithms

Deep 
Learning

HPC

Introducing one of our recent work

References
X. Yang, J. Zhang, K. Yoshizoe, K. Terayama, K. Tsuda. “ChemTS: an efficient python library for de novo molecular generation”. Science and Technology of Advanced Materials (STAM), 2017 Dec 31;18(1):972-6.
M. Sumita, X. Yang, S. Ishihara, R.Tamura, and K. Tsuda. “Hunting for Organic Molecules with Artificial Intelligence: Molecules Optimized for Desired Excitation Energies”, ACS Cent Sci. 2018 Sep 26;4(9):1126-1133.



So, who am I?
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I am now working for RIKEN AIP
(Center for Advanced Intelligence Project)

Wanted!
People with HPC background
and interested in AI

RAIDEN

Parallel computing lab
at graduate school

Digital wireless communication
(at FUJITSU)

Biometric security
(finger vein recognition)

Search Algorithms

Game AI algorithms

Parallel Search

Our supercomputer RAIDEN
ranked 4th in Green500. (June 2017)
(I am in charge of the selection,
procurement, and maintenance)

Computer Go
book

(in Japanese)
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