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Overview of MD



Molecular Dynamics (MD)

1. Energy/forces are described by classical molecular mechanics force field.

2. Update state according to equations of motion

Long time MD trajectories are important to obtain     
thermodynamic quantities of target systems.

Equation of 
motion

Long time MD trajectory
=> Ensemble generation

Integration






 

  

 







Potential energy in MD
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Main bottleneck in MD
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Non-bonded interaction

1. Non-bond energy calculation is reduced by introducing cutoff
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2. The electrostatic energy calculation beyond cutoff will be done in the reciprocal space 
with FFT

3. Further, it could be reduced by properly distributing over parallel processes, in particular 
good domain decomposition scheme.
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Real part Reciprocal part Self energy
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Difficulty to perform long time MD simulation

1. One time step length (Δt) is limited to 1-2 fs due to vibrations.

2. On the other hand, biologically meaningful events occur on the time scale of 
milliseconds or longer.

fs ps ns                      μs                      ms sec

vibrations

Sidechain motions

Mainchain motions

Folding

Protein global motions



How to accelerate MD simulations?
=> Parallelization

Serial Parallel

16 cpus

X16?

1cpu

1cpu

Good Parallelization ; 

1) Small amount of 

computation in one process

2) Small communicational cost

C

CPU

Core
MPI 
Comm



Parallelization



Shared memory parallelization (OpenMP)

Memory

P1 P2 P3 PP-1 PP

• All processes share data in memory

• For efficient parallelization, processes should not access the same memory address.

• It is only available for multi-processors in a physical node



Distributed memory parallelization (MPI)

M1

P1

M2

P2

M3

P3

MP-1

PP-1

MP

PP

…

• Processors do not share data in memory

• We need to send/receive data via communications

• For efficient parallelization, the amount of communication data should be minimized



Hybrid parallelization (MPI+OpenMP)

M1

P1

M2

P2

M3

P3

MP-1

PP-1

MP

PP

…

• Combination of shared memory and distributed memory parallelization.

• It is useful for minimizing communicational cost with very large number of processors



SIMD (Single instruction, multiple data)

• Same operation on multiple data points simultaneously

• Usually applicable to common tasks like adjusting graphic image or volume

• In most MD programs, SIMD becomes the one of the important topics to increase the 

performance

SIMDNo SIMD
4 times faster



SIMT (Single instruction, multiple threads)

• SIMD combined with multithreading

• SIMT execution model is usually implemented on GPUs and related with GPGPU 

(General Purpose computing on Graphics Processing Units)

• Currently, CUDA allows 32 threads for SIMT (warp size =32)
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MPI Parallelization of MD 

(non-bonded interaction in real space)



Parallelization scheme 1: Replicated data approach

1. Each process has a copy of all particle data.

2. Each process works only part of the whole works by proper assign in do loops. 

do i = 1, N
do j = i+1, N

energy(i,j)
force(i,j)

end do
end do

my_rank = MPI_Rank
proc = total MPI

do i = my_rank+1, N, proc
do j = i+1, N

energy(i,j)
force(i,j)

end do
end do

MPI reduction (energy,force)
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Perfect load balance is not guaranteed in this parallelization scheme

Parallelization scheme 1: Replicated data approach



Hybrid (MPI+OpenMP) parallelization of the
Replicated data approach

1. Works are distributed over MPI and OpenMP threads.
2. Parallelization is increased by reducing the number of MPIs involved in 

communications. 

my_rank = MPI_Rank
proc = total MPI

do i = my_rank+1, N, proc
do j = i+1, N

energy(i,j)
force(i,j)

end do
end do

MPI reduction 
(energy,force)

my_rank = MPI_Rank
proc = total MPI
nthread = total OMP thread
!$omp parallel
id = omp thread id
my_id = my_rank*nthread + id
do i = my_id+1,N,proc*nthread

do j = i+1, N
energy(i,j)
force(i,j)

end do
end do
Openmp reduciton
!$omp end parallel

MPI reduction (energy,force)



Pros and Cons of the Replicated data approach

1. Pros : easy to implement

2. Cons

• Parallel efficiency is not good

• No perfect load balance

• Communication cost is not reduced by increasing the number of 

processes

• We can parallelize only for energy calculation (with MPI, 

parallelization of integration is not so much efficient)

• Needs a lot of memory

• Usage of global data



Parallelization scheme 2: Domain decomposition

1. The simulation space is divided into 
subdomains according to MPI 
(different colors for different MPIs).

2. Each MPI only considers the 
corresponding subdomain.

3. MPI communications only among 
neighboring processes.

Communications 
between processors



Parallelization scheme 2: Domain decomposition

1. For the interaction between 
different subdomains, it is 
necessary to have the data of the 
buffer region of each subdomain.

2. The size of the buffer region is 
dependent on the cutoff values.

3. The interaction between particles in 
different subdomains should be 
considered very carefully.

4. The size of the subdomain and 
buffer region is decreased by 
increasing the number of processes.

𝒄

Sub-
domain

Buffer



Pros and Cons of the domain decomposition approach

1. Pros
• Good parallel efficiency

• Reduced computational cost by increasing the number of processes

• We can easily parallelize not only energy but also integration

• Availability of a huge system

• Data size is decreased by increasing the number of processes

2. Cons
• Implementation is not easy

• Domain decomposition scheme is highly depend on the potential energy 

type, cutoff and so on

• Good performance cannot be obtained for nonuniform particle distributions



Special treatment for nonuniform distributions

Tree method
: Subdomain size is adjusted to have the same number of particles

Hilbert space filling curve
: a map that relates multi-dimensional space to one-dimensional curve

The above figure is from Wikipedia
https://en.wikipedia.org/wiki/Hilbert_curve



Comparison of two parallelization scheme

Computation Communication Memory

Replicated data O(N/P) O(N) O(N)

Domain 
decomposition

O(N/P) O((N/P)2/3) O(N/P)

N: system size
P: number of processes



MPI Parallelization of MD 

(reciprocal space)



Smooth particle mesh Ewald method

Real part Reciprocal part Self energy

The structure factor in the reciprocal part is approximated as

Using Cardinal B-splines of order n Fourier Transform of 
charge
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It is important to parallelize the Fast Fourier transform efficiently in PME!!

Ref : U. Essmann et al, J. Chem. Phys. 103, 8577 (1995)



Overall procedure of reciprocal space calculation

(charge on real space) (charge on grid)

E( )

 Force calculation 
from  

PME_Pre

FFT

Inverse 
FFT

PME_Post



Simple note of MPI_alltoall communications

MPI_alltoall

A1

A3

A2

B1

A4

B2

B4

B3

C2
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MPI_alltoall is same as matrix transpose!!



Parallel 3D FFT – slab (1D) decomposition

1. Each process is assigned a slob of size 

for computing FFT of 

grids on processes.

2. The scalability is limited by 

3. should be divisible by 

Proc 1

Proc 2

Proc 3

Proc 4



Parallel 3D FFT – slab (1D) decomposition

No communication

MPI_Alltoall communication 
among all preocessors



Parallel 3D FFT – slab (1D) decomposition (continued)

1. Slab decomposition of 3D FFT has three steps

• 2D FFT (or two 1D FFT) along the two local dimension

• Global transpose (communication)

• 1D FFT along third dimension

2. Pros

• fast using small number of processes

3. Cons

• Limitation of the number of processes



Parallel 3D FFT –2D decomposition

Each process is assigned a data of size for computing a FFT of  

grids on processes.

MPI_Alltoall
communications among 3 
processes of the same color

MPI_Alltoall
communications among 3 
processes of the same color



Parallel 3D FFT –2D decomposition (continued)

1. 2D decomposition of 3D FFT has five steps

• 1D FFT along the local dimension

• Global transpose

• 1D FFT along the second dimension

• Global transpose

• 1D FFT along the third dimension

2. The global transpose requires communication only between subgroups of all nodes

3. Cons: Slower than 1D decomposition for a small number of processes

4. Pros : Maximum parallelization is increased



Pseudo code of reciprocal space calculation with 
2D decomposition of 3D FFT

! compute Q factor
do i = 1, natom/P

compute Q_orig
end do
call mpi_alltoall(Q_orig, Q_new, …)
accumulate Q from Q_new

!FFT : F(Q)
do iz = 1, zgrid(local)

do iy = 1, ygrid(local)
work_local = Q(my_rank)
call fft(work_local)
Q(my_rank) = work_local

end do
end do
call mpi_alltoall(Q, Q_new,…)
do iz = 1, zgrid(local)

do ix = 1, xgrid(local)
work_local = Q_new(my_rank)
call fft(work_local)
Q(my_rank) = work_local

end do
end do
call mpi_alltoall(Q,Q_new,..)

do iy = 1, ygrid(local)
do ix = 1, xgrid(local)

work_local = Q(my_rank)
call fft(work_local)
Q(my_rank) = work_local

end do
end do

! compute energy and virial
do iz = 1, zgrid

do iy = 1, ygrid(local)
do ix = 1, xgrid(local)

energy = energy +  sum(Th*Q)
virial = viral + ..

end do
end do

end do

! X=F_1(Th)*F_1(Q)

! FFT (F(X))

do iy = 1, ygrid(local)
do ix = 1, xgrid(local)

work_local = Q(my_rank)
call fft(work_local)
Q(my_rank) = work_local

end do
end do
call mpi_alltoall(Q,Q_new,..)
do iz = 1, zgrid(local)

do ix = 1, xgrid(local)
work_local = Q(my_rank)
call fft(work_local)
Q(my_rank) = work_local

end do
end do
call mpi_alltoall(Q,Q_new)
do iz = 1, zgrid(local)

do iy = 1, ygrid(local)
work_local = Q(my_rank)
call fft(work_local)
Q(my_rank) = work_local

end do
end do

!compute force



Parallel 3D FFT – 3D decomposition

• More communications than 
existing FFT

• MPI_Alltoall communications 
only in one dimensional space

• Reduce communicational cost  
for large number of processes

Ref) J. Jung et al. Comput. Phys. Comm. 
200, 57-65 (2016)



Case Study:

Parallelization in GENESIS MD software



Domain decomposition in GENESIS SPDYN

1. The simulation space is divided into 
subdomain according to the number 
of MPI processes.

2. Each subdomain is further divided 
into the unit domain (named cell).

3. Particle data are grouped together 
in each cell.

4. Communications are considered 
only between neighboring 
processes.

5. In each subdomain, OpenMP 
parallelization is used.

𝒄



Efficient shared memory calculation 
=>Cell-wise particle data

1. Each cell contains an array with the data of the particles that reside within it

2. This improves the locality of the particle data for operations on individual cells or 
pairs of cells.

particle data in traditional cell lists

Ref : P. Gonnet, JCC 33, 76-81 (2012)

cell-wise arrays of particle data



Midpoint cell method

• For every cell pair, midpoint cell is 
decided.

• If midpoint cell is not uniquely 
decided, we decide it by considering
load balance.

• For every particle pairs, interaction 
subdomain is decided from the 
midpoint cell.

• With this scheme, we can only 
communicate data of each 
subdomain only considering the 
adjacent cells of each subdomain.



Subdomain structure with midpoint cell method

1. Each MPI has local subdomain which is surrounded by boundary cells.

2. At least, the local subdomain has at least two cells in each direction

Local sub-domain

Boundary





Communication pattern (example of coordinates)

1. Each subdomain can evaluate interactions by obtaining the data of boundary region from 
other processes

2. Using the communication pattern shown below, we can minimize the frequency of 
communication.

①②

③

④

① Receive from the upper process in x 

dimension

② Receive from the lower process in x 

dimension

③ Receive from the upper process in y 

dimension

④ Receive from the lower process in y 

dimension



Communication pattern (example of forces)

1. Communication pattern of forces is opposite to the communication pattern of coordinates.
2. Each process send the force data in boundary cells.

①

②

③ ④

① Send to the lower process in y 

dimension

② Send to the upper process in y 

dimension

③ Send to the lower process in x 

dimension

④ Send to the upper process in x 

dimension



OpenMP parallelization in GENESIS

1. In the case of integrator, every cell indices are divided according to the thread id.

2. As for the non-bond interaction, cell-pair lists are first identified and cell-pair lists are 
distributed to each thread  
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Parallelization of FFT in GENESIS



FFT in GENESIS (2 dimensional view)

GENESIS
(Identical domain 

decomposition 
between two space)

NAMD, Gromacs
(Different domain 
decomposition)



Parallelization based on CPU/GPU calculation

Computationally expensive part: GPU

Communicationally expensive part: CPU



SIMD in GENESIS (developer version)

• Array of Structure (AoS)

x1 y1 z1 x2 y2 z2 xN yN zN

• Structure of Array (SoA)

In GENESIS, it is expressed as coord_pbc(1:3,1:natom,1:ncell)

In updated GENESIS source code for KNL, it will be expressed as 
coord_pbc(1:natom,1:3,1:ncell)

x1 x2 x3 x4 zN-2 zN-1 zN

• For Haswell/Broadwell/KNL machines, SoA shows better performance 
than AoS due to efficient vectorization (SIMD)



GENESIS developments on KNL

Simple pair-list scheme with better performance

• Pair-list scheme in GENESIS 1.X does not show good performance due to non-
contiguous memory access (Figure (a))



GENESIS developments on KNL

Memory 
usage

Number of 
interactions

CPU time 
(pair-list)

CPU time 
(non-bonded)

CPU time 
(total)

Algorithm 1 (AoS) 305.88 MiB 47364770 9.95 36.42 46.37

Algorithm 1 (SoA) 305.88 MiB 47364770 6.60 33.71 40.31

Algorithm 2 (AoS) 48.4 MiB 122404436 4.91 102.46 107.37

Algorithm 2 (SoA) 48.4 MiB 122404436 4.15 27.86 32.01

• Algorithm 1: pair-list algorithm used in GENESIS 1.X

• Algorithm 2: New pair-list scheme

• Target system : ApoA1 (about 90,000 atoms, 2000 time steps)



Benchmark performance of GENESIS



GENESIS 1.0 performance on K (1)
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• atom size: 11737298
• macro molecule size: 216 (43 type)
• metabolites size: 4212 (76 type)
• ion size: 23049 (Na+, Cl-, Mg2+, K+)
• water size: 2944143
• PBC size: 480 x 480 x 480(Å3)



GENESIS 1.0 performance on K (2)
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100nm = 1/10000mm



GENESIS performance on KNL (Oak-foreast)



GENESIS performance on KNL (LANL Trinity)



Efficient parallelization enable us to perform the 
MD simulations of the world largest system



Summary

• Parallelization: MPI and OpenMP

– MPI: Distributed memory parallelization

– OpenMP: Shared memory parallelization

• Parallelization of MD: mainly by domain decomposition with FFT 

parallelization

• Key issues in parallelization: minimizing communication cost to maximize 

the parallel efficiency


