

Parallelization of molecular dynamics

2019年7月11日 Jaewoon Jung (RIKEN Center for Computational Science)

Overview of MD

Molecular Dynamics (MD)

- 1. Energy/forces are described by classical molecular mechanics force field.
- 2. Update state according to equations of motion

Equation of motion

Integration

Long time MD trajectory => Ensemble generation

Long time MD trajectories are important to obtain thermodynamic quantities of target systems.

Potential energy in MD

Non-bonded interaction

1. Non-bond energy calculation is reduced by introducing cutoff

$$\sum_{j=1}^{N-1} \sum_{i=j+1}^{N} \left\{ \varepsilon_{ij} \left[\left(\frac{r_{0ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{r_{0ij}}{r_{ij}} \right)^{6} \right] + \frac{q_i q_j}{4\pi \varepsilon r_{ij}} \right\} \xrightarrow{O(N^2)} \left\{ \sum_{|i-j| < R}^{N} \left\{ \varepsilon_{ij} \left[\left(\frac{r_{0ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{r_{0ij}}{r_{ij}} \right)^{6} \right] \right\} + U_{elec} \xrightarrow{O(N^1)} \left\{ \varepsilon_{ij} \left[\left(\frac{r_{0ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{r_{0ij}}{r_{ij}} \right)^{6} \right] \right\} + U_{elec} \xrightarrow{O(N^1)} \left\{ \varepsilon_{ij} \left[\left(\frac{r_{0ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{r_{0ij}}{r_{ij}} \right)^{6} \right] \right\} + U_{elec} \xrightarrow{O(N^1)} \left\{ \varepsilon_{ij} \left[\left(\frac{r_{0ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{r_{0ij}}{r_{ij}} \right)^{6} \right] \right\} + U_{elec} \xrightarrow{O(N^1)} \left\{ \varepsilon_{ij} \left[\left(\frac{r_{0ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{r_{0ij}}{r_{ij}} \right)^{6} \right] \right\} + U_{elec} \xrightarrow{O(N^2)} \left\{ \varepsilon_{ij} \left[\left(\frac{r_{0ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{r_{0ij}}{r_{ij}} \right)^{6} \right] \right\} + U_{elec} \xrightarrow{O(N^1)} \left\{ \varepsilon_{ij} \left[\left(\frac{r_{0ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{r_{0ij}}{r_{ij}} \right)^{6} \right] \right\} + U_{elec} \xrightarrow{O(N^1)} \left\{ \varepsilon_{ij} \left[\left(\frac{r_{0ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{r_{0ij}}{r_{ij}} \right)^{6} \right] \right\}$$

2. The electrostatic energy calculation beyond cutoff will be done in the reciprocal space with FFT

$$U_{elec} = \sum_{\substack{|i-j| < R}} \frac{q_i q_j}{4\pi\varepsilon_0} \frac{\operatorname{erfc}(\alpha_{ij})}{r_{ij}} + \frac{2\pi}{V} \sum_{\substack{G \neq 0}} \frac{\exp(-|\mathbf{G}|^2/4\alpha^2)}{|\mathbf{G}|^2} \sum_{ij} \frac{q_i q_j}{4\pi\varepsilon_0} \cos(\mathbf{G} \cdot r_{ij}) - \sum_{i} \frac{q_i q_i}{4\pi\varepsilon_0} \frac{\alpha}{\sqrt{\pi}}$$
Real part Reciprocal part Self energy

3. Further, it could be reduced by properly distributing over parallel processes, in particular good domain decomposition scheme.

Difficulty to perform long time MD simulation

- 1. One time step length (Δt) is limited to 1-2 fs due to vibrations.
- 2. On the other hand, biologically meaningful events occur on the time scale of milliseconds or longer.

How to accelerate MD simulations? => Parallelization

X16?

Parallel

16 cpus

Good Parallelization ;

- 1) Small amount of
 - computation in one process
- 2) Small communicational cost

Parallelization

Shared memory parallelization (OpenMP)

- All processes share data in memory
- For efficient parallelization, processes should not access the same memory address.
- It is only available for multi-processors in a physical node

Distributed memory parallelization (MPI)

- Processors do not share data in memory
- We need to send/receive data via communications
- For efficient parallelization, the amount of communication data should be minimized

Hybrid parallelization (MPI+OpenMP)

- Combination of shared memory and distributed memory parallelization.
- It is useful for minimizing communicational cost with very large number of processors

SIMD (Single instruction, multiple data)

- Same operation on multiple data points simultaneously
- Usually applicable to common tasks like adjusting graphic image or volume
- In most MD programs, SIMD becomes the one of the important topics to increase the performance

SIMT (Single instruction, multiple threads)

- SIMD combined with multithreading
- SIMT execution model is usually implemented on GPUs and related with GPGPU (General Purpose computing on Graphics Processing Units)
- Currently, CUDA allows 32 threads for SIMT (warp size =32)

Grid 1			Block (1,0))		
Block (0,0)	Block (1,0)		Thread (0,0) Thread	Thread (1,0) Thread	Thread (2,0)	Thread (3,0) Thread
Block (0,1)	Błock (1,1)	*****	(0,1) Thread (0,2)	(1,1) Thread (1,2)	(2,1) Thread (2,2)	(3,1) Thread (3,2)

MPI Parallelization of MD (non-bonded interaction in real space)

Parallelization scheme 1: Replicated data approach

- 1. Each process has a copy of all particle data.
- 2. Each process works only part of the whole works by proper assign in do loops.

Parallelization scheme 1: Replicated data approach

Perfect load balance is not guaranteed in this parallelization scheme

Hybrid (MPI+OpenMP) parallelization of the Replicated data approach

- 1. Works are distributed over MPI and OpenMP threads.
- 2. Parallelization is increased by reducing the number of MPIs involved in communications.

my_rank = MPI_Rank proc = total MPI
<pre>do i = my_rank+1, N, prod do j = i+1, N</pre>
energy(i,j) force(i,j)
end do end do
MPI reduction (energy,force)

```
my rank = MPI Rank
proc = total MPI
nthread = total OMP thread
!$omp parallel
id = omp thread id
my id = my rank*nthread + id
do i = my id+1,N,proc*nthread
 do j = i+1, N
   energy(i,j)
    force(i,j)
  end do
end do
Openmp reduciton
!$omp end parallel
```

MPI reduction (energy, force)

Pros and Cons of the Replicated data approach

- 1. **Pros** : easy to implement
- 2. Cons
 - Parallel efficiency is not good
 - No perfect load balance
 - Communication cost is not reduced by increasing the number of processes
 - We can parallelize only for energy calculation (with MPI, parallelization of integration is not so much efficient)
 - Needs a lot of memory
 - Usage of global data

Parallelization scheme 2: Domain decomposition

- The simulation space is divided into subdomains according to MPI (different colors for different MPIs).
- 2. Each MPI only considers the corresponding subdomain.
- 3. MPI communications only among neighboring processes.

Parallelization scheme 2: Domain decomposition

- 1. For the interaction between different subdomains, it is necessary to have the data of the buffer region of each subdomain.
- 2. The size of the buffer region is dependent on the cutoff values.
- 3. The interaction between particles in different subdomains should be considered very carefully.
- 4. The size of the subdomain and buffer region is decreased by increasing the number of processes.

Pros and Cons of the domain decomposition approach

1. Pros

- Good parallel efficiency
 - Reduced computational cost by increasing the number of processes
 - We can easily parallelize not only energy but also integration
- Availability of a huge system
 - Data size is decreased by increasing the number of processes

2. Cons

- Implementation is not easy
 - Domain decomposition scheme is highly depend on the potential energy type, cutoff and so on
- Good performance cannot be obtained for nonuniform particle distributions

Special treatment for nonuniform distributions

Tree method

: Subdomain size is adjusted to have the same number of particles

Hilbert space filling curve

: a map that relates multi-dimensional space to one-dimensional curve

Comparison of two parallelization scheme

	Computation	Communication	Memory
Replicated data	<i>O</i> (<i>N</i> / <i>P</i>)	O(N)	O(N)
Domain decomposition	<i>O</i> (<i>N</i> / <i>P</i>)	$O((N/P)^{2/3})$	<i>O</i> (<i>N</i> / <i>P</i>)

N: system size P: number of processes MPI Parallelization of MD (reciprocal space)

Smooth particle mesh Ewald method

The structure factor in the reciprocal part is approximated as

$$S(k_1, k_2, k_3) = b_1(k_1)b_2(k_2)b_3(k_3)F(Q)(k_1, k_2, k_3)$$

Using Cardinal B-splines of order n
Fourier Transform of charge

It is important to parallelize the Fast Fourier transform efficiently in PME!!

Ref : U. Essmann et al, J. Chem. Phys. 103, 8577 (1995)

Overall procedure of reciprocal space calculation

Simple note of MPI_alltoall communications

MPI_alltoall is same as matrix transpose!!

Parallel 3D FFT – slab (1D) decomposition

- Each process is assigned a slob of size N ×
 N × N/P for computing FFT of N × N × N
 grids on P processes.
- 2. The scalability is limited by *N*
- 3. *N* should be divisible by *P*

Parallel 3D FFT – slab (1D) decomposition

Parallel 3D FFT – slab (1D) decomposition (continued)

1. Slab decomposition of 3D FFT has three steps

- 2D FFT (or two 1D FFT) along the two local dimension
- Global transpose (communication)
- 1D FFT along third dimension

2. Pros

- fast using small number of processes
- 3. Cons
 - Limitation of the number of processes

Parallel 3D FFT – 2D decomposition

Each process is assigned a data of size $N \times N/P \times N/Q$ for computing a FFT of $N \times N \times N$ grids on $P \times Q$ processes.

Parallel 3D FFT –2D decomposition (continued)

- 1. 2D decomposition of 3D FFT has five steps
 - 1D FFT along the local dimension
 - Global transpose
 - 1D FFT along the second dimension
 - Global transpose
 - 1D FFT along the third dimension
- 2. The global transpose requires communication only between subgroups of all nodes
- 3. Cons: Slower than 1D decomposition for a small number of processes
- 4. Pros : Maximum parallelization is increased

Pseudo code of reciprocal space calculation with 2D decomposition of 3D FFT

! compute Q factor do i = 1, natom/P compute Q_orig end do call mpi_alltoall(Q_orig, Q_new, ...) accumulate Q from Q_new

```
!FFT : F(Q)
do iz = 1, zgrid(local)
 do iy = 1, ygrid(local)
   work local = Q(my rank)
   call fft(work local)
   Q(my rank) = work local
  end do
end do
call mpi alltoall(Q, Q new,...)
do iz = 1, zgrid(local)
 do ix = 1, xgrid(local)
   work_local = Q_new(my_rank)
   call fft(work local)
   Q(my rank) = work local
  end do
end do
call mpi alltoall(Q,Q new,..)
```

do iy = 1, ygrid(local)
 do ix = 1, xgrid(local)
 work_local = Q(my_rank)
 call fft(work_local)
 Q(my_rank) = work_local
 end do
end do

! compute energy and virial do iz = 1, zgrid do iy = 1, ygrid(local) do ix = 1, xgrid(local) energy = energy + sum(Th*Q) virial = viral + .. end do end do end do

! X=F_1(Th)*F_1(Q)

! FFT (F(X))

do iy = 1, ygrid(local)do ix = 1, xgrid(local) work local = Q(my rank)call fft(work local) Q(my rank) = work local end do end do call mpi alltoall(Q,Q new,..) do iz = 1, zgrid(local)do ix = 1, xgrid(local) work local = Q(my rank)call fft(work local) Q(my rank) = work local end do end do call mpi alltoall(Q,Q_new) do iz = 1, zgrid(local)do iy = 1, ygrid(local)work local = Q(my rank)call fft(work local) Q(my rank) = work_local end do end do

!compute force

Parallel 3D FFT – 3D decomposition

- More communications than existing FFT
- MPI_Alltoall communications only in one dimensional space
- Reduce communicational cost for large number of processes

Ref) J. Jung et al. Comput. Phys. Comm. 200, 57-65 (2016)

Case Study: Parallelization in GENESIS MD software

Domain decomposition in GENESIS SPDYN

- 1. The simulation space is divided into subdomain according to the number of MPI processes.
- 2. Each subdomain is further divided into the unit domain (named cell).
- 3. Particle data are grouped together in each cell.
- 4. Communications are considered only between neighboring processes.
- 5. In each subdomain, OpenMP parallelization is used.

Efficient shared memory calculation =>Cell-wise particle data

- 1. Each cell contains an array with the data of the particles that reside within it
- 2. This improves the locality of the particle data for operations on individual cells or pairs of cells.

cell-wise arrays of particle data

Ref : P. Gonnet, JCC 33, 76-81 (2012)

Midpoint cell method

Subdomain assigned by MPI (Computation is assigned to one CPU)

Cell

Boundary cell

- For every cell pair, midpoint cell is decided.
- If midpoint cell is not uniquely decided, we decide it by considering load balance.
- For every particle pairs, interaction subdomain is decided from the midpoint cell.
- With this scheme, we can only communicate data of each subdomain only considering the adjacent cells of each subdomain.

Subdomain structure with midpoint cell method

- 1. Each MPI has local subdomain which is surrounded by boundary cells.
- 2. At least, the local subdomain has at least two cells in each direction

Communication pattern (example of coordinates)

- 1. Each subdomain can evaluate interactions by obtaining the data of boundary region from other processes
- 2. Using the communication pattern shown below, we can minimize the frequency of communication.

- ① Receive from the upper process in x dimension
- 2 Receive from the lower process in x dimension
- ③ Receive from the upper process in y dimension
- A Receive from the lower process in y dimension

Communication pattern (example of forces)

- 1. Communication pattern of forces is opposite to the communication pattern of coordinates.
- 2. Each process send the force data in boundary cells.

- ① Send to the lower process in y dimension
- 2 Send to the upper process in y

dimension

- ③ Send to the lower process in x dimension
- ④ Send to the upper process in x dimension

OpenMP parallelization in GENESIS

- 1. In the case of integrator, every cell indices are divided according to the thread id.
- 2. As for the non-bond interaction, cell-pair lists are first identified and cell-pair lists are distributed to each thread

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Parallelization of FFT in GENESIS

FFT in GENESIS (2 dimensional view)

Parallelization based on CPU/GPU calculation

Computationally expensive part: GPU

Communicationally expensive part: CPU

SIMD in GENESIS (developer version)

• Array of Structure (AoS)

<i>x</i> ₁	\mathcal{Y}_1	<i>z</i> ₁	<i>x</i> ₂	<i>Y</i> ₂	<i>z</i> ₂									x_N	\mathcal{Y}_N	Z_N
-----------------------	-----------------	-----------------------	-----------------------	-----------------------	-----------------------	--	--	--	--	--	--	--	--	-------	-----------------	-------

In GENESIS, it is expressed as coord_pbc(1:3,1:natom,1:ncell)

• Structure of Array (SoA)

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄											<i>Z</i> _{<i>N</i>-2}	<i>z_{N-1}</i>	Z_N
-----------------------	-----------------------	-----------------------	-----------------------	--	--	--	--	--	--	--	--	--	--	--------------------------------	------------------------	-------

In updated GENESIS source code for KNL, it will be expressed as coord_pbc(1:natom, 1:3, 1:ncell)

• For Haswell/Broadwell/KNL machines, SoA shows better performance than AoS due to efficient vectorization (SIMD)

GENESIS developments on KNL

Simple pair-list scheme with better performance

• Pair-list scheme in GENESIS 1.X does not show good performance due to noncontiguous memory access (Figure (a))

GENESIS developments on KNL

	Memory usage	Number of interactions	CPU time (pair-list)	CPU time (non-bonded)	CPU time (total)
Algorithm 1 (AoS)	305.88 MiB	47364770	9.95	36.42	46.37
Algorithm 1 (SoA)	305.88 MiB	47364770	6.60	33.71	40.31
Algorithm 2 (AoS)	48.4 MiB	122404436	4.91	102.46	107.37
Algorithm 2 (SoA)	48.4 MiB	122404436	4.15	27.86	32.01

- Algorithm 1: pair-list algorithm used in GENESIS 1.X
- Algorithm 2: New pair-list scheme
- Target system : ApoA1 (about 90,000 atoms, 2000 time steps)

Benchmark performance of GENESIS

GENESIS 1.0 performance on K (1)

• atom size:

11737298

- macro molecule size:
- metabolites size:
- ion size:
- water size:
- PBC size:

216 (43 type) 4212 (76 type) 23049 (Na⁺, Cl⁻, Mg²⁺, K⁺) 2944143 480 x 480 x 480(Å³)

GENESIS performance on KNL (Oak-foreast)

GENESIS performance on KNL (LANL Trinity)

Efficient parallelization enable us to perform the MD simulations of the world largest system

Summary

- Parallelization: MPI and OpenMP
 - MPI: Distributed memory parallelization
 - OpenMP: Shared memory parallelization
- Parallelization of MD: mainly by domain decomposition with FFT parallelization
- Key issues in parallelization: minimizing communication cost to maximize the parallel efficiency