
Parallelization of
molecular dynamics

2019年 7月 11日

Jaewoon Jung

(RIKEN Center for Computational Science)

計算科学技術特論Ａ

Overview of MD

Molecular Dynamics (MD)

1. Energy/forces are described by classical molecular mechanics force field.

2. Update state according to equations of motion

Long time MD trajectories are important to obtain
thermodynamic quantities of target systems.

Equation of
motion

Long time MD trajectory
=> Ensemble generation

Integration

Potential energy in MD

4

2
total 0

bonds
2

0
angles

dihedrals

12 61
0 0

1 1

()

()

[1 cos()]

2

b

a

n

N N
ij ij i j

ij
ij ij ijj i j

E k b b

k

V n

r r q q

r r r

O(N)

O(N)

O(N)

O(N2)

Main bottleneck in MD

12 6 2 2
0 0

2
0

erfc() exp(/ 4)
2 FFT(())

ij ij i j ij
ij

ij ij iji j R

r r q q r
Q

r r r

k

k
k

k

Real space, O(CN) Reciprocal space, O(NlogN)

Total number of particles

Non-bonded interaction

1. Non-bond energy calculation is reduced by introducing cutoff

ଵଶ

ே

ୀାଵ

ேିଵ

ୀଵ

ଵଶ

ே

ି ழோ

2. The electrostatic energy calculation beyond cutoff will be done in the reciprocal space
with FFT

3. Further, it could be reduced by properly distributing over parallel processes, in particular
good domain decomposition scheme.

5

|ି|ழோ

ଶ ଶ

ଶ

ஷ

Real part Reciprocal part Self energy

O(N2)

O(N1)

Difficulty to perform long time MD simulation

1. One time step length (Δt) is limited to 1-2 fs due to vibrations.

2. On the other hand, biologically meaningful events occur on the time scale of
milliseconds or longer.

fs ps ns μs ms sec

vibrations

Sidechain motions

Mainchain motions

Folding

Protein global motions

How to accelerate MD simulations?
=> Parallelization

Serial Parallel

16 cpus

X16?

1cpu

1cpu

Good Parallelization ;

1) Small amount of

computation in one process

2) Small communicational cost

C

CPU

Core
MPI
Comm

Parallelization

Shared memory parallelization (OpenMP)

Memory

P1 P2 P3 PP-1 PP

• All processes share data in memory

• For efficient parallelization, processes should not access the same memory address.

• It is only available for multi-processors in a physical node

Distributed memory parallelization (MPI)

M1

P1

M2

P2

M3

P3

MP-1

PP-1

MP

PP

…

• Processors do not share data in memory

• We need to send/receive data via communications

• For efficient parallelization, the amount of communication data should be minimized

Hybrid parallelization (MPI+OpenMP)

M1

P1

M2

P2

M3

P3

MP-1

PP-1

MP

PP

…

• Combination of shared memory and distributed memory parallelization.

• It is useful for minimizing communicational cost with very large number of processors

SIMD (Single instruction, multiple data)

• Same operation on multiple data points simultaneously

• Usually applicable to common tasks like adjusting graphic image or volume

• In most MD programs, SIMD becomes the one of the important topics to increase the

performance

SIMDNo SIMD
4 times faster

SIMT (Single instruction, multiple threads)

• SIMD combined with multithreading

• SIMT execution model is usually implemented on GPUs and related with GPGPU

(General Purpose computing on Graphics Processing Units)

• Currently, CUDA allows 32 threads for SIMT (warp size =32)

Grid 1

Block
(0,0)

Block
(0,1)

Block
(1,1)

Block
(1,0)

Block (1,0)

Thread
(0,0)

Thread
(0,1)

Thread
(1,0)

Thread
(1,1)

Thread
(1,2)

Thread
(2,0)

Thread
(2,1)

Thread
(3,0)

Thread
(3,1)

Thread
(2,2)

Thread
(3,2)

Thread
(0,2)

MPI Parallelization of MD

(non-bonded interaction in real space)

Parallelization scheme 1: Replicated data approach

1. Each process has a copy of all particle data.

2. Each process works only part of the whole works by proper assign in do loops.

do i = 1, N
do j = i+1, N

energy(i,j)
force(i,j)

end do
end do

my_rank = MPI_Rank
proc = total MPI

do i = my_rank+1, N, proc
do j = i+1, N

energy(i,j)
force(i,j)

end do
end do

MPI reduction (energy,force)

atom indices
C

om
pu

ta
ti

on
al

 c
os

t

MPI rank 1

MPI rank 0

MPI rank 2

MPI rank 3

1 2 3 4 5 6 7 8

Perfect load balance is not guaranteed in this parallelization scheme

Parallelization scheme 1: Replicated data approach

Hybrid (MPI+OpenMP) parallelization of the
Replicated data approach

1. Works are distributed over MPI and OpenMP threads.
2. Parallelization is increased by reducing the number of MPIs involved in

communications.

my_rank = MPI_Rank
proc = total MPI

do i = my_rank+1, N, proc
do j = i+1, N

energy(i,j)
force(i,j)

end do
end do

MPI reduction
(energy,force)

my_rank = MPI_Rank
proc = total MPI
nthread = total OMP thread
!$omp parallel
id = omp thread id
my_id = my_rank*nthread + id
do i = my_id+1,N,proc*nthread

do j = i+1, N
energy(i,j)
force(i,j)

end do
end do
Openmp reduciton
!$omp end parallel

MPI reduction (energy,force)

Pros and Cons of the Replicated data approach

1. Pros : easy to implement

2. Cons

• Parallel efficiency is not good

• No perfect load balance

• Communication cost is not reduced by increasing the number of

processes

• We can parallelize only for energy calculation (with MPI,

parallelization of integration is not so much efficient)

• Needs a lot of memory

• Usage of global data

Parallelization scheme 2: Domain decomposition

1. The simulation space is divided into
subdomains according to MPI
(different colors for different MPIs).

2. Each MPI only considers the
corresponding subdomain.

3. MPI communications only among
neighboring processes.

Communications
between processors

Parallelization scheme 2: Domain decomposition

1. For the interaction between
different subdomains, it is
necessary to have the data of the
buffer region of each subdomain.

2. The size of the buffer region is
dependent on the cutoff values.

3. The interaction between particles in
different subdomains should be
considered very carefully.

4. The size of the subdomain and
buffer region is decreased by
increasing the number of processes.

𝒄

Sub-
domain

Buffer

Pros and Cons of the domain decomposition approach

1. Pros
• Good parallel efficiency

• Reduced computational cost by increasing the number of processes

• We can easily parallelize not only energy but also integration

• Availability of a huge system

• Data size is decreased by increasing the number of processes

2. Cons
• Implementation is not easy

• Domain decomposition scheme is highly depend on the potential energy

type, cutoff and so on

• Good performance cannot be obtained for nonuniform particle distributions

Special treatment for nonuniform distributions

Tree method
: Subdomain size is adjusted to have the same number of particles

Hilbert space filling curve
: a map that relates multi-dimensional space to one-dimensional curve

The above figure is from Wikipedia
https://en.wikipedia.org/wiki/Hilbert_curve

Comparison of two parallelization scheme

Computation Communication Memory

Replicated data O(N/P) O(N) O(N)

Domain
decomposition

O(N/P) O((N/P)2/3) O(N/P)

N: system size
P: number of processes

MPI Parallelization of MD

(reciprocal space)

Smooth particle mesh Ewald method

Real part Reciprocal part Self energy

The structure factor in the reciprocal part is approximated as

Using Cardinal B-splines of order n Fourier Transform of
charge

 2 2 2
2 2

2
' , 1 1

'

erfc1 1 exp(/)
() ()

2 2
i j c

N N
i j i j

i
i j ii j

r

q q
E S q

V

n k 0

r r n

r r n k
r k

kr r n

1 2 3 1 1 2 2 3 3 1 2 3(, ,) () () () ()(, ,)S k k k b k b k b k F Q k k k

It is important to parallelize the Fast Fourier transform efficiently in PME!!

Ref : U. Essmann et al, J. Chem. Phys. 103, 8577 (1995)

Overall procedure of reciprocal space calculation

(charge on real space) (charge on grid)

E()

 Force calculation
from

PME_Pre

FFT

Inverse
FFT

PME_Post

Simple note of MPI_alltoall communications

MPI_alltoall

A1

A3

A2

B1

A4

B2

B4

B3

C2

C1

C3

C4

D1

D2

D4

D3

Proc1 Proc2 Proc3 Proc4

A1

C1

B1

A2

D1

B2

D2

C2

B3

A3

C3

D3

A4

B4

D4

C4

Proc1 Proc2 Proc3 Proc4

MPI_alltoall is same as matrix transpose!!

Parallel 3D FFT – slab (1D) decomposition

1. Each process is assigned a slob of size

for computing FFT of

grids on processes.

2. The scalability is limited by

3. should be divisible by

Proc 1

Proc 2

Proc 3

Proc 4

Parallel 3D FFT – slab (1D) decomposition

No communication

MPI_Alltoall communication
among all preocessors

Parallel 3D FFT – slab (1D) decomposition (continued)

1. Slab decomposition of 3D FFT has three steps

• 2D FFT (or two 1D FFT) along the two local dimension

• Global transpose (communication)

• 1D FFT along third dimension

2. Pros

• fast using small number of processes

3. Cons

• Limitation of the number of processes

Parallel 3D FFT –2D decomposition

Each process is assigned a data of size for computing a FFT of

grids on processes.

MPI_Alltoall
communications among 3
processes of the same color

MPI_Alltoall
communications among 3
processes of the same color

Parallel 3D FFT –2D decomposition (continued)

1. 2D decomposition of 3D FFT has five steps

• 1D FFT along the local dimension

• Global transpose

• 1D FFT along the second dimension

• Global transpose

• 1D FFT along the third dimension

2. The global transpose requires communication only between subgroups of all nodes

3. Cons: Slower than 1D decomposition for a small number of processes

4. Pros : Maximum parallelization is increased

Pseudo code of reciprocal space calculation with
2D decomposition of 3D FFT

! compute Q factor
do i = 1, natom/P

compute Q_orig
end do
call mpi_alltoall(Q_orig, Q_new, …)
accumulate Q from Q_new

!FFT : F(Q)
do iz = 1, zgrid(local)

do iy = 1, ygrid(local)
work_local = Q(my_rank)
call fft(work_local)
Q(my_rank) = work_local

end do
end do
call mpi_alltoall(Q, Q_new,…)
do iz = 1, zgrid(local)

do ix = 1, xgrid(local)
work_local = Q_new(my_rank)
call fft(work_local)
Q(my_rank) = work_local

end do
end do
call mpi_alltoall(Q,Q_new,..)

do iy = 1, ygrid(local)
do ix = 1, xgrid(local)

work_local = Q(my_rank)
call fft(work_local)
Q(my_rank) = work_local

end do
end do

! compute energy and virial
do iz = 1, zgrid

do iy = 1, ygrid(local)
do ix = 1, xgrid(local)

energy = energy + sum(Th*Q)
virial = viral + ..

end do
end do

end do

! X=F_1(Th)*F_1(Q)

! FFT (F(X))

do iy = 1, ygrid(local)
do ix = 1, xgrid(local)

work_local = Q(my_rank)
call fft(work_local)
Q(my_rank) = work_local

end do
end do
call mpi_alltoall(Q,Q_new,..)
do iz = 1, zgrid(local)

do ix = 1, xgrid(local)
work_local = Q(my_rank)
call fft(work_local)
Q(my_rank) = work_local

end do
end do
call mpi_alltoall(Q,Q_new)
do iz = 1, zgrid(local)

do iy = 1, ygrid(local)
work_local = Q(my_rank)
call fft(work_local)
Q(my_rank) = work_local

end do
end do

!compute force

Parallel 3D FFT – 3D decomposition

• More communications than
existing FFT

• MPI_Alltoall communications
only in one dimensional space

• Reduce communicational cost
for large number of processes

Ref) J. Jung et al. Comput. Phys. Comm.
200, 57-65 (2016)

Case Study:

Parallelization in GENESIS MD software

Domain decomposition in GENESIS SPDYN

1. The simulation space is divided into
subdomain according to the number
of MPI processes.

2. Each subdomain is further divided
into the unit domain (named cell).

3. Particle data are grouped together
in each cell.

4. Communications are considered
only between neighboring
processes.

5. In each subdomain, OpenMP
parallelization is used.

𝒄

Efficient shared memory calculation
=>Cell-wise particle data

1. Each cell contains an array with the data of the particles that reside within it

2. This improves the locality of the particle data for operations on individual cells or
pairs of cells.

particle data in traditional cell lists

Ref : P. Gonnet, JCC 33, 76-81 (2012)

cell-wise arrays of particle data

Midpoint cell method

• For every cell pair, midpoint cell is
decided.

• If midpoint cell is not uniquely
decided, we decide it by considering
load balance.

• For every particle pairs, interaction
subdomain is decided from the
midpoint cell.

• With this scheme, we can only
communicate data of each
subdomain only considering the
adjacent cells of each subdomain.

Subdomain structure with midpoint cell method

1. Each MPI has local subdomain which is surrounded by boundary cells.

2. At least, the local subdomain has at least two cells in each direction

Local sub-domain

Boundary

Communication pattern (example of coordinates)

1. Each subdomain can evaluate interactions by obtaining the data of boundary region from
other processes

2. Using the communication pattern shown below, we can minimize the frequency of
communication.

①②

③

④

① Receive from the upper process in x

dimension

② Receive from the lower process in x

dimension

③ Receive from the upper process in y

dimension

④ Receive from the lower process in y

dimension

Communication pattern (example of forces)

1. Communication pattern of forces is opposite to the communication pattern of coordinates.
2. Each process send the force data in boundary cells.

①

②

③ ④

① Send to the lower process in y

dimension

② Send to the upper process in y

dimension

③ Send to the lower process in x

dimension

④ Send to the upper process in x

dimension

OpenMP parallelization in GENESIS

1. In the case of integrator, every cell indices are divided according to the thread id.

2. As for the non-bond interaction, cell-pair lists are first identified and cell-pair lists are
distributed to each thread

1

5

2

13

9 10

6

3

14

4

7

11

8

12

1615

(1,2)
(1,5)
(1,6)
(2,3)
(2,5)
(2,6)
(2,7)
(3,4)
(3,6)
(3,7)
(3,8)
(4,7)
(4,8)
(5,6)
(5,9)

(5,10)
(6,7)

(6,10)…

thread1
thread2
thread3
thread4
thread1
thread2
thread3
thread4
…

Parallelization of FFT in GENESIS

FFT in GENESIS (2 dimensional view)

GENESIS
(Identical domain

decomposition
between two space)

NAMD, Gromacs
(Different domain
decomposition)

Parallelization based on CPU/GPU calculation

Computationally expensive part: GPU

Communicationally expensive part: CPU

SIMD in GENESIS (developer version)

• Array of Structure (AoS)

x1 y1 z1 x2 y2 z2 xN yN zN

• Structure of Array (SoA)

In GENESIS, it is expressed as coord_pbc(1:3,1:natom,1:ncell)

In updated GENESIS source code for KNL, it will be expressed as
coord_pbc(1:natom,1:3,1:ncell)

x1 x2 x3 x4 zN-2 zN-1 zN

• For Haswell/Broadwell/KNL machines, SoA shows better performance
than AoS due to efficient vectorization (SIMD)

GENESIS developments on KNL

Simple pair-list scheme with better performance

• Pair-list scheme in GENESIS 1.X does not show good performance due to non-
contiguous memory access (Figure (a))

GENESIS developments on KNL

Memory
usage

Number of
interactions

CPU time
(pair-list)

CPU time
(non-bonded)

CPU time
(total)

Algorithm 1 (AoS) 305.88 MiB 47364770 9.95 36.42 46.37

Algorithm 1 (SoA) 305.88 MiB 47364770 6.60 33.71 40.31

Algorithm 2 (AoS) 48.4 MiB 122404436 4.91 102.46 107.37

Algorithm 2 (SoA) 48.4 MiB 122404436 4.15 27.86 32.01

• Algorithm 1: pair-list algorithm used in GENESIS 1.X

• Algorithm 2: New pair-list scheme

• Target system : ApoA1 (about 90,000 atoms, 2000 time steps)

Benchmark performance of GENESIS

GENESIS 1.0 performance on K (1)

8192 16384 32768 65536 131072 262144

0.006

0.008

0.01

0.02

0.04

0.06

T
im

e
 p

e
r

s
te

p
 (

se
c

)

Number of cores

8192 16384 32768 65536 131072 262144
22

3

44

6

88

12

1616

24

3232

S
im

u
la

ti
o

n
 t

im
e

 (
n

s
/d

a
y

)

Number of cores

• atom size: 11737298
• macro molecule size: 216 (43 type)
• metabolites size: 4212 (76 type)
• ion size: 23049 (Na+, Cl-, Mg2+, K+)
• water size: 2944143
• PBC size: 480 x 480 x 480(Å3)

GENESIS 1.0 performance on K (2)

16384 32768 65536 131072 262144

0.02

0.03

0.04
0.05
0.06
0.07
0.08
0.090.1

0.2

0.3

Number of cores

T
im

e
 p

er
 s

te
p

 (
s

ec
)

16384 32768 65536 131072 262144
0.5
0.6
0.7
0.8
0.9

1

2

3

4
5
6
7
8
9

10

S
im

u
la

ti
o

n
 t

im
e

(n
s

/d
a

y)

Number of cores

100nm = 1/10000mm

GENESIS performance on KNL (Oak-foreast)

GENESIS performance on KNL (LANL Trinity)

Efficient parallelization enable us to perform the
MD simulations of the world largest system

Summary

• Parallelization: MPI and OpenMP

– MPI: Distributed memory parallelization

– OpenMP: Shared memory parallelization

• Parallelization of MD: mainly by domain decomposition with FFT

parallelization

• Key issues in parallelization: minimizing communication cost to maximize

the parallel efficiency

