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Synthesis

● Large amount of data, that is mostly irregular and at times 
need to be processed at the edge, poses new challenges 
for scaling:

● Need for programming, architecture and power 
improvements.
○ Memory Bottlenecks
○ Portability (Miniaturization and Power efficiency)
○ Programmer productivity



Motivations

● Democratizing Compute: (Bioinformatics & Smart Medical Systems)
○ Dataflow in Scientific Workflows
○ Intelligent Medical Systems Real Time Processing

● Scientific Simulations: (Quantum physics & Weather Forecasting)
○ Multi Precision Arithmetics
○ Data Assimilation & Learning

● Memory Acceleration: (Graph Processing & Machine Intelligence)
○ Non-von Neumann Architectures

■ Continuum Computer Architecture
■ Neuromorphic



Problem Domain: Scientific Workflow with Containers

Decoupled storage
Used for input, 
output and 
intermediate results

Omics (genomics, metabolomics, proteomics), machine learning pipelines, 
virtual drug screening

Scientific workflows Problem: network contention 



Memory is used for intermediate results. 
How move data to/from containers?
● UNIX pipes
● Memory-mapped files
● Tmpfs

High-level API hides parallel computing 
challenges
● User productivity

Scales on cloud and commodity HW

https://github.com/mcapuccini/MaRe 

Colocated or 
decoupled

transformations

Solution: Dataflow programming model

https://github.com/mcapuccini/MaRe


Problem Domain: Biomedical Diagnosis

● Processing massive streams of data is an important problem in 
Biomedical diagnosis systems. 
○ Biomedical diagnosis involves real time signal processing
○ A large number of transducers used, which generate massive data
○ Signal processing algorithms require huge memory to store pre 

computed coefficients
○ Accessing memory makes system performance slow : a bottleneck 

in real-time diagnosis 

Example -

3D Ultrasound imaging requires 50 GB LUT (Lookup tables) space



Solution: Biomedical Diagnosis

● Exploring sparsity of the data : compressive sensing
● Customized hardware : parallel computing
● On the fly computation : reduced memory access



Numerical calculation for quantum physics

①What is the presence problem about quantum physics ?

②Making program for numerical calculation

Considering computation time and capacity of files

Einstein equation

Problem Domain: Quantum Physics

Schrodinger equation



Data size issues in data assimilation
Observational data size issues:
Real-time finescale weather forecast requires much observational data input
 - conventional techniques (radar, satellites) with higher resolution
 - new data sources (vehicles, portable devices)
Fast computation and data transfer are both essential

Possible solutions:
- improved pre-processing schemes

Problem Domain: Weather Forecasting



Problem Domain: Linear Algebra 

Double-Double and Quad-Double arithmetic uses the combinations of double 
precision numbers. # of operations would become large.

In the conventional laptop computer,

● Without parallelization, a kernel (BLAS 1 2 3) is computation bottleneck.
● With parallelization(FMA, SIMD, OpenMP), some kernels are memory bottleneck.

Parallelization have memory performance constraint for some multi precision kernels.

Multi precision arithmetic



Memory Access - Bottleneck for DL applications.

1. DRAM access: Data movement DRAM to ALU is expensive.
2. Mapping data-flow over the architecture: Memory hierarchy to 

computation units.
3. For DL application training and inferencing, loading huge data for training 

affects the training time, which may be critical for many real-time 
applications.

Comp.

ALU

Mem Read

DRAM 

Off -chip

Mem Write

DRAM 

Off -chip

Problem Domain: Machine Learning



Solution: Machine Learning

1. Data compression to reduce the storage and movement.
2. Network pruning e.g based on magnitude of weights.
3. Reduce precision for computation: (Floating point -> Fixed point): 8 bit int used in ( Google TPU).

a. Binary weight, ternary weight..
b. Non linear quantization (Log-domain)

4. Improve the reuse of data and local ( computational ) accumulation.
5. Exploit sparsity in the computation map: skip memory access and compute for zero.
6. Reduce operation while mapping DNN to matrix multiplication, example using FFT.
7. On-chip memory partition, putting memory and processor on same silicon substrate, increase the 

memory Bandwidth. 
8. Moving from temporal architecture (SIMD) (MEM-> REG File -> ALU -> control ) to 

Spatial architecture ( more advanced for memory accessing ) (MEM -> ALU ).
9. Advance memory techniques: Stacked DRAMs and non-volatile memories.

10. Explore possibility of neuromorphic computing with asynchronous operation.



Problem Domain: Graph Processing

● Graph processing generally involves: 
○ Low FLOP to Byte ratio 
○ Irregular data access pattern  

● Bulk Synchronous Model (BSP) leads to under 
exploitation of the large inherent parallelism that is 
naturally available in graph structures.

● Think like a Vertex, asynchronously:
● Send an active message asynchronous 

(fire-and-forget).
● No DAG. Because there could be cycles in the 

graph. 
● We implement Dijkstra–Scholten algorithm for 

termination detection



Problem Domain: Graph Processing

Presents both behaviors of 
Strong and Weak Scaling:
Transcendental Scaling

Strong Weak



Problem Domain: Graph Processing
● Continuum Compute Architecture is a new class of 

non von Neumann architectures.
● Offers fine grain parallelism.
● Small compute cells organized such that it creates 

an active memory.
● Low Power
● Less space footprint



Conclusion
● New Challenges posed by Big Data

○ Irregular memory access
○ Memory bottleneck
○ Latency sensitive
○ Low Power requirements

● Solutions:
○ 3D stacked Memory
○ Non-von Neumann architectures: send work/compute to memory and 

process there
○ Custom hardware for inference (and other compute) → less power and less 

areas footprint, critical for portability
○ Dataflow-oriented workflows

■ Programmer productivity
■ Auto optimizations (lazy evaluation, concurrency, locality optimization)


