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Synthesis

Large amount of data, that is mostly irregular and at times
need to be processed at the edge, poses new challenges
for scaling:

Need for programming, architecture and power
improvements.

o Memory Bottlenecks

o Portability (Miniaturization and Power efficiency)

o Programmer productivity




Motivations

e Democratizing Compute: (Bioinformatics & Smart Medical Systems)
o Dataflow in Scientific Workflows
o Intelligent Medical Systems Real Time Processing
e Scientific Simulations: (Quantum physics & Weather Forecasting)
o Multi Precision Arithmetics
o Data Assimilation & Learning
e Memory Acceleration: (Graph Processing & Machine Intelligence)
o Non-von Neumann Architectures
m Continuum Computer Architecture
m Neuromorphic



Problem Domain: Scientific Workflow with Containers

Omics (genomics, metabolomics, proteomics), machine learning pipelines,
virtual drug screening

Scientific workflows Problem: network contention
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i 2 @ @ @
\\ ""»\
n| en nbase

— o o e e e o o

nnnnnnnnnnnn

i e .
N a )i
" Blank filter - & ; q-value I
XcMs nfun:tlon\ji I passamns\\g”_ | 1
feakans /. e o, ﬁ | !
H / %es
B0 . .
e / 3o H
E |
J .
Used for input,

(7]
Group FWHM | ilution filter ! s S‘
%‘/ CAMERA o nfunctlo: / /’ ) z ——————————————
== A (B Decoupled storage output and
- intermediate results

CAMERA CAMERA W4M (R)



Solution: Dataflow programming model

MaRe @ https:/github.com/mcapuccini/MaRe

transformations
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Memory is used for intermediate results.
How move data to/from containers?

e UNIX pipes

e Memory-mapped files

e Tmpfs
High-level API hides parallel computing
challenges

e User productivity
Scales on cloud and commodity HW


https://github.com/mcapuccini/MaRe

Problem Domain: Biomedical Diagnosis

e Processing massive streams of data is an important problem in
Biomedical diagnosis systems.

o Biomedical diagnosis involves real time signal processing

o A large number of transducers used, which generate massive data

o Signal processing algorithms require huge memory to store pre
computed coefficients

o Accessing memory makes system performance slow : a bottleneck
in real-time diagnosis

Example -

3D Ultrasound imaging requires 50 GB LUT (Lookup tables) space



Solution: Biomedical Diagnosis
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Exploring sparsity of the data : compressive sensing
Customized hardware : parallel computing
e On the fly computation : reduced memory access



Problem Domain: Quantum Physics

{ QUUHNTUMESPHSSU
Numerical calculation for quantum physics

(DWhat is the presence problem about quantum physics ?

(@Making program for numerical calculation

Considering computation time and capacity of files

Einstein equation Schrodinger equation
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Problem Domain: Weather Forecasting

Data size issues in data assimilation

Observational data size issues:

Real-time finescale weather forecast requires much observational data input
- conventional techniques (radar, satellites) with higher resolution

- new data sources (vehicles, portable devices)

Fast computation and data transfer are both essential
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Possible solutions:
- improved pre-processing schemes




Problem Domain: Linear Algebra

Multi precision arithmetic

Double-Double and Quad-Double arithmetic uses the combinations of double
precision numbers. # of operations would become large.

In the conventional laptop computer,

e Without parallelization, a kernel (BLAS 12 3) is computation bottleneck.
e With parallelization(FMA, SIMD, OpenMP), some kernels are memory bottleneck.

Parallelization have memory performance constraint for some multi precision kernels.



Problem Domain: Machine Learning

Memory Access - Bottleneck for DL applications.
Mem Read Comp. Mem Write

Off -chip Off -chip

DRAM access: Data movement DRAM to ALU is expensive.
2. Mapping data-flow over the architecture: Memory hierarchy to

computation units.
3. For DL application training and inferencing, loading huge data for training
affects the training time, which may be critical for many real-time

applications.
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Solution: Machine Learning
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Data compression to reduce the storage and movement.

Network pruning e.g based on magnitude of weights.

Reduce precision for computation: (Floating point -> Fixed point): 8 bit int used in ( Google TPU).
a. Binary weight, ternary weight..
b. Non linear quantization (Log-domain)

Improve the reuse of data and local ( computational ) accumulation.

Exploit sparsity in the computation map: skip memory access and compute for zero.

Reduce operation while mapping DNN to matrix multiplication, example using FFT.

On-chip memory partition, putting memory and processor on same silicon substrate, increase the

memory Bandwidth.

Moving from temporal architecture (SIMD) (MEM-> REG File -> ALU -> control ) to

Spatial architecture ( more advanced for memory accessing ) (MEM -> ALU ).

Advance memory techniques: Stacked DRAMs and non-volatile memories.

Explore possibility of neuromorphic computing with asynchronous operation.



Problem Domain: Graph Processing

o Low FLOP to Byte ratio
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o Irregular data access pattern
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e Graph processing generally involves: 7
()
of

e Bulk Synchronous Model (BSP) leads to under
exploitation of the large inherent parallelism that is
naturally available in graph structures.

e Think like a Vertex, asynchronously:

e Send an active message asynchronous
(fire-and-forget).

e No DAG. Because there could be cycles in the
graph.

e We implement Dijkstra—Scholten algorithm for
termination detection




Problem Domain: Graph Processing

W W -

[ = BN

o

w v

10

diffuse (vertex v, int distance):

if v.distance >= distance:
v.distance = distance
for u in v.neighbors:

diffuse (u, v.distance + u.weight)

SSSP(vertex src):
src.distance = 0
for u in src.neighbors:
diffuse (u, u.weight)

Listing 1: Asynchronous SSSP

Graph Type: Erdos-Renyi
Vertices=2"19, Edges=8388608

150

8
Actions Normalized

-2
L

o

64 128 256 512 1024
Cores

N Time in Secs = Actions Normalized

»
>
g
oy

7

Presents both behaviors of
Strong and Weak Scaling:
Transcendental Scaling




Problem Domain: Graph Processing

Continuum Compute Architecture is a new class of

non von Neumann architectures.

Offers fine grain parallelism.

Small compute cells organized such that it creates

an active memory.

Low Power e
Less space footprint
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Conclusion

e New Challenges posed by Big Data
o Irregular memory access
o Memory bottleneck
o Latency sensitive
o Low Power requirements
e Solutions:
o 3D stacked Memory
o Non-von Neumann architectures: send work/compute to memory and
process there
o Custom hardware for inference (and other compute) » less power and less
areas footprint, critical for portability
o Dataflow-oriented workflows
m Programmer productivity
m Auto optimizations (lazy evaluation, concurrency, locality optimization)



