計算生命科学の基礎V 計算科学・データサイエンスと生命科学の融合:基礎から医療・創薬への応用まで 生命系の分子動力学シミュレーション

2018年11月7日 横浜市立大学 生命医科学研究科 池口 満徳

今日の内容

- ・イントロダクション:生体分子の動きと機能
- ・分子動力学シミュレーションとは
 - 基本アルゴリズム
 - 力場 (Force Field)
- ・分子動力学シミュレーションの解析・応用
 - 構造ゆらぎと構造変化
 - 相互作用、熱力学量(自由エネルギー等)
 - 実験との連携
 - 超並列計算へ: レプリカ系の計算

Conformational Changes of β subunit upon ATP binding

膜タンパク質:水やイオンの動き(透過)

生体膜に埋もれている タンパク質もある

膜蛋白質の機能: 膜内外の物質輸送

アクアポリン: 水を輸送するタンパク質

水やイオンの動きが重要

\生体膜

by 橋戸公則

アクアポリンの水の透過の分子動力学シミュレーション

生体分子の機能: 何かが動く

	動くもの	機能	シミュレーション手法
小	電子	電子移動,光励起	電子状態計算(QM)
	プロトン	プロトン移動, プロトン化	QM, 全原子MD
	原子	構造変化など	全原子MD
	低分子	リガンド結合、膜輸送	全原子MD
	側鎖	分子(低分子, 高分子)結合	全原子MD
	ドメイン	構造変化、分子モーター	全原子, 疎視化MD
	サブユニット	超分子システム	全原子, 疎視化MD
	蛋白質全体	多蛋白質システム	疎視化MD
	分子濃度	細胞機能	システム生物学
	細胞	血流	流体力学,構造力学
大	組織	臓器運動	流体力学,構造力学

必要に応じて見るスケールを変えることが重要

分子動力学シミュレーションとは

ー基本アルゴリズム、力場(force field)ー

分子動力学(MD)シミュレーション

分子動力学シミュレーションの基本アルゴリズム

- ✓ 全原子MDでは、刻み幅は
 1~2 fs (10⁻¹⁵s) 程度
- ✓ 1ステップ1秒、計算にかかるとすると、
 一日に、86,400ステップ=86 ps
 しか計算できない!
- ✓ 1ステップ1ミリ秒で計算できると、
 一日に、86,400,000ステップ=86 ns
- ✓ この速度でも1マイクロ秒のMD計算に
 12日くらいかかる

生体分子の動きを扱うには、高速な計算が必須!

力場 (Force Field)とは

カ場と MDソフトウエア

- カ場(Force Field)とは、ポテンシャル関数のパラ メータ集
- ・それぞれの力場には、作成法のポリシーがある
- それぞれの力場は、それを開発したMDソフトウ エアとセットであったが、最近はMDソフトウエア だけ開発し、力場は従来のものを利用する例も 多い
- 基本は、固定電荷の場合が多いが、誘導電荷を 含める力場もある

相互作用(原子に働く力)の計算法

タンパク質、核酸用の力場(force field) AMBER (Kollman), CHARMM (Karplus), GROMOS (Berendsen), OPLS (Jorgensen), etc.

共有結合に関するエネルギー項 結合長,結合角,二面角(ねじれ角)

非共有結合に関するエネルギー項 静電相互作用 (水素結合) ファンデルワールス相互作用

パラメータは、低分子の分子軌道法、実験データに基づいて決定

力場:静電相互作用

- 静電相互作用(クーロンポテンシャル)は、長距離まで減衰しないので、途中で省略できない
- 特殊な計算アルゴリズムを用いる必要あり
- Ewald法
 - 近距離と遠距離の相互作用に分割
 - 近距離:直接計算、遠距離:フーリエ変換により計算
 - FFTを用いるParticle Mesh Ewald (PME)が有名
- 多重極子展開法
 - 近距離:直接計算、遠距離:多重極子展開により計算
 - 階層的に多重極子を構築して、効率的に計算
 - 高速多重極子法(Fast Multipole Method; FMM)など

分子動力学シミュレーションの解析・応用

MDで解析できること(例)

- 立体構造のゆらぎを観る
 - 蛋白質のどこが柔らかく、どこが堅いか?
- 運動の相関を観る
 - 蛋白質のどこが連動して運動しているか?
- ・相互作用を観る
 - リガンドとの相互作用は、どこが強いか?
- 熱力学量を得る
 - 結合自由エネルギー、エンタルピー、エントロピーを得る
- ・立体構造変化を観る
 どのように、蛋白質は立体構造変化するのか?
- 実験結果と一致する構造を得る
 NMRやSAXSなどの実験結果と整合性を検討

MDで解析できること(例)

- 立体構造のゆらぎを観る
 - 蛋白質のどこが柔らかく、どこが堅いか?

MDシミュレーションの解析法: RMSD, RMSF

Root Mean Square Deviation (RMSD)

- ✓ 参照構造からのずれを観測
- ✓ 時間の関数
- ✓ MDの収束具合を見るのにも利用

✓ドメイン運動している場合:
 全体のRMSDは比較的大きくなる
 各ドメインRMSDは小さい

$$RMSD(t) = \sqrt{\frac{\left(\sum_{i} x_{i}(t) - x_{ref,i}\right)^{2}}{N}}$$

MDシミュレーションの解析法: RMSD, RMSF

Root Mean Square Deviation (RMSD)

- ✓ 参照構造からのずれを観測
- ✓ 時間の関数
- ✓ MDの収束具合を見るのにも利用

✓ドメイン運動している場合: 全体のRMSDは比較的大きくなる 各ドメインRMSDは小さい

- ✓ 平均構造からのずれ(標準偏差)
- ✓ 原子番号・残基番号の関数
- ✓ 揺らいでいる箇所、固い箇所を判別
- ✓ 2次構造部位は揺らぎが小さい
- ✓ ループ部位は揺らぎが大きい

$$RMSD(t) = \sqrt{\frac{\left(\sum_{i} x_{i}(t) - x_{ref,i}\right)^{2}}{N}}$$

RMSF(i) =
$$\sqrt{\frac{\left(\sum_{t} x_{i}(t) - x_{\text{ave},i}\right)^{2}}{T}}$$

Conformational Changes of β subunit upon ATP binding

Protein Fluctuation (RMSF)

 $\beta_{\mathsf{E}} \implies \beta_{\mathsf{TP}}$

- ✓ Fluctuation of C-terminal domain: $\beta_E > \beta_{TP} > \beta_{DP}$
- ✓ Despite fairly similar conformations of β_{TP} and β_{DP} , fluctuations of C-terminal domain are different.

Y. Ito & M. Ikeguchi, J. Comp. Chem. 31, 2175 (2010)

MDで解析できること(例)

- ・ 立体構造のゆらぎを観る
 - 蛋白質のどこが柔らかく、どこが堅いか?
- ・運動の相関を観る
 - 蛋白質のどこが連動して運動しているか?

MDシミュレーションの解析法:相関行列,PCA

<u>Correlation Matrix</u> (相関行列)

- ✓ 運動相関の度合
- ✓ 一緒に動いている箇所を判別
- ✓ 動的ドメインがわかる

$$C_{ij} = \frac{\left\langle \Delta \mathbf{r}_i \cdot \Delta \mathbf{r}_j \right\rangle}{\sqrt{\left\langle \Delta \mathbf{r}_i^2 \right\rangle \left\langle \Delta \mathbf{r}_j^2 \right\rangle}}$$

Y. Ito & M. Ikeguchi, J. Comp. Chem. 31, 2175 (2010)

MDシミュレーションの解析法:相関行列,PCA

<u>Correlation Matrix</u> (相関行列)

- ✓ 運動相関の度合
- ✓ 一緒に動いている箇所を判別
- ✓ 動的ドメインがわかる

<u>Principal Component Analysis (PCA)</u> (主成分解析)

- ✓ 集団的運動を抽出
- ✓ 運動を主成分に分解
- ✓ 履歴を主成分方向へ射影することで 運動の大まかな遷移がわかる

$$C_{ij} = \frac{\left\langle \Delta \mathbf{r}_i \cdot \Delta \mathbf{r}_j \right\rangle}{\sqrt{\left\langle \Delta \mathbf{r}_i^2 \right\rangle \left\langle \Delta \mathbf{r}_j^2 \right\rangle}}$$

分散共分散行列を対角化 $\left< \Delta x_i \Delta x_j \right>$ $i = 1 \cdots 3N$

MDシミュレーションの解析法: PCA

主成分解析 Principal Component Analysis (PCA)

- ✓ PCAでは、大きな揺らぎ方向を抽出
- ✓ 原子の集団運動を得ることができる。

Computational Biochemistry and Biophysics, Becker et al. eds., 2001.

| 虽白貞は、非常に入さな白田度を持つか、缶らさでみると、共力性が強 限られた方向にのみ、揺らいでいる傾向がある。

Y. Ito & M. Ikeguchi, Chem. Phys. Lett. 490, 80 (2010)

Principal Component Analysis: Mode 1-4

Y. Ito & M. Ikeguchi, Chem. Phys. Lett. 490, 80 (2010)

MDで解析できること(例)

- ・ 立体構造のゆらぎを観る
 - 蛋白質のどこが柔らかく、どこが堅いか?
- 運動の相関を観る
 蛋白質のどこが連動して運動しているか?
- ・相互作用を観る
 - リガンドとの相互作用は、どこが強いか?

MDで解析できること(例)

- ・ 立体構造のゆらぎを観る
 - 蛋白質のどこが柔らかく、どこが堅いか?
- 運動の相関を観る
 蛋白質のどこが連動して運動しているか?
- 相互作用を観る
 –リガンドとの相互作用は、どこが強いか?
- ・熱力学量を得る
 - 結合自由エネルギー、エンタルピー、エントロピーを 得る

 $= \int_{0}^{1} \left\langle \frac{\partial U}{\partial \lambda} \right\rangle_{\lambda} d\lambda$ 熱力学積分法 Thermodynamic Integration

この他にもBennett Acceptance Ratio (BAR)など

MDによる結合自由エネルギー評価法

温度レプリカ交換MD法

温度レプリカ交換MD(REMD)法により計算の収束性が向上

例: Oseltamivir シミュレーション中のねじれ角の分布

シニョリンのFolding/Unfoldingのレプリカ交換MD(REMD)

- REMDでシニョリンについて複数回のFolding/Unfoldingの転移を計算
- Folding/Unfoldingの転移曲線を得ることに成功
- REMDでの転移温度(T_m=305K)は実験値(315K)に近い値

シニョリンのFoldingに伴う∆S_c(T)の計算

Hikiri, MI, et al. J Chem Theory Comput. 2016 12: 5990.

MDで解析できること(例)

- ・立体構造のゆらぎを観る
 蛋白質のどこが柔らかく、どこが堅いか?
- 運動の相関を観る
 蛋白質のどこが連動して運動しているか?
- 相互作用を観る
 –リガンドとの相互作用は、どこが強いか?
- 熱力学量を得る
 - 結合自由エネルギー、エンタルピー、エントロピーを 得る
- ・立体構造変化を観る
 どのように、蛋白質は立体構造変化するのか?

Hierarchy of Protein Dynamics

Conventional MD Simulations

Enhanced Sampling, Ensemble Simulations, etc.

Method: umbrella sampling simulations

Method: umbrella sampling simulations

拘束ポテンシャルをかけて 構造サンプリング

それぞれ、独立のMDなので、 並列に計算可能

レプリカ交換MDとの統合も可能 Replica Exchange Umbrella Sampling (REUS法)

Free energy

構造変化を記述する反応座標(Reaction Coordinate)

Conformations

Method: umbrella sampling simulations

構造変化に対するFree Energy Simulations

1. Initial Path Nudged Elastic Band open close

2. Umbrella Sampling Simulations

For each intermediates along path, simulations with restraint,

$$w_{j} = K_{\text{rmsd}} (\Delta D_{\text{rmsd}} - \Delta D_{\text{min}})^{2}$$
$$\Delta D_{\text{rmsd}} = \text{rmsd}(X, X_{\text{open}}) - \text{rmsd}(X, X_{\text{closed}})$$

was carried out.

Restraint potential is applied to both main chains and side chains.

B. Roux JACS (2005) C.L. Brooks PNAS (2007)

3. WHAM

Weighted Histogram Analysis Method was used for <u>removing restraints</u> and calculating <u>free energy</u> <u>profiles</u> along structural transition between open and closed conformations.

Free Energy Profiles for Open-Close Transition

blue: open yellow: closed green: ATP

 ✓ Meta-stable state is found: ATP-bound open conformation.

 \rightarrow encounter complex

Ito, Oroguchi, Ikeguchi, JACS, 133, 3372 (2011)

$ii \rightarrow iii$ 1 transition: H-bond in P-loop

MDで解析できること(例)

- 立体構造のゆらぎを観る
 - 蛋白質のどこが柔らかく、どこが堅いか?
- 運動の相関を観る
 - 蛋白質のどこが連動して運動しているか?
- 相互作用を観る
 - リガンドとの相互作用は、どこが強いか?
- 熱力学量を得る
 - 結合自由エネルギー、エンタルピー、エントロピーを得る
- ・ 立体構造変化を観る
 どのように、蛋白質は立体構造変化するのか?
- 実験結果と一致する構造を得る
 NMRやSAXSなどの実験結果と整合性を検討

MDと実験の連携法

<u>方法2(物理化学MD)</u> MDの結果の検証

拘束MDの改良1: 水を入れる

Yamane, Okamura, Ikeguchi, Nishimura, Kidera, Proteins, 71, 1970 (2008)

Water-mediated interactions between PhoB and DNA

green lines: crystal structures

binding activity

MDと実験の連携法

NMR: Order Parameter

NMR provides information on dynamics of both backbone and side chains.

Order parameters (S²) represent the amplitude of fluctuation of bond vectors.

MD simulations without any restraints were conducted for 10 ns x 20 structures.

Calculated S^2_{NH} and S^2_{axis} were compared with experimental data.

Best, Clarke, Karplus, J. Mol. Biol. 349, 189, (2005)

Model-free order parameter S²_{NH} -backbone dynamics-

Yamane, Okamura, Kidera, Nishimura, Ikeguchi, J. Am. Chem. Soc.132, 12653, 2010

Principle of MD-SAXS

VDRの活性調節機構を、構造変化に基づいて明らかにする事が求められていた。

- ・<u>アポ体の結晶構造は報告されておらず</u>、ヘリックス12形成について知見が乏しい。
- ・アゴニスト/アンタゴニスト複合体の結晶構造は報告されているが、 <u>両者の構造に違いがない</u>。

3. ビタミンD受容体リガンド結合ドメインの溶液構造探索

Y. Anami, N. Shimizu, T. Ekimoto, D. Egawa, T. Itoh, M. Ikeguchi, and K. Yamamoto; J. Med. Chem. 59, 7888 (2016). 結晶化によるクリスタルパッキングの影響がない、生体内に近い溶液中で溶液構造解析を行った。 アポ、Antagonist複合体の単分散状態の散乱データを得たが、それらの溶液構造の解釈には、 低分解能に起因する困難があった。

3. ビタミンD受容体リガンド結合ドメインの溶液構造探索

* MD-SAXS相関構造解析の実行

3. ビタミンD受容体リガンド結合ドメインの溶液構造探索

* MD-SAXS相関構造解析の実行

まとめ

- ・生体分子の動きが機能に重要
- ・分子動力学シミュレーションでは、様々な力
 場が提案され、今も継続して改良中である
- ・分子動力学シミュレーションの解析は、その
 機能ごとに様々である

- 例:RMSD, RMSF, 相関行列, PCA等

- ・分子動力学シミュレーションは、様々に応用 されている。
 - 実験との連携も重要な点
 - 超並列計算への展開:レプリカ系の計算