Group D Presentation

Sign Language Recognition on **L**ow Power, **L**ow Reliability, **L**ow Latency Devices

Yasuhiro Nakahara, Siddharth D Jaiswal, M.Emin Ozturk, Yuta Shimane

Mentors: A. Hori and N. Yoshioka

Muhammed Emin Ozturk

The Ohio State U, USA / PhD

(Presentation title)

Theoretical Approaches for Handling Soft Errors in KrylovSubspace Methods

(Research field / theme)

High Performance Computing- Computational Science

Siddharth D Jaiswal

Indian Institute of Science, India / MA

(Presentation title)

(Research field / theme)

STEM: STreaming Edge-based Motif Preserving Graph Partitioning Large Scale Graph processing

D

Yasuhiro Nakahara

Kumamoto U, JPN / MA

(Presentation title)

CNN accelerator for edge computing

(Research field / theme)

Embedded system, deep learning

Yuta Shimane

Tokyo U of Science, JPN / MA

(Presentation title)

Development of a neuro-musculoskeletal model of rat

(Research field / theme)

Bio-mechanics

Outline

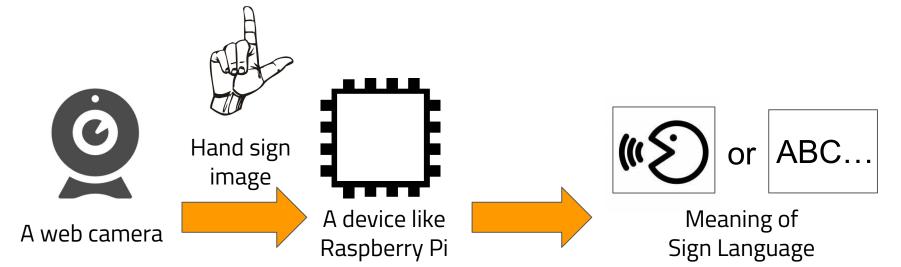
- Introduction
- Problem Definition
- Sequence Diagram
- Proposed Solution
- Methodology
- Conclusion

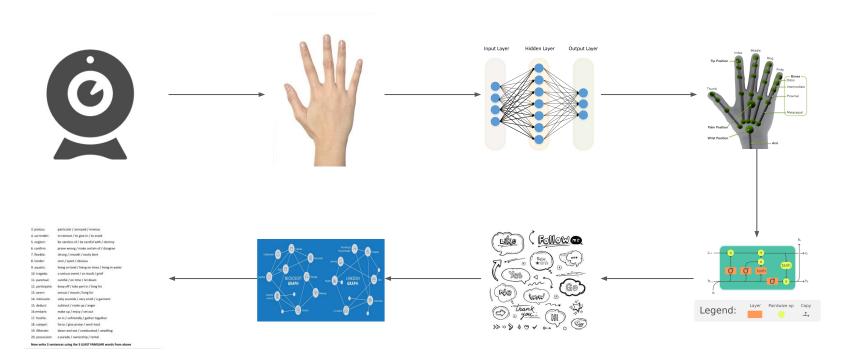
Sign language

<u>Translate sign language to text for deaf/mute people</u>

There are more than **466 million** deaf people in the world (WHO, 2019)

It is difficult to translate message using sign language

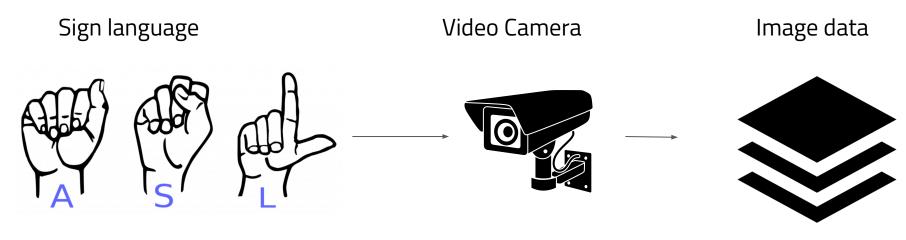

e.g call emergency


Need to develop device which **deaf people can use to communicate with other people easily**

System Configuration

- 1. Shooting hand with webcam
- 2. Infer meaning of sign language with a device
- 3. Output sign language meaning by voice or text

Sequence Diagram

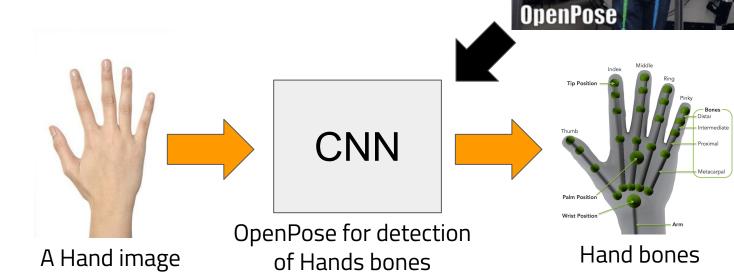

https://cdn.clipart.email/94b84f05b3c8bfc52d8fadd95d4c0ec9_library-of-security-camera-picture-library-library-download-png-_2400-1922.png

https://clipartart.com/images/1-person-free-clipart-5.png

https://i0.wp.com/www.marktorr.com/wp-content/uploads/2017/06/NeuralNet.png https://miro.medium.com/max/1340/0*mVoNuITCR4aApdl1 https://upload.wikimedia.org/wikipedia/commons/thumb/3/3b/The_LSTM_cell.png/170px-The_LSTM_cell.png https://images.clipartlogo.com/files/istock/previews/1060/106077627-hand-drawn-set-of-speech-bubbles-with-dialog -words.jpg

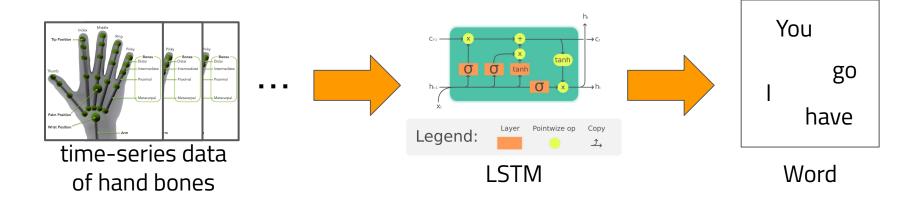
https://content.linkedin.com/content/dam/engineering/site-assets/images/blog/posts/2016/10/knowledgegraph1_.jpg https://busyteacher.org/uploads/posts/2012-11/thumbs/1353839366_best-meaning.png

Capturing sign language



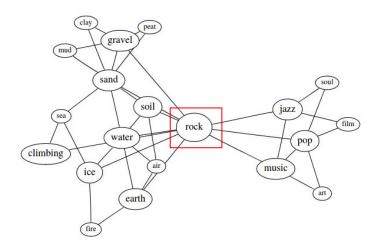
American sign language

Getting Image information of sign language in a series of motion using video camera as also as Ashio K sahoo, 2014.


Hand bone recognition

- Estimate hand bones using Openpose's method
 - Processing is fast because only hand recognition
 - Convert images to coordinates to reduce data size

Hand bone to word conversion


- Infer words from time-series data of hand bones
 - o it can be implemented with small models, since input is coordinates

Using Graphs to extract Meaning

"I am convinced that the crux of the problem of learning is recognizing relationships and being able to use them" -Christopher Strachey in a letter to Alan Turing, 1954

We create a graph from the words generated in the previous step and use contextual closeness to infer meaning from the words and take necessary action.

Resilience Analysis and Improving Fault Tolerance

- Hardware level fault
- Silent Data Corruption

The Consequence of Error

Hardware faults that impact the parameters of a DNN (e.g., weights) can have drastic impacts on its classification accuracy

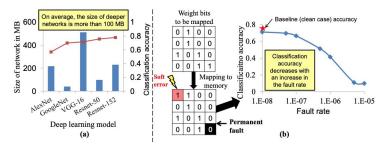


Figure 1: (a) Memory consumption of state-of-the-art DNN models. (b) The impact of hardware faults (bit flips in the weight memory) on the classification accuracy of AlexNet.

(a) Fault-free execution: A truck (b) SDC: Truck is incorrectly is identified by the DNN and identified as bird and brakes brakes are applied

may be not applied

Figure 2: Example of SDC that could lead to collision in self-driving cars due to soft errors

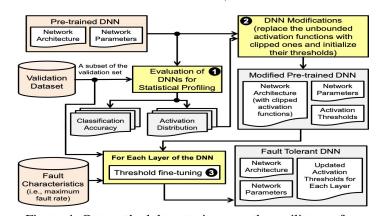


Figure 4: Our methodology to improve the resilience of a pre-trained DNN model

Conclusion

We propose the following-

Interpretation and Understanding of sign language symbols(eg. ASL) from handicapped people to help in emergency situations, in the absence of other human presence.

For this, we plan to use a combination of Visual Analytics and NLP to associate meaning to the statements generated from the sign language symbols.

Thank You!