Group B

Mentors: James Taylor, Daichi Mukunoki

Improving through optimization and increased efficiency of multiscale simulation

Group members

Ivonina Mariia

Background: Quantum Chemistry, Elongation Method **Affiliation:** Kyushu University

Nicholas Mills

Background: HPC I/O and Parallel File Systems **Affiliation:** Clemson University

Sun Qiwen

Background: Mathematics, Bayesian Inference **Affiliation:** Nagoya University

□Yuta Yamaguchi

Background: Physics, Molecular Dynamics simulation **Affiliation:** University of Tokyo

Elongation method for calculating nonlinear optical properties of long polymer chains Ivonina Mariia,

SUN Qiwen Nagoya University Graduate School of Mathematics D1 R-CCS Data Assimilation Research Team JRA (2020 April~)

- Bayesian inference
- Statistical learning

• Probability

- Functional analysis
- The Application of Tree-based Methods on the Analysis of MathSciNet Database

Question:

Group 1: *Ebola*

How Can We Estimate the Size of Ebola Outbreak in Kenya? (with Quarantine Intervention)

Modeling the Effect of Vaccination for Children to Prevent Hand, Foot, and Mouth Disease

Bayesian Filtering, Predicting and Smoothing Sun Qiwen softwares we Data Assimilation Research Team (RIKEN) Bredute School of Netwenstics, Nervy Lincienty, Joan m 7040n 9mth, nervy-u.sc.ip	
Background	Application
- Unobserved signal $ X_i \subseteq R^{N}_{i,i} \in \mathbb{N}$, the $ I_i \otimes I_i $	Collaber Advances The United Testic and Section 2014 of the rest of the Testic and Section 2014 of the Se
- dual of the organization of inclusing distributions ($p(r)_{r_1}, \omega_1$) predicting distributions $p(0(r)_{r_1}, \omega)$. Thering distributions $p(0(r)_{r_1}, \omega)$ anosoning distributions $p(0(r)_{r_1}, \omega)$. The r	Tageho are compared by compare the home monofing cells and backbox where. The comparison can be made between one cell in the particle and the class- where. The comparison can be made between one cell in the particle and one cell at the same pointon in the observation. The calculation is compared a cell calculation with its model at the same positions in the determinant. The determinant between the interacted cell and the magnetics are also the initial.
Recursive relations ([2]) · Under the assumption of if arrive properties, the relation between predicting distribution at	33
Let i and there d discloses a lite $i = 1$ is $\rho(N_i^{(1)}(r_i) - 1) = \int \partial N_i^{(1)}(r_i) (N_i - 1) \partial N_i - 1$. The relations different if here $_i$ substantiates in the size of point during distribution at lites $i = \rho(N_i^{(1)}(r_i) - \frac{\rho(N_i^{(1)}(r_i) - 1)}{\rho(N_i^{(1)}(r_i) - 1)}$. The encoding formula :	- A study of the effect of range. The effect of anticides a 200 (b) $g=200$. The protocol of the effect of anticides (a 200 (b) $g=200$). The protocol of a study is a study of a study is a study of
$p q_{i}(y_{1},y) = p q_{i}(y_{1},y) \frac{f g (y_{11},y) g (y_{11},y) g (y_{11},y)}{g (y_{11},y_{11},y)} g (y_{11})$ A special model with closed solution (Kalman Filter)	
- Linear Gaussian Wodd $X_i=A_{i-1}X_{i-1}+q_{i-1}, \forall_i=H_iX_i+h_i$ where $q_{i-1}=0.00,\; Q_{i-1}, f_i\in D_i(0,R_i)$ for all $i=1,A_{i-1}$ and K_i are traveled in water and measurement matter translations. The	The effect of range inp = 200, duby; e =_, observe error = 0.3)
$ \begin{array}{l} \mbox{mean} \mbox{mean} \ M_{0} \ \mbox{mean} \ \mbox{mean} \ M_{0} \ \mbox{mean} \ $	For descent on the 20 period of the earlysts error can be done to from the 25 error benefits for the carbon to the 25 error benefits of the carbon to the 25 error benefits of the carbon terms of the carbon
Particle Filters (11)	In the picture RangerNienzee Analysis error, 78809 = 1 can achieve the lowest everage analysis error. For this model, this optimum is cartain hay related to the rule of the dynamical system: the state of each cell is determined by hay failed and grin neighbors around it. To
For point at least the set of the state solutions, but for more general module, check solutions may not easily. For some function f_1 the and sum of computing $L_{\rm ER}[f_100]^2 = \int f(0.0) f(0)[f_1, 0.00]$ can be approximated by the performance $r_{\rm ER}[f_100]^2 = \int f(0.0) f(0)[f_1, 0.00]$ can be approximated by the performance $r_{\rm ER}[f_100]^2 = \int f(0.0) f(0)[f_1, 0.00]$ can be approximated by the performance $r_{\rm ER}[f_100]^2 = \int f(0.0) f(0)[f_1, 0.00]$. $L_{\rm ER}[f_100]^2 = \int f(0.0) f(0)[f_1, 0.00] f(0)[f_1, 0.00]$	compatible the arrayst, the information arrand the intracellal call clouds be used by the information for each other interview of the intrace call calls are not contracted. The information for each other is the interview of th
• Dependence same large - Against with the set as an epotencial distribution $\Pi([V_{1,1}])$ with appoint $\Pi([V_{1,2}])$ the $\Pi([V,V_{2,1}])$ and $\Pi([V,V_{2,1}])$ $= \frac{1}{2} \left[\Pi(V_{2,1}] \frac{de(V_{1,1})}{\Pi(V_{2,1})} \right] \Pi(V_{1,1}) de(V_{1,1}) de(V_{1,2}) de$	References II, Down, H. Jivas, N. Gwins, Daaste's loose Caro Lintois in Pacing Springer-Vulag, Nor Net, Xil. 12: Organs, Nor-Baster, Bart Sala United of United States, Tim State, Janual et de Annieum Solational Annieuw, V. St., N. St., Nor., 1990, Jan 2014. IP: Organization of Carolinal States, W. S.N.S. 1996, pp. 1–3.

The modeling and application of cellular automata theory

Moore neighborhood and Von Neumann neighborhood

Yimin Gong 2017 IOP Conf. Ser.: Mater. Sci. Eng. 242 012106

Some applications:

- Traffic flow based on cellular automaton
- Simulation of complex land use system based on Neural Networkbased cellular automaton
- Temperature field simulation

Questions :

- How should us simplify a three-dimensional system into cellular automata?
- Which kind of training method we can use to find potential parameters?

Failure processes of cemented grains depending on packing fractions

Yuta Yamaguchi University of Tokyo

MODELLING

• Uniaxial compress simulations of cohesive

porous media by means of DEM simulations.

• The material properties are firmly based on

inputs from experiments.

PARAMETER STUDIES

• Our parameter studies show <u>three different</u> <u>modes of failure processes</u>; brittle failure, ductile failure, and compaction bands.

NICK Mills, Ph.D. Candidate Clemson University Department of Electrical and Computer Engineering

NICK Mills, Ph.D. Candidate Clemson University Department of Electrical and Computer Engineering

Optimization of Multiscale Collaboration

Objective

Quantum and **Micro** Scale – how to escape from the problem of system size limitation to more realistic reproduction of real systems properties?

Large scale –

- how to select only useful information from the huge output data and transform it efficiently?
- how can we train the data properly?
- how can we select observations to reach an acceptable convergence level?

Solution

Quantum and **Micro** Scale – identification and parallelization of frequently executed regions of code (optimization)

Large scale – efficient transfer of observation and output data by identifying the useful information

Optimization of Multiscale Collaboration

Thank all of you! (special thanks for James and Daichi)