Interdisciplinary Research Challenges Group A

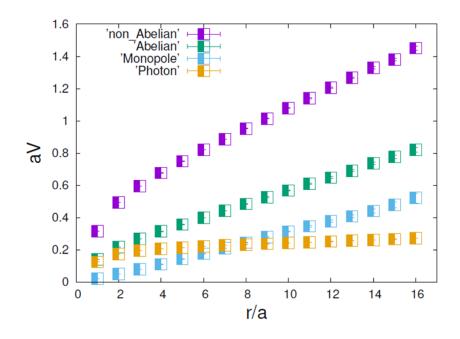
Atsuki Hiraguchi (Kochi University, Japan/PhD)
Yu-Hsiang Tsai (Karlsruhe Institute of Technology, Germany/PhD)
Koya Kobayashi (Aichi Prefectural University, Japan/MA)
Carolee Nguyen (University of California Irvine, USA/BA)

Mentors: Keigo Nitadori and Huthmann Jens

Topics

- Group Re-Introduction
- Discussion Method
- Interdisciplinary Research
- Conclusion

Introduction

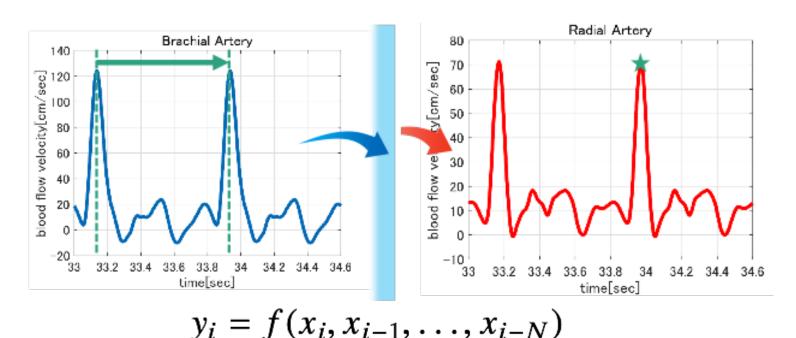

Group members

4 young scientists from different fields

- Atsuki Hiraguchi, Kochi Univ., Japan
 - Lattice QCD
- Yu-Hsiang Tsai, Karlsruhe Institute of Technology, Germany
 - SpMV on GPU (NVIDIA vs AMD)
- Koya Kobayashi, Aichi Prefectural Univ., Japan
 - Deep learning (LSTM: Long Short-Term Memory)
- Carolee Nguyen, Univ. of California, USA
 - Imaging (Dendritic branch terminal and length detection)

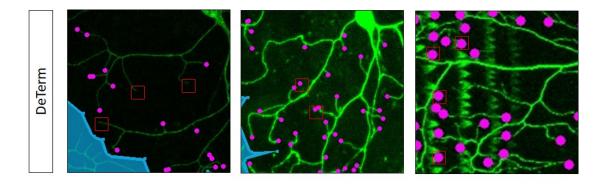
Atsuki Hiraguchi: "Quark confinement and color monopoles"

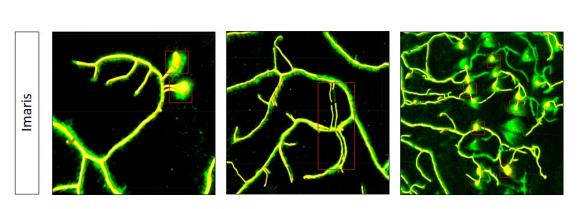
- Lattice QCD simulation
 - having been the mainstream of traditional HPC
- •Up to 48^4 lattice, SU(2) model, Quench approx.
- Single node SX-ACE in Osaka univ.


Yu-Hsiang Tsai: "Ginkgo's SpMV on NVIDIA and AMD GPU architectures"

- Sparse Matrix Vector multiplication
- Mainstream of traditional HPC
- Compared NVIDIA Tesla V100 and AMD Radeon VII
- Porting from CUDA to HIP

	NVIDIA V100	Radeon VII
Warpsize	32	64
BandWidth	$897~\mathrm{GB/s}$	$1024~\mathrm{GB/s}$
FP64 Perf.	7.834 TFLOPS	3.360 TFLOPS
L1 Cache	128 KB	16 KB
L2 Cache	6 MB	4MB
Price	US \$ 10,669	US \$ 699

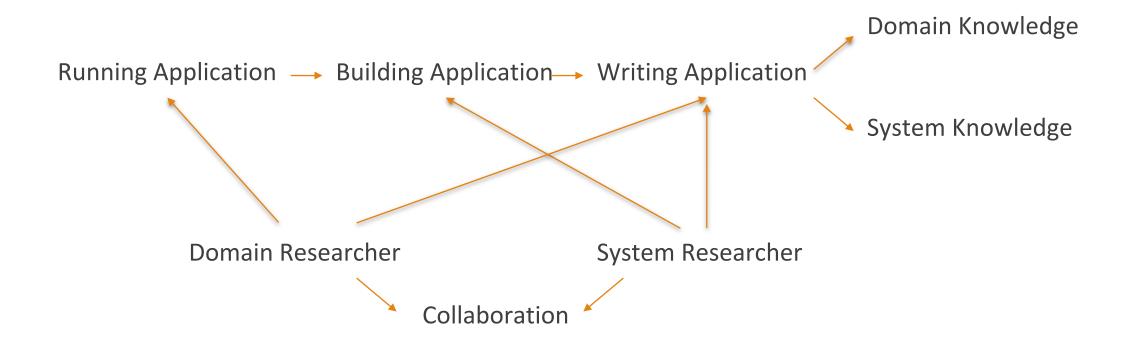

Koya Kobayashi: "Blood flow prediction using machine learning"


- LSTM: Long Short-Term Memory
 - A deep-learning method for time dependent stream like sound
- •3 days on 1 V100 GPU for training (with Keras and Python)

Carolee Nguyen: "Automated reconstruction and quantification of regenerated Drosophila class IV da neurons"

- Depiction of total dendrite length and branch terminals parameters
- DeTerm
 - Open source software
 - CUI
 - Not easy to build and use
- Imaris
 - Commercial software (\$30,000)
 - GUI
 - Better accuracy and user interface

Our Discussion


We are from different domains

- Particle Physics
- Computational Biology
- Neuro Informatics Science
- High Performance Computing

Mindmapping

Supercomputer Usability Challenges

Interdisciplinary Research

Research Goals

Domain researcher

- Wants to solve domain problems
- No system knowledge

System researcher

- Wants to solve "how to solve domain problems"
- No domain knowledge

Research Challenges

Domain Researcher

- Which software can help solve my research problem?
 - Accuracy
 - Time efficiency
- How do I use/understand the software?
 - Input requirements
 - User interface
- What do I do if there are no software to use?
 - Write your own software?

System Researcher

- How do we attract people to use software?
- How to understand the requirement/purpose of domain researchers?
- Flexibility vs Usability
- How to make clear documentation for the domain researchers?

Conclusion

Conclusion

- Interdisciplinary Talk
 - Opportunity for casual talks
 - BDR and R-CCS both have regular open talks
 - Not many go from one center to the other
 - One station is to much?
- Outside of Japan:
 - University of California, Irvine Opportunities for collaboration in graduate school where we take one year in interdisciplinary field.
 - Karlsruhe Institute of Technology, Germany Find a good time suitable for different timezone. (US in -7, Germany in +1 and Japan in +9
- Intermediate Languages / Domain Specific Languages
 - O Danger of: Yet another thing?