計算科学技術 特論B

第4回 アプリケーションの性能最適化の実例1

2018年4月

講義の概要

- ・スーパーコンピュータとアプリケーションの性能
- ・アプリケーションの性能最適化1(高並列性能最適化)
- ・アプリケーションの性能最適化2(CPU単体性能最適化)
- ・アプリケーションの性能最適化の実例1
- ・アプリケーションの性能最適化の実例2

内容

- ・理研で進めた性能最適化
- ・RSDFTの性能最適化
- ・PHASEの性能最適化

本資料は、理化学研究所AICS運用技術部門ソフトウェア技術チーム、長谷川幸弘氏(現所属RIST)、黒田明義氏の発表データを使用して作成しています。

2018年5月10日 計算科学技術 特論B

3

理研で進めた性能最適化

理研で進めた性能最適化

6本のターゲットアプリ

	プログラム名	分野	アプリケーション概要 	期待される成果	手法
	NICAM	地球 科学	全球雲解像大気大循環 モデル	大気大循環のエンジンとなる熱帯積雲対流活動を精 織に表現することでシミュレーションを飛躍的に進化さ せ,現時点では再現が難しい大気現象の解明が可能 となる.(開発 東京大学,JAMSTEC,RIKEN AICS)	FDM (大気)
	Seism3D	地球 科学	地震波伝播・強震動 シミュレーション	既存の計算機では不可能な短い周期の地震波動の解析・予測が可能となり、木造建築およびコンクリート構造物の耐震評価などに応用できる。(開発東京大学地震研究所)	FDM (波動)
	PHASE	ナノ	平面波展開第一原理 電子状態解析	第一原理計算により、ポスト35nm世代ナノデバイス、 非シリコン系デバイスの探索を行う.(開発 物質・材料 研究機構)	平面波 DFT
	FrontFlow/Blue	工学	Large Eddy Simulation (LES)に基づく非定常流 体解析	LES解析により、エンジニアリング上重要な乱流境界 層の挙動予測を含めた高精度な流れの予測が実現で きる.(開発 東京大学生産技術研究所)	FEM (流体)
	RSDFT	ナノ	実空間第一原理電子状 態解析	大規模第一原理計算により、10nm以下の基本ナノ素 子(量子細線、分子、電極、ゲート、基盤など)の特性解 析およびデバイス開発を行う.(開発 東京大学)	実空間 DFT
	LatticeQCD	物理	格子QCDシミュレーショ ンによる素粒子・原子核 研究	モンテカルロ法およびCG法により、物質と宇宙の起源 を解明する.(開発 筑波大)	QCD
201	8年5月10日 計算科	学技術物	寺論B	5	K computer

理研で進めた性能最適化

コラボレーション

K computer

2018年5月10日 計算科学技術 特論B

筑波大 RIKEN AICS

東京大学生産技術研究所

理研で進めた性能最適化

6本のターゲットアプリの計算機科学的な位置づけ

理研で進めた性能最適化

6本のターゲットアプリの計算機科学的な位置づけ

2018年5月10日 計算科学技術 特論B

(2) 離散化(+-×÷の世界) (3) アルゴリズム (数学の世界) (4) プログラミング(コンピュータの世界) (5) 並列化 (6) 性能チューニング

(1) 定式化(物理・数学の世界)

スーパーコンピュータを使うために (第2回)

離散化の結果

連立1次方程式 Ax = b

A:行列 **b**:定数ベクトル **x**:解ベクトル

固有値方程式 $A x = \lambda x$

A:行列 λ:固有値(スカラ)

x:固有ベクトル

離散化の結果

11

連立1次方程式 Ax = b

A:行列 **b**:定数ベクトル

x:解ベクトル

 $Ax = \lambda x$ 固有值方程式

A:行列 λ:固有値(スカラ)

x:固有ベクトル

RSDFTとは

ナノスケールでの量子論的諸現象を第一原理に立脚して解明し新機能を有するナノ物質・構造を予測

• 例えば・・・

RSDFTの原理

Kohn-Sham方程式

RSDFTの原理

RSDFTの計算フロー

RSDFTの計算フロー

RSDFTの並列化

J.-I. Iwata et al., J. Comp. Phys. (2010)

RSDFTのCPU単体性能の向上

RSDFTのCPU単体性能の向上

GramSchmidt直交化の行列積化

2018年5月10日 計算科学技術特論B

21

K computer

RSDFTのCPU単体性能の向上

RSDFTの並列特性分析

RSDFTの並列特性分析(処理・演算量)

ルーチン		処理内容	演算量	高並列化性能	単体性能
DTCG	ML×ML対称行列の 固有値、固有ベクトル を共役勾配法で固有値 の小さいものから順に MB本求める	レイリー商 minimize	$O(ML \times ML) \rightarrow O(N^2)$		
		$\frac{\langle \Psi_{m} H_{\kappa s} \Psi_{n} \rangle}{\langle \Psi_{n} \Psi_{n} \rangle}$	O(N ²)		
GramSchmidt	規格直交化	$H_{m,n} = \langle \psi_m H_{rs} \psi_n \rangle$	$ \overset{O(ML \times MB^2)}{\rightarrow O(N^3)} $		
			O(N ³)		
DIAG	ML次元の部分空間に 限ってハミルトニアン の対角化をする。				
	行列要素生成 (MatE)	$\dot{\Psi_{n}} = \Psi_{n} - \sum_{m=1}^{n-1} \Psi_{m} \langle \Psi_{m} \Psi_{n} \rangle$	O(ML×MB ²) →O(N ³) O(N ³)		
	固有値求解 (pdsyevd)	$\left(\begin{array}{c}H_{N\times N}\\\end{array}\right)\left(\vec{c}_{n}\right)=\varepsilon\left(\vec{c}_{n}\right)$	O(MB ³)→O(N ³) O(N ³)		
	回転 (RotV)	$\Psi'_n(r) = \sum_{m=1}^N C_{n,m} \Psi_m(r)$	$\frac{O(ML \times MB^2)}{O(N^3)}$ 24 O(N^3)		K comp

RSDFTの並列特性分析 (コスト)

計算機 8,000原子:格子数120x120x120,バンド数16,000 並列数 SCFループ1回実行の実測データからSCFループ100回として実行時間を推定

処理内容	コスト	演算	プロセス間通信
初期化 パラメータの読込み 全プロセスへの転送	0.4%		Bcast, Isend/Irecv
SCF部	99.6%	O (N3)	
DO SCFループ(100回と仮定)			
DIAG	30.5%	O(N ³⁾ DGEMM中心	行列生成部: Reduce, Isend/Irecv (HPSI) 固有値ソルバー部: PDSYEVD内(Bcast) ローテーション:部分Bcast, 部分Reduce
DTCG	27.4%	O(N ²⁾ 演算<ロード	スカラー値のallreduce中心 Isend/Irecv(ノンローカル項/HPSI) Isend/Irecv(境界データ交換/BCSET)
GramSchmidt	38.6%	O(N ³⁾ DGEMM中心	Allreduce (内積,規格化変数)
Mixing, 途中結果の出力	3.1%		途中結果出力は毎SCFではないのでコストは もっと少
ENDDO			

RSDFTの並列特性分析 (ブロック毎のスケーラビリティ)

計算機: T2K-Tsukuba コンパイラ&ライブラリ: PGI + mvapich2-medium S方向の分割数:128, 256, 512, 1024, 2048

RSDFTの並列特性分析(ブロック毎のスケーラビリティ)

RSDFTの並列特性分析(ブロック毎のスケーラビリティ)

28

RSDFTの並列特性分析(並列・単体性能)

					ML:格子数,MB:バンド数
ルーチン		処理内容	演算量	高並列化性能	単体性能
DTCG	ML×ML対称行列の 固有値,固有ベクトル を共役勾配法で固有値 の小さいものから順に MB本求める.	レイリー商 \downarrow minimize $\frac{\langle \Psi_m H_{KS} \Psi_n \rangle}{\langle \Psi_n \Psi_n \rangle}$	O(ML×ML) →O(N ²)	通信時間増大 演算時間と逆転 並列度の不足	行列ベクトル積 性能は悪い
GramSchmidt	規格直交化	$H_{m,n} = \langle \Psi_m H_{\mathcal{K}S} \Psi_n \rangle$	O(ML×MB ²) →O(N ³) O(N ³)	通信時間減少せず 演算時間と同程度 並列度の不足	行列積化で良好
DIAG	ML次元の部分空間に 限ってハミルトニアン の対角化をする。				
	行列要素生成 (MatE)	$\psi_{n}^{'}=\psi_{n}-\sum_{m=1}^{n-1}\psi_{m}\langle\psi_{m} \psi_{n}\rangle$	O(ML×MB ²) →O(N ³) O(N ³)	通信時間増大 演算時間と同程度	行列積化で良好
	固有値求解 (pdsyevd)	$\left(\begin{array}{c} H_{N\times N} \end{array}\right)\left(\vec{c}_{n}\right) = \varepsilon\left(\vec{c}_{n}\right)$	O(MB ³)→O(N ³) O(N ³)	並列度の不足 Scalapackのスケー	Scalapackの性能 が悪い
	回転 (RotV)	$\Psi'_n(r) = \sum_{m=1}^N c_{n,m} \Psi_m(r)$	O(ML×MB ²) →O(N ³) 29 O(N ³)	1 フロッティ か悪い	行列積化で良好

並列性能上のボトルネック

- 今まで示した調査を実施することにより処理ブロック毎に並列性能上の 問題がある事が発見される.
- それらを分析するとだいたい以下の6点に分類されると考える.

RSDFTの高並列化

RSDFTの高並列化

RSDFTの高並列化 - 通信の見積りと効果の予測 -

空間+バンド並列版(S+B並列版)

RSDFTの高並列化- Gram-Schmidtの実装 -

RSDFTの高並列化 - 通信の見積りと効果の予測 -

	ルーチン	通信パターン	型	通信サイズ	通信回数
Grar	mSchmidt	mpi_allgatherv	mpi_real8	MB/バンド並列数	1
: /12	ノド方向の通信	mpi_allreduce	mpi_real8	NBLK*NBLK~ (NBLK1+1)*(NBLK1+1)	MB/NBLK*MB/NBLK/バンド並列数 + Int(log(NBLK/NBLK1)*(MB/NBLK/バンド並列数)
		mpi_allreduce	mpi_real8	NBLK1~1	NBLK1*(MB/NBLK/バンド並列数)
		mpi_allreduce	mpi_real8	1	MB/NBLK*MB/NBLK/バンド並列数 + Int(log(NBLK/NBLK1)*(MB/NBLK/バンド並列数) +NBLK1*(MB/NBLK/バンド並列数)
		mpi_bcast	mpi_real8	MLO*NBLK	MB/NBLK/バンド並列数
		allgatherv	mpi_real8	MB/バンド並列数	1
DIAG	i	mpi_reduce	mpi_real8	MBLK*MBLK	(MB/MBLK * MB/MBLK)/バンド並列数
		lsend/irecv	mpi_rea18	MBLK*MBLK	1
		Scalapack(pdsyev d)内の通信は省略			
		mpic_bcast	mpi_real8	MBSIZE*NBSIZE	(MB/MBSIZE * MB/NBSIZE)/バンド並列数
	HPSI	mpi_isend	mpi_real8	1ma_nsend(irank)*MBLK	6*各方向の深さ*MB/MBLK/バンド並列数
		mpi_irecv	mpi_rea18	1ma_nsend(irank)*MBLK	6*各方向の深さ*MB/MBLK/バンド並列数
		mpi_waita11	-	-	MB/MBLK/パンド並列数
	BCSET	mpi_isend	mpi_real8	Md*MBLK	6*MB/MBLK/バンド並列数
		mpi_irecv	mpi_real8	Md*MBLK	6*MB/MBLK/バンド並列数
		mpi_waita11	-	-	MB/MBLK/パンド並列数
ME ME	:バンド数,NBLK:行列 SIZE:MBxMB行列の列	l x 行列で処理する最大サイズ,NB l方向のブロックサイズ,MBLK:mii	LK1:行列 x ベクト h(MBSIZE,NBSIZ	ルで処理する最小サイズ, MBSIZE:N E), Md:高次差分の次数, Ima_nser	1BxMB行列の行方向のブロックサイズ, K computer

RSDFTの高並列化 - 通信の見積りと効果の予測 -

	ルーチ	シー	通信パターン	型	通信サイズ	通信回数
DTCG		mpi_allreduce	mpi_real8	MB_d	MB/MB_d/バンド並列数	
			mpi_allreduce	mpi_real8	MB_d	MB/MB_d/バンド並列数
			mpi_allreduce	mpi_real8	MB_d	MB/MB_d*Mcg/バンド並列数
			mpi_allreduce	mpi_real8	MB_d*6	MB/MB_d*Mcg/バンド並列数
			mpi_allreduce	mpi_real8	MB_d	MB/MB_d*Mcg/バンド並列数
			mpi_allreduce	mpi_real8	MB	2
q	recor	nd_cg	mpi_allreduce	mpi_real8	MB_d	MB/MB_d*Mcg/バンド並列数*3
		BCSET	mpi_isend	mpi_real8	Md*MB_d	6*MB/MB_d*Mcg/バンド並列数
			mpi_irecv	mpi_real8	Md*MB_d	6*MB/MB_d*Mcg/バンド並列数
			mpi_waitall	-	-	MB/MB_d*Mcg/バンド並列数
Н	PSI		mpi_isend	mpi_real8	1ma_nsend(irank)* MB_d	6*各方向の深さ*MB/MB_d *(Mcg+1)/バンド並列数
			mpi_irecv	mpi_real8	lma_nsend(irank)* MB_d	6*各方向の深さ*MB/MB_d *(Mcg+1)/バンド並列数
			mpi_waitall	-	-	MB/MB_d*(Mcg+1)/バンド並列数
		BCSET	mpi_isend	mpi_real8	Md*MB_d	6*MB/MB_d*(Mcg+1)/バンド並列数
			mpi_irecv	mpi_real8	Md*MB_d	6*MB/MB_d*(Mcg+1)/バンド並列数
			mpi_waitall	-	-	MB/MB_d*(Mcg+1)/バンド並列数
MB:バンド	数, M	IB_dバンドま	まとめ処理数,Md:高	次差分の次数	数, Ima_nsend:ノン[コーカル項の数
8年5月10日	計算	科学技術 特論	В	9 ਹ	7	K com

RSDFTの高並列化 - 効果の確認 -

Weak Scaling 測定

タスクサイズ/プロセスを固定する. 格子サイズ:12x12x12,バンドサイズ:2,400 バンド方向の並列数は8で固定. 空間方向を並列数に比例して増加させる.

	原子数	格子数	バンド数	並列数
パターン1	512	48x48x48	19,200	512 (4x4x4x8)
パターン2	1,000	60x60x60	19,200	1,000(5x5x5x8)
パターン3	1,728	72x72x72	19,200	1,728(6x6x6x8)
パターン4	4,096	96x96x96	19,200	4,096(8x8x8x8)
パターン5	8,000	120x120x120	19,200	8,000(10x10x10x8)

T2K-Tsukubaで測定

2018年5月10日 計算科学技術 特論B

RSDFTの高並列化 - 効果の確認 -

Weak Scaling 測定

RSDFTの高並列化 -Tofuネッポッテンションといードウェアの並列度のミスマッチ

RSDFTの高並列化 - Gram-Schmidtマッピングの効果-

最適マッピング → サブコミュニケータ間のコンフリクトが発生しない MPI通信でTofu向けアルゴリズムが選択される

RSDFTの高並列化 - 二軸並列の効果-

RSDFTの高並列化-スケーラビリティ-

RSDFTの高並列化

総合性能

Table 2. Distribution of computational costs for an iteration of the SCF calculation of the modified code.

		Execution	Computation	Communication time (s)				Dorformonco
Procedure block		time (s)	time (s)	Adjacent/grids	Global/grids	Global/orbitals	Wait/orbitals	(PFLOPS/%)
SCF		2903.10	1993.89	61.73	823.02	12.57	11.89	5.48/51.67
SD		1796.97	1281.44	13.90	497.36	4.27	_	5.32/50.17
	MatE/SD	525.33	363.18	13.90	143.98	4.27	_	6.15/57.93
	EigenSolve/SD	492.56	240.66	_	251.90	_	_	0.01/1.03
	RotV/SD	779.08	677.60	-	101.48	-	_	8.14/76.70
CG		159.97	43.28	47.83	68.85	0.01	_	0.06/0.60
GS		946.16	669.17	-	256.81	8.29	11.89	6.70/63.10

The test model was a SiNW with 107,292 atoms. The numbers of grids and orbitals were $576 \times 576 \times 180$, and 230,400, respectively. The numbers of parallel tasks in grids and orbitals were 27,648 and three, respectively, using 82,944 compute nodes. Each parallel task had 2160 grids and 76,800 orbitals.

Performance evaluation of ultra-largescale first-principles electronic structure calculation code on the K computer

Yukihiro Hasegawa et al., International Journal of High Performance Computing Applications published online 17 October 2013

PHASEの性能最適化

45

PHASEとは

- ナノスケールでの量子論的諸現象を第一原理に立脚して解明し新機能を有するナノ物質・構造を予測。この点はRSDFTと同じ。
 例えば以下のような用途に用いる。
- •繰り返し構造を持つ結晶等の解析が得意.

電子状態計算(デバイス特性,エネルギー問題,反応・拡散),構造緩和

PHASEの原理

Kohn-Sham方程式

$$H\varphi_i(r) = \varepsilon_i \varphi_i(r)$$

、 波数:Gによる展開
来めたい波動関数は未知の関数のため、
既知の関数の線形結合で記述する.PHASE
では平面波基底を用いる.
 $H\varphi_{ik}(G) = \varepsilon_i \varphi_{ik}(G)$
 $\varphi_{ik}:電子軌道(=波動関数)$
 $i:電子準位(=エネルギーバンド量子数)$
 $G: 波数格子$
 $k:kd$

2018年5月10日 計算科学技術 特論B

PHASEの計算フロー

解くべき方程式

 $H|\psi> = \varepsilon_n |\psi>$

▶繰り返しによる更新

<ψ|ψ>ⁱ⁺¹: 電荷の更新

: ポテンシャルの更新

・H|ψ>と|ψ>より次のステップの|ψ>の

修正量を決定する。

- ・決定した修正量を加算し次のステップの
- |ψ>を計算する。

・|ψ>がある条件を満たしたら収束。

н

PHASEの並列化

PHASEの並列特性分析(処理・演算量)

	植類	区間畨号	
■カーネルの抽出	行列−行列積に書き換え可能	<mark>2,4,5</mark> ,9,10	O(N ³)
	FFTを含む	1,3,6,7, <mark>8</mark> ,11	O(N ² logN)
抽出されたカーネルは以下の11区間. 区間1: V _{local} の逆FFT	対角化	9	O(N ³)
区間2: V _{nonlocal} を波動関数ψ _i とβの内積flc作	用		
区間3: V _{local} を波動関数ψ _i に作用, 波動関数0)修正値Hψ _i を計算		
区間4: f _{ijt} = <i>β •</i> ψの計算			
区間5: Gram-Schmidtの直交化			
区間6: 固有値計算, 波動関数 ψ_i とf _i のバンドフ	方向並べ替え		
区間7: 電荷密度計算			
区間8: V _{local} の逆FFT			
区間9: 行列対角化計算, 波動関数 ψ_{i} の修正			
区間10: f _{iit} =β • ψの計算			
区間11: 電荷密度, ポテンシャル, 全エネルギ	一計算		
以上のカーネルを計算特性別に分類する	ると3つに分類が可能である。		

PHASEの並列特性分析 (ブロック毎のスケーラビリティ)

■行列積カーネル 区間2: V_{nonlocal}を波動関数ψ_iとβの内積fに作用 区間4: f_{it}=β・ψの計算 区間10: f_{it}=β・ψの計算

- ◎ PHASEの処理ブロック:区間2を例に示す。 すでにこの並列度でスケールしていない。
- 低並列でストロングスケールで測定. 原
- HfSiO2 384原子アモルファス系を測定

PHASEの並列特性分析 (ブロック毎のスケーラビリティ)

■行列積カーネル 区間5: Gram-Schmidtの直交化

PHASEの並列特性分析 (ブロック毎のスケーラビリティ)

■FFTカーネル 区間8: V_{local}の逆FFT

PHASEの並列特性分析 (ブロック毎のスケーラビリティ)

■対角化カーネル

- 対角化カーネル(区間9)
- HfSiO₂384原子,アモルファス系で測定.
- 固有値計算の部分は並列度を上げても全く実行時間の短縮が見られない.
- 逐次対応のLAPACK を使用していることが原因.
- 完全に非並列部が残存している.

	プロセス数	16	32	64	128
\geq	【間				
\geq	【間9全体	22.233	21.228	20.881	20.633
	固有值計算				
	(lapack-dsyev)	20.349	20.189	20.260	20.223
	$\psi_i' = \sum U_{ij} \psi_j$	1.584	0.824	0.410	0.210
	ψ_i' 転置通信	0.300	0.215	0.211	0.200
Ē	F速化率 [-](全体)	1.00	1.05	1.06	1.08
Ē	哥速化率 [-](固有值				
	計算含まず)	1.00	1.81	3.03	4.60

2018年5月10日 計算科学技術 特論B

並列性能上のボトルネック

			行列積カーネル	FFTカーネル	対角化カーネル	
	1	アプリケーションとハードウェアの並列度のミスマッチ (アプリケーションの並列度不足)				
	2	非並列部の残存				_
	3	大域通信における大きな通信サイズ、通信回数の発生				
	4	フルノードにおける大域通信の発生				
	5	隣接通信における大きな通信サイズ、通信回数の発生				
	6	ロードインバランスの発生				3
201	8年5月	10日 計算科学技術 特論B			ĸ	computer

PHASEの高並列化・高性能化

PHASEの高並列化・高性能化ションとハードウェア

2018年5月10日	計算科学技術特論B	57				K computer	
end su	V-end do loop_natm V-end do loop_natm V-end do loop_natm V-end do loop_natm	add_vnlph_1_without_eko	_part	775 2 19 H			
	subroutine add T-if(king = T-do ib T-do ib T-do i V-end V-end do t-else	vnlph 1 without_eko_par = 1) then = 1, np eエネル i = 1, Iba(ik) do	*() レギーバンド 6 レギーバンド	並列部 ロードイン	ッバランス	の発生	
	loop ntyp: do it = 1, ntyp loop natm : do ia = 1, nt +-call calc phase T-do lmt2 = 1, ilmt(: +-call vnonlocal w pi +-call add_vnlph_:	atm原子数のループ it) art sum over lmtl l_wIthout_eko_part	5	非並列部/ 隣接通信	<mark>が波数で並</mark> における	<mark>列</mark> 大きな通	i信·
subrou	utine m_es_vnonlocal_w(ik,iks) call tstatc0 begin	nl,ispin,switch_of_eko_p	art)4	フルノード	における	大域通信	言の
•	従来の非並列部を並す グラムシュミットの直交	刂化できる. 化処理のトランスバ	3 ー ス転 通	大域通信 ^{差が削減できる}	における [,]	大きな通	i信
= 彳	亍列積カーネル		_				
■二	抽並列化		2	非並列部	の残存(の対応	
					• = -		

PHASEの高並列化・高性能化

■二軸並列化

■行列積カーネル

- 分割粒度が大きくなる.
- ループの回転長が増えることで、性能が高まる.
- cf. バンド方向のループ長が1/9から1/3と3倍に増える.

PHASEの高並列化・高性能化

■二軸並列化

行列積カーネルと同様の問題に対応

その他二軸並列化により以下の状況が生じる

■FFTカーネル

- オリジナルのFFTカーネルは波数方向に並列化されていなかった.
- そのためFFTに関する通信は発生していなかった.
- 二軸並列化に伴いFFTに関する通信が発生する.
- FFT通信の問題点は全プロセッサ間の転置通信が発生する点.
- しかし二軸並列化では通信は全プロセッサでなく一部のプロセッサに閉じるため大きな問題とはならない。

PHASEの高並列化・高性能化

■二軸並列化

- この分野では小規模問題を短時間で計算したいという科学 的要求が高い。
- バンド計算(エネルギー準位など):1万原子程度の100SCF
 収束程度の計算を実施。
- 構造緩和(MD)や反応経路探索:外側に原子核の緩和に関するループ構造~100step程度.
- 10,000原子を10PFシステム(80,000ノード),また1,000
 原子を10,000ノードで計算する事を目指せる.
- ただし二軸並列はメリットとデメリットがあるため実施前
 に効果が期待できるか詳細な評価を実施した。

2018年5月10日 計算科学技術特論B

61

PHASEの高並列化・高性能化の結果

スレッド並列化 キャッシュの有効利用-行列積化

「京」

	時間	比率	演算効率
サブルーチン	(sec)	(%)	(%)
区間 5	512.7	100.0	28.23
m_ES_F_transpose_r	105.3	20.5	0
m_ES_W_transpose_r	15.7	3.1	0
WSW_t	15.2	3.0	0.036
normalize_bp_and_psi_t	0.9	0.2	3.25
W1SW2_t_r	49.2	9.6	5.46
modify_bp_and_psi_t_r	50.8	9.9	4.45
$W1SW2_t_r_block$	162.0	31.6	41.89
modify_bp_and_psi_t_r_block	96.2	18.8	74.65
m_ES_W_transpose_back_r	14.1	2.8	0
m_ES_F_transpose_back_r	1.3	0.3	0

2018年5月10日 計算科学技術特論B

行列積

PHASEの高並列化・高性能化の結果

■二軸並列化

■行列積カーネル

- 行列積化されたカーネルに(区間2)ついての結果.
- HfSiO₂ 384原子アモルファス系のデータ.

• 大幅な性能向上を達成.

PHASEの高並列化・高性能化の結果

■二軸並列化

■FFTカーネル

- FFTを含むカーネルに(区間8)ついての結果.
- HfSiO₂ 384原子アモルファス系のデータ.
- ・性能向上を達成.

PHASEの高並列化・高性能化の結果

■Scalapack分割数の固定

■対角化カーネル

- 対角化はエネルギーバンド数の元を持つ行列が対象
- 行列の大きさに比べて分割数が多すぎる
- 分割数を16×16=256に固定

PHASEの高並列化・高性能化の結果

総合性能

 「京」2048並列にて、アモルファス1536原子 計算の性能、ピーク性能比20.1%.

	実行時間	浮動小数点演算
区間名	(sec)	ピーク比
SCF	39.79	20.11%
区間 1(FFT)	0.02	2.19%
区間 2(BLAS)	6.89	53.53%
区間 3(FFT)	3.99	3.56%
区間 4(BLAS)	1.88	64.76%
区間 5(BLAS, 通信)	2.53	17.32%
区間 6(FFT)	1.24	5.15%
区間 8(FFT,BLAS)	4.16	16.56%
区間 9(BLAS,ScaLAPACK)	12.31	3.88%
区間 10(BLAS)	1.89	64.30%
区間 11(FFT)	5.05	4.78%

- 「京」3072並列にてSiC 4096原子計算にて,構造緩和(263MD, 2days).
- 「京」82944並列にてSiC 20440原子計算のMSD ソルバー効率 20.2 % (2.1 PFLOPS)達成.

SiC 3800原子系を「京」48並列から12288並
 列まで原子数よりはるかに多い並列度まて
 スケールすることを確認。

まとめ

理研で進めた性能最適化 RSDFTの性能最適化 PHASEの性能最適化

2018年5月10日 計算科学技術特論B

