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22.2 Overview of Research Activities

In the case of the K computer, the collaboration between the system and the applications in use is the key
to create innovative results. In order to maximize the performance and usability of both the system and such
applications, the Application Tuning Development Unit conducted the following activities:

(1) Activities related to the RIKEN Center for Computational Science (R-CCS) software center
(2) Activities to establish a deep learning (DL) environment on the Fugaku supercomputer

(3) Effort for the Fugaku supercomputer development

22.3 Research Results and Achievements

The application tuning development team has been conducting performance evaluation and enhancement aimed
at popularizing the applications developed by the RIKEN Center of Computational Science (R-CCS) research
team (i.e., R-CCS software) from applications on the K computer and the Fugaku supercomputer. By improving
and enhancing the software, we expect industries and communities that have not used the R-CCS software
to start using this software. Furthermore, along with the above activities, we are also trying to systemize
performance optimization technology. Improving application performance will lead to a shortening of the
elapsed time, which makes it possible to use more computational resources. This will help in the more effective
utilization of resources. We kept these factors in mind while carrying out the following tasks.

22.3.1 Activities related to the R-CCS software

The RIKEN R-CCS Software Center is developing and deploying high-quality software for numerous high-
performance computers (HPCs), including the K computerand the Fugaku supercomputer. Up to now, we have
focused on improving and using the following software product developed by R-CCS: NTChem.
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22.3.1.1 Enhancement of the R-CCS software (NTChem)

This year, we implemented large-scale parallelization of NTChem in the R-CCS software. NTChem is the
molecular chemistry software developed by RIKEN AICS. This application has been provided for the analysis
of life science and material science and can be used to examine the electronic state of a material. The molecular
orbital method and the density functional method are used in this software. We implemented a number of func-
tions such as the various basis functions and several algorithms for acceleration of calculation. This application
works well for calculations using the density functional theory that includes the relativistic effect.

Last year, the calculation of the linear optical response KAIN method was accelerated by the high paral-
lelization of the I/O of the linear response time dependent density functional theory calculations. This revealed
a new imbalance problem due to differences in atoms and the cutoff radius. This year, we attempted to improve
the massive parallel performance by reducing the load-in balance of the DFT calculation by incorporating re-
arrangement in the atom division calculation, which was examined last year to solve this problem. Figurd22.]
shows the effect of distributing the elapsed time of the hot spots D1Rho_Box and GGA _Box. The total execu-
tion time was up to 42.81 [s] for the asis stage and up to 40.78 [s] for the tuned stage, and the imbalance was
smoothed and reduced the elapsed time by approximately 4.98%. Based on these results, it is expected that the
ratio of hotspot subroutines will increase for larger input data and that the load balancing effect will further
increase.
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Figure 22.1: Improving imbalance for the KAIN method.
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22.3.2 Activities to establish a deep learning environment on the K computer and
Fugaku supercomputer

Recently, machine learning, especially deep learning (DL), has become commonplace. Deep learning calculation
consists of a framework for flexibly handling complex network structures and a library (DNNL) for computing
typical calculations with high performance. In addition, applications and research using graphics processing
units (GPUs) are advancing in DL science fields. The GPU is said to be essential for DL. However, surveys up to
last year have shown that even massively parallel computers, such as the K computer and the Fugaku supercom-
puter, can perform high-performance calculations by taking advantage of the massively parallel characteristics
of the CPUs. Focusing on this point, we performed the following work this year, including the performance
tuning of Chainer, which is a representative framework, with the goal of contributing to user convenience.

22.3.2.1 Building a development organization

The DL4Fugaku project, which began last year, has been further improved upon this year [8]. Within RIKEN,
our unit cooperated to promote the project with the High Performance Big Data Research Team, led by Dr.
Kento Sato, and the High Performance Artificial Intelligence Systems Research Team, led by Dr. Satoshi
Matsuoka. We also collaborated continuing from last year with the Large-scale Parallel Numerical Computing
Technology Research Team, led by Dr. Toshiyuki Imamura, to optimize the library used for caluculations such
as convolution. The cooperation with ARM and Linaro has been strengthened, and development is underway
with the goal of committing to MLPerf benchmarks. The development of DNNL was promoted as a result
of the cooperation with Fujitsu and Fujitsu Laboratories. We continued to contact Preferred Networks, Inc.
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and provided technical cooperation on the issue of high parallelization for the utilization of DL on the Fugaku
supercomputer.

22.3.2.2 Performance evaluation and tuning of Chainer on the K computer

Continuing from last year, we optimized the performance of Chainer on the K computer this year. The MNIST
problem required an original calculation time of approximately 10,300 [s]. Last year, we achieved a performance
of 16.2x (635.2 [s]), and a performance efficiency of 15.8%. The floating point underflow and software pipelining
inapplicability of Adam optimization were major factors in the efficiency decrease. This year, we found that a
further factor is a non-parallel part, such as the Python control part. In addition, we could achieve a performance
of 36.4x (283.4 [s]), and a performance efficiency of 35.9% using MPI process parallelization in a CPU. The
results of the performance tuning were presented at a poster session [2,3,5,6]. We also provided and supported
a tuned Chainer as R-CCS software.

22.3.2.3 Performance evaluation and tuning of Chainer on the FX100

The performance tuning performed on the K computer was applied to FX100, and we identified the problems.
The ASIS state on the FX100 took 49,200 [s] to calculate the MNIST sample problem, because the provided
NumPy was built using gcc and the SSL2 library could not be linked. By applying Python know-how to the K
computer, we finally achieved a performance of approximately 1,030x (47.8 [s]), and a performance efficiency
of approximately 13.5%.

22.3.2.4 Performance evaluation and tuning of Chainer on the ThunderX2

We evaluated and tuned the performance of Chainer on the ThunderX2 CPU, which was the previous chip
used in the Fugaku supercomputer. The ASIS state on the ThunderX2 took 5,340 [s/core] to calculate the
MNIST sample problem, but we finally achieved a performance of approximately 4.8x (1,100 [s/core]), and
a performance efficiency of approximately 13.5%. Since the Fujitsu SSL2 library cannot be linked on the
ThunderX2, convolution calculations are carried out with OpenBLAS. OpenBLAS tended to have good core
performance but not thread scalability, so we evaluated the performance of processing parallelization. We also
tuned the performance for the ImageNet problems on the ThunderX2. The calculation costs, such as the cost
of batch normalization, have become large for ImageNet problems, so array calculations, which have large costs
in NumPy, has been converted to Fortran and prepared as a kernel loop collection. The target kernels of the
change were 10 files, 14 sections, and 83 lines, and there were only a few parts that needed to be modified.
Based on this effect, ImageNet performance on the ThunderX2 achieved 0.748 [images per seconds (ips)] and a
performance efficiency of 54.4% in core performance, and 11.95 [ips] and a performance efficiency of 31.0% in
CPU performance.

22.3.2.5 Performance evaluation and tuning of Chainer in the environment of the Fugaku early
access program

We also evaluated the performance using the early access program environment of the Fugaku supercomputer.
By combining the measurement results using one core Chainer overall calculation and thread parallel kernel
performance using CMG, we estimated the performance to be approximately 44.7 to 63.6 [ips/cpu] on the
Fugaku CPU. When the performance on the CPU was measured, the performance was approximately 16.3
[ips/cpu] in the first measurement. The cause of this performance difference was non-parallelism, such as the
calculation of distribution, and we finally achieved a performance of 55.2 [ips/cpu] and a performance efficiency
of 22.6% by rewriting and replacing these parts with Fortran kernels. Thus, the performance tuning of Chainer
on the Fugaku supercomputer was almost completed, and it was then possible to promote the use of DL on the
Fugaku supercomputer [Table . In addition, the framework Chainer can now be provided to users on the
Fugaku supercomputer. Since the development of Chainer will stop at Ver. 7, our performance tuning work
will also be suspended.

22.3.2.6 Performance evaluation and tuning of Chainer on the Apollo70+Volta

We also evaluated the performance of the ThunderX2 machine with two Volta GPUs provided by NVIDIA as a
test user. Since ChainerX cannot be executed in parallel, we used Chainer-6.5.0 for evaluation. The maximum
performance was 471.9 [ips], and the efficiency was 39.2%. On the Fugaku CPU, this performance is expected
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to be approximately 102.7 [ips/cpu]. The performance of the Fugaku CPU is currently 55.2 [ips/cpu], but by
replacing the convolution algorithm with a faster DNNL, we believe that approximately the same performance
will be achieved.

Table 22.1: Summary of Chainer performance.

Performance of Chainer ASIS TUMED

system name unit maodel elapsed elapsed peak ratioc speedup rate

K computer CPU MNIST 10,300.0 [s] 283.4 [s] 35.9% 36.4 x

Fx100 CPU MNIST 49,200.0 [s] 47.8 [s] 13.5% 1030.0 x

ThunderXz2 CORE MNIST 5,340.0 [s] 1,100.0 [s] 35.7% 4.8 x
performance | performance peak ratic speedup rate

ThunderX?2 CORE Resnet-50 0.75 [ips] 54 4%

Thunderx2 CPU Resnet-50 11.95 [ips] 31.0%

Fugaku CPU Resnet-50 16.30 [ips] * 55.20 [ips] 22.6% 3.4 x

Appolo70+Volta GPFU x2 Resnet-50 471.90 [ips] 39.2%

* gstimation: 44.7-63.6 [ips)

22.3.3 Power consumption of the job

At the end of the operation of the K computer, we cooperated in research evaluation on temperature, failure
rate, and performance. We created a job using the following kernels, executed the job as needed in a resource
group with a low priority, and investigated the relationship between temperature, computational load, and
failure rate.

A basic kernel in which FMA operates at full capacity and is 90

A kernel that also has large memory access and high power consumption.

- Stride array copy kernel with maximum memory access.

- Sleeping kernel.

- Adventure kernel having high power consumption due to use in real applications.

Although there is a clear relationship between the change in temperature and the calculation efficiency, it was
found that there is no relationship between the temperature and the failure rate, which was reported in a poster
session [4,7].

22.3.4 Efforts in the development of the Fugaku supercomputer

The FLAGSHIP2020 (FS2020) Project is engaged in research and development for the Japanese national flag-
ship supercomputer ”Fugaku”, which is a post K computer. As part of the FS2020 project, the application
tuning development unit applied co-design of the application and Fugaku supercomputer system through the
performance optimization and sophistication of target applications. In particular, our unit is responsible for
these three applications.

- ADVENTURE: A structural analysis application based on the finite-element method in Priority Issue No.
6

- RSDFT: A first-principles material simulation and optimization application based on density functional
theory, in Priority Issue No. 7

- FrontFlow/Blue: A fluid analysis application based on the finite-element method in Priority Issue No. 8
For these applications, we have paid significant attention to the following efforts:

- Application performance tuning
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- Establishing methods for estimating application performance on the supercomputer Fugaku.
- Establishing test kernel codes for evaluating the CPU and system of Fugaku.

The following subsections describe application tuning.

22.3.4.1 Enhancement of the co-design application (ADVENTURE)

ADVENTURE, the structural analysis application based on the finite-element method, is composed of two
major parts. One is a sub-domain solver, and the other is a coarse grid correction. The whole analysis domain
is divided into multiple sub-domains. A sub-domain solver solves each sub-domain deformation. Coarse grid
correction solves the inter-sub-domain relationship by representing a sub-domain as one point having six degrees
of freedom. In both parts, a hot kernel is the multiplication of a dense matrix and a vector. Until last year, we
continued to tune a hot kernel mainly by separating only the hot kernel source. In particular, we focused on
the following issues:

- Avoiding unsuitable loop unrolling that caused cache thrashing to occur frequently
- Decreasing the number of data streams for effective cache memory utilization

- The essential procedure of multiplying a dense matrix and a vector is the taking the dot-product of two
vectors. In order to apply SIMD instruction to the summation operation of the dot-product calculation
effectively, we implemented a recursive summation operation and minimized the number of temporary
arrays. Furthermore, we decreased the number of recursive summation operations to just one.

In previous years, the application used for evaluating performance on the Fugaku supercomputer was a
limited version. For example, Fugaku omitted some functions and could only treat special input data. This
year, we could evaluate a full-function application. Using this version, a successful run of a sample problem,
namely, a 4,096-node-sized problem (16,384 processes, 65,536 sub-domains), was conducted on the Fugaku.
Subsequently, in order to validate the performance on the Fugaku, timer routines and tuned kernel codes were
implemented. As a result, on Fugaku supercomputer, the target problem achieved over 60x faster performance
than the K computer. In addition, power consumption was significantly lower than estimated previously.

22.3.4.2 Enhancement of the co-design application (RSDFT)

The main procedures in RSDFT are DGEMM, and collective communications are based on message passing
interfaces (MPIs), such as MPI_Allreduce and MPI_Bcast. Owing to performance tuning conducted during K
computer development, RSDFT achieved a performance efficiency of approximately 43.6% for the Si nano-wire
problem and won the Gordon-Bell Award in 2011.

This year, we combined of the diagonal priority algorithm kernel into the application and confirmed that
there are no problems in calculation and performance. We also evaluated the scalability of CPMD using the
K computer. By changing the process mapping, MPI_bcast communication in the band direction became four
times faster, and scalability was improved. In addition, we verified the small-scale calculations of the full
RSDFT using the prototype Fugaku CPU. As a result, two thread parallelization problems and a problem
involving parameter setting were found, but all of these problems were solved. For the power consumption
evaluation of treadl region of the EigenExa library, which is concerned with exceeding the power consumption
in boost mode, it was confirmed that the full application can be used on the prototype Fugaku CPU using the
development version ScaLAPACK. In addition, we compared the performance of the DGEMM kernel with the
evaluation results of last year and found performance differences in some parameters. The cause was found
to be due to a short measurement time, and the same performance of the evaluation result of last year was
obtained by expanding the measurement time.

22.3.4.3 Enhancement of the co-design application (FrontFlow/blue)

FrontFlow/blue is a fluid simulation code based on the finite-element method. Its major kernels are "kernels
depending on memory bandwidth”. The performance of these kernels is strongly dependent on the data transfer
speed between the CPU and memory. Therefore, in order to tune the performance, it is necessary to obtain
higher bandwidth rather than higher CPU calculation performance. In previous years, in order to effectively
use the increased SIMD width of Fugaku, we performed a tuning in which list (or indirect) access storage,
caused by the data structure of the finite-element method, was changed to sequential (or direct) access storage.
Furthermore, last year we used the following tunings.
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- Hiding the imbalance of cache memory latency, caused by the memory access pattern difference between
threads, by prefetching the list access array.

- Obtaining maximum memory throughput using the SIMD prefetch instruction.

- Applying tuning for miscellaneous parts that were not considered in terms of performance.

Thus, the performance was significantly improved compared to the initial version, which is the version when
starting co-design. For example, in the gradient calculation kernel, the elapsed time is improved from 27.4 [s] to
5.58 [s], the performance is improved from 11.18 [GFLOPS] to 59.29 [GFLOPS], and the memory throughput
is improved from 53.6 [GB/s] to 195 [GB/s|. In addition, we contributed to environmental sophistication to
enable standard use of the Fugaku supercomputer by identifying the problems listed below using FFB.

- Performance fluctuations
- Used memory increase corresponding to the calculated time

Finally, we submitted a paper for the ACM Gordon-Bell Prize, which was adopted as a finalist.

22.4 Schedule and Future Plan

22.4.1 R-CCS software center activities

Activities related to the following two areas should be continued for use with the Fugaku supercomputer after
the service of the K computer ends this summer. One is application improvements from the viewpoint of both
performance and usability, and the other is activities to promote the advancement of a utilization environment
for R-CCS software users via demonstrations, tutorials, documents, and other methods. Although we focused
on four R-CCS software products in our activities up to this point, it is undisputable that the focus could be
expanded to additional software applications.

22.4.2 Activities to establish a DL environment on the Fugaku supercomputer

With regards to DL, we summarized the usage scenarios and performance levels of other computers. In the
future, we intend to work to develop a high-performance DL library and scalable DL frameworks for use on the
Fugaku supercomputer.

First, in order to improve the performance of the special DNN libraries developed by ARM Scalable Vector
Extension (SVE), we intend to feed back knowledge gained during evaluations of the general DNN kernel
prototyped herein. Furthermore, we intend to evaluate how much performance can be achieved for real training
problems in order to build a general DNN kernel and special DNN library for use in a DL framework.

The elapsed time of a single convolution calculation depends on the DNN library performance, but the total
training time of the scalable DL framework depends on the communication method. For this reason, the study
of new communication algorithms will also be needed in order to facilitate high-performance training.
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