
Chapter 19

High Performance Artificial
Intelligence Systems Research Team

19.1 Members

Satoshi Matsuoka (Team Leader)

Jun Igarashi (Senior Scientist)

Aleksandr Drozd (Research Scientist)

Shweta Salaria (Postdoctoral Researcher)

Emil Vatai (Postdoctoral Researcher)

Toshio Endo (Senior Visiting Scientist)

Mohamed Wahib (Visiting Scientist)

Miquel Pericas (Visiting Scientist)

Akihiro Nomura (Visiting Scientist)

Tokyo Tech Matsuoka lab students

19.2 Overview of Research Activities

The High Performance Artificial Intelligence Systems Research Team focuses on convergence of HPC and AI,
namely high performance systems, software, and algorithms research for artificial intelligence/machine learning.
In collaboration with other research institutes in HPC and AI-related research in Japan as well as globally it
seeks to develop next-generation AI technology that will utilize state-of-art HPC facilities, including Fugaku.

For the time being until Mar 31, 2022, team’s research work is being sponsored by the JST-CREST “DEEP”
AI Project ”Fast and cost-effective deep learning algorithm platform for video processing in social infrastruc-
ture”.

19.2.1 Research Topics

• Extreme speedup and scalability of deep learning: Achieve extreme scalability of deep learning in large-
scale supercomputing environments including the Fugaku extending the latest algorithms and frameworks
for deep learning.

• Performance analysis of deep learning: Accelerate computational kernels for AI over the state-of-the-
art hardware architectures by analyzing algorithms for deep learning and other machine learning/AI,
measuring their performance and constructing their performance models.

211

RIKEN R-CCS Annual Report FY2019

212CHAPTER 19. HIGH PERFORMANCE ARTIFICIAL INTELLIGENCE SYSTEMS RESEARCH TEAM

• Acceleration of modern AI algorithms: Accelerate advanced AI algorithms, such as ultra-deep neural
networks and high-resolution GAN over images, those that require massive computational resources, using
extreme-scale deep learning systems.

• Acceleration of HPC algorithms using machine learning: Accelerate HPC algorithms, systems, and appli-
cations using empirical models based on machine learning.

CP
U

GP
U

Computation
node

Parallelization

Machine
Learning

FPGA

Th
eo

ry
 a

nd
 S

im
ul

at
io

n

Image & Video Applications

100,000
nodes

Large
GAN

Graph
DNN

Seq.
Mode

High
Performance
AI Systems

Team
Koichi
SHINOD
A

Satoshi
MATSUOKA

Tsuyoshi
MURATA

Rio YOKOTA

Hiroki NAKAHARA

Masaki
ONISHI

Taiji
SUZUKI

Tokyo Tech

Figure 19.1: Structure of JST-CREST “DEEP” AI project

19.3 Research Results and Achievements

19.3.1 Massive Scale Deep Learning on Fugaku

The Fugaku supercomputer is an attractive platform for deep learning training and inference. A64FX CPU
provided high FP16 and int8 compute performance as well as high memory bandwidth for memory-bound
kernels such as certain implementations of convolutional operation. Additionally, high performance Tofu fabric
enables efficient model-parallel and hybrid training schemes. We are exploring how unique features of the
Fukagu supercomputer can be exploited in the most efficient ways in AI workloads, as well doing basic work
to create deep learning software ecosystem on Fugaku. The later is done in collaboration with other research
teams (Minami team and K. Sato team) as well as with industrial partners such as Arm, Fujitsu, and Linaro.

19.3.2 Accelerating DL with 2nd Order Optimization and Distributed Training

In this work, we proposed a large-scale distributed computational design for the second-order optimization using
Kronecker-Factored Approximate Curvature (K-FAC)and showed the advantages of K-FAC over the first order
stochastic gradient descent (SGD) for the training of ResNet-50 with ImageNet classification using extremely
large mini-batches. We introduced several schemes for the training using K-FAC with mini-batch sizes up to
131,072 and achieved over 75% top-1 accuracy in much fewer number of epochs/iterations compared to the
existing work using SGD with large mini-batch. Contrary to prior claims that second order methods do not
generalize as well as SGD, we were able to show that this is not at all the case, even for extremely large
mini-batches. Data and model hybrid parallelism introduced in our design allowed us to train on 1024 GPUs
and achieved 74.9% in 10 minutes by using K-FACwith the stale Fisher information matrix (FIM). This is
the first work which observes the relationship between the FIM of ResNet-50 and its training on large mini-
batches ranging from 4K to 131K. There is still room for improvement in our distributed design to overcome
the bottleneck of computation/communication for K-FAC – the Kronecker factors can be approximated more
aggressively without loss of accuracy. One interesting observation is that, whenever we coupled our method
with a well known technique that improves the convergence of SGD, it allowed us to approximate the FIM

19.3. RESEARCH RESULTS AND ACHIEVEMENTS 213

more aggressively without any loss of accuracy. This suggests that all these seemingly ad hoc techniques to
im-prove the convergence of SGD, are actually performing an equivalent role to the FIM in some way. The
advantage that we have in designing better optimizers by taking this approach is that we are starting from
the most mathematically rigorous form, and every improvement that we make is a systematic design decision
based on observation of the FIM. Even if we end up having similar performance to the best known first-order
methods, at least we will have a better understanding of why it works by starting from second-order methods.
Further analysis of the eigenvalues of FIM and its effect on preconditioning the gradient will allow us to further
understand the advantage of second-order meth-ods for the training of deep neural networks with extremely

Data-parallel Model-parallel

Figure 19.2: Design of hybrid parallel distributed K-FAC

19.3.3 A Software Systolic Array on GPUs

In this study, we build a software systolic array on the top of GPU architecture. Driven by the critical demands of
intensive computation in a variety of fields, an old and heavily-researched parallel computer architecture, namely
systolic array, is being revived in the post-Moore’s law era, e.g. Google’s Tensor Processing Unit (TPU), Nvidia’s
Tensor Core. Such a kind of domain-specific processors can provide extremely high TOPS (TeraOps/Second)
and TOPS/Watt for compute-intensive algorithms, i.e. convolution, dense matrix multiplication, AI-purposed
computation, Discrete Cosine Transform (DCT). In the last decade, we witnessed the emergence of Graphics
Processing Units (GPU). As one of the most popular accelerators recently, GPUs are adopted to speed up
the computation in a wide range of fields, i.e. scientific, engineering. Taking the latest TOP500 rankings in
High-Performance Computing (HPC) for instance, more than half of the FLOPS comes from the Nvidia Tesla
GPUs.

As Figure 19.3 shown, a systolic array is a network of processing elements (PEs) that rhythmically compute,
accumulate and transfer data through the system. In typical systolic arrays, all of the PEs are often nested as a
two-dimensional mesh. The systolic array architecture is simple yet very effective to achieve both computation
and energy efficiencies with very limited memory bandwidth. Inspired by the mechanism of the hard-wired
systolic arrays, we innovate a versatile execution model on the top of CUDA architecture for optimizing ap-
plications on GPUs. More specifically, we mimic the behavior of systolic arrays by CUDA warp, register files,
and shuffle instruction. It is noteworthy that the three key techniques contribute to our model. First, register
cache; second, partial sums accumulation and transfer; third, in-register computation. Our model improves
the performance of regular memory-bound kernels by taking advantage of thread-private registers as a cache
to perform the efficient in-register computation and employing the shuffle intrinsic to exchange partial sums
between CUDA threads within a single CUDA Warp. Our model can be viewed as Software Systolic Array
Execution Model (SSAM).

Regarding most of the scientific applications (or kernels), the increasing flops-to-bytes ratio of GPUs makes
their computational performances bounded by the memory bandwidth. Memory-bound kernels that have a
regular pattern of computation are particularly challenging since they appear to be simple, yet they require
very complex data reuse schemes to effectively utilize the CUDA memory hierarchy, e.g. global memory,
shared memory, register memory, etc. Typically, advanced GPU implementations for memory-bound kernels
on structured grids rely on the optimized use of fast on-chip scratchpad memory: the programmer uses this
user-managed scratchpad memory for reducing the global memory access. Indeed, there exists a plethora of
work proposing variations and combinations of the three locality schemes that rely on scratchpad memory:
spatial blocking, temporal blocking, and a wavefront pipeline. Those complex locality schemes enabled strides
in performance improvements. However, they essentially moved the bottleneck from the global memory to
the faster, yet smaller, scratchpad. The objective of this study is to yet again move the bottleneck from the
scratchpad to a faster resource: register files. Hence, we prioritize to use register files to cache data rather than

214CHAPTER 19. HIGH PERFORMANCE ARTIFICIAL INTELLIGENCE SYSTEMS RESEARCH TEAM

PE PE PE PE

PE PE PE

PE PE PE

PE

PE

(a) (b)

Connection by
shuffle

Connection in
a thread

reg reg reg reg

reg reg reg reg

reg reg reg reg

CUDA threads in a warp

Figure 19.3: (a) Hardware 2D systolic array structure. PE is a processing element. (b) SSAM on CUDA (2D
problem illustration: ”reg” is a register). In the vertical direction, registers are in the same thread. In the
horizontal direction, registers are exchanged by the shuffle instruction.

0

20

40

60

80

100

120

 2x2

 3x3

 4x4

 5x5

 6x6

 7x7

 8x8

 9x9

 10
x1

0

 11
x1

1

 12
x1

2

 13
x1

3

 14
x1

4

 15
x1

5

 16
x1

6

 17
x1

7

 18
x1

8

 19
x1

9

 20
x2

0

R
u

n
ti

m
e

 (
m

s) SSAM
Arrayfire
NPP
Halide
cuDNN

~~
353

cuFFT ~~

(a) Single precision on Nvidia Tesla P100 GPU. cuFFT method is
constant as 353 ms.

0

5

10

15

20

25

30

35

 2x2

 3x3

 4x4

 5x5

 6x6

 7x7

 8x8

 9x9

 10
x1

0

 11
x1

1

 12
x1

2

 13
x1

3

 14
x1

4

 15
x1

5

 16
x1

6

 17
x1

7

 18
x1

8

 19
x1

9

 20
x2

0

R
u

n
ti

m
e

 (
m

s)

SSAM
Arrayfire
NPP
Halide
cuDNN

~~
349

cuFFT ~~

(b) Single precision on Nvidia Tesla V100 GPU. cuFFT method is
constant as 349 ms.

Figure 19.4: 2D Convolution performance and scalability. The image size is 8192×8192, the x-axis is filter size,
the y-axis is execution time. Arrayfire, NPP, Halide, and cuDNN are state-of-the-art libraries.

shared memory, resulting in better data locality and higher computational efficiency.

A wide class of memory-bound kernels (or applications) can benefit from this execution model. In this study,
we focus on mapping typical memory-bound kernels in SSAM, i.e. 2D convolution, 2D/3D stencils, Summed
Area Tables (SAT). There is a strong motivation to optimize these kernels on GPUs. The 2D convolution and
SAT computation become increasingly important in the Deep Learning workload. The stencil is a fundamental
computation pattern in most of the scientific applications. To further improve the dependency graph in SSAM,
we propose a novel algorithm to transpose the register cache locally (termed as BRLT). Unlike 2D convolution
and stencils, we propose a collection of SSAM-based algorithms for SAT computation by the BRLT algorithm.
To insight the performance advances of SSAM-based algorithms, we build performance models to analyze their
mechanisms while using micro-benchmarking to measure some constant variables of GPUs.

The contributions in this study are as follows. First , we design and formulate a software systolic array on
the top of CUDA architecture for speeding up the computation of memory-bound kernels with regular access on
GPUs. Second , we analyze the data reuse and redundancy schemes to quantify the efficiency and limitations of
SSAM. Third , we evaluate the proposed model for a wide variety of 2D/3D stencils, 2D general convolution (as in
Figure 19.4), and SAT kernels on the latest Nvidia Tesla GPUs and demonstrate that SSAM-based algorithms
outperform the top reported state-of-the-art libraries, e.g. NPP, Arrayfire, OpenCV. Fourth, we propose a
novel algorithm to transpose the register matrix (used as register cache) locally and concurrently, resulting in
improving the program dependency graph in SSAM for better locality and higher parallelism. Finally , we pave
a novel way for code automation on GPUs due to the versatility and simplicity of SSAM for optimizing a large
variant of algorithms.

19.3. RESEARCH RESULTS AND ACHIEVEMENTS 215

19.3.4 Scaling Distributed Deep Learning Workloads beyond the Memory Capac-
ity with KARMA

The dedicated memory of hardware accelerators can be insufficient to store all weights and/or intermediate
states of large deep learning models. Although model parallelism is a viable approach to reduce the memory
pressure issue, significant modification of the source code and considerations for algorithms are required. We
propose a performance model based on the concurrency analysis of out-of-core training behavior, and derive a
strategy that combines layer swapping and redundant recomputing. KARMA enables distributed training of
DNNs beyond memory capacity. KARMA splits the layers to groups of blocks that optimize for reducing the
total runtime. We reduce the total runtime by formulating a two-tier constrained optimization problem that
maximizes the device occupancy, which in-turn requires an efficient strategy to reduce the stalls due to data
movement to minimum. We use a novel scheduling strategy that involves a capacity-based layer swapping policy
interleaved with recomputation. Next, KARMA generates an execution plan based on the identified optimal
blocking and recompute strategy, and finally replaces the original model code with the new one.

Figure 19.5 shows the training performance (samples/second) of different batch sizes, for different models.
As the batch size grows, the out-of-core effects start to appear. The performance begins to drop after the
memory footprint exceeds the GPU memory capacity (starting from the second data point on each x-axis).
We further conduct an experiment at which we use the same number of GPUs for the original implementation
vs. data parallel KARMA (Figure 19.6). To get a fair comparison, we also compare to an optimized version
of the original implementation for which we added the phased gradient exchange. Surprisingly, the pure data
parallel KARMA outperforms the model-/data-parallel hybrid on 2, 048 GPUs. Upon inspection it became
clear that increasing the numbers of GPUs also increases the communication cost for the original version. Note
that KARMA has fewer iterations (i.e. communication rounds) since it has a larger mini-batch size.

0

50

100

150

200

250

300

128 256 384 512 640 768

Pe
rfo

rm
an

ce
 [s

am
pl

es
/s

]

BatchSize

RESNET-50
Out-of-core

0

20

40

60

80

100

32 64 96 128 160
BatchSize

VGG16
Out-of-core

0

20

40

60

80

100

120

256 512 768 1024 1280
BatchSize

WRN-28-10
Out-of-core

0

50

100

150

200

64 128 192 256 320
BatchSize

RESNET-1001
Out-of-core

in-core SuperNeurons vDNN++ KARMA KARMA (w/ re-computation)

0

10

20

30

40

50

60

70

80

90

4 8 12 16 20 24
BatchSize

RESNET-200
Out-of-core

Figure 19.5: Performance using a V100 SMX2 (16GB) GPU. For all figures, only the first reported mini-batch
size (x-axis) fits in memory for all models (state-of-the-art recompute strategy)

19.3.5 Optimizing Collective Communication in DL Training

Training models on large-scale GPUs-accelerated clusters are becoming a commonplace due to the increase in
complexity and size in deep learning models. One of the main challenges for distributed training is the collective
communication overhead for large message sizes: up to hundreds of MB. We have developed two hierarchical
distributed memory multileader AllReduce algorithms optimized for GPU-accelerated clusters (named lr lr and
lr rab), in which GPUs inside a computing node perform an intra-node communication phase to gather and
store results of local reduced values to designated GPUs (known as node leaders). Node leaders then keep a
role as an inter-node communicator. Each leader exchanges one part of reduced values to the leaders of the
other nodes in parallel. Hence, we are capable of significantly reducing the time for injecting data into the inter-
node network. We also overlap the inter-node and intra-node communication by implementing our proposal
in a pipelined manner. We evaluate those algorithms on the discrete-event simulation Simgrid. We show that
our algorithms, lr lr and lr rab , can cut down the execution time of an AllReduce microbenchmark that uses
the logical ring algorithm (lr) by up to 45% and 51%, respectively. With the pipelined implementation, our
lr lr pipe achieves 15% performance improvement when compared with lr lr . In addition, the simulation result
also projects power savings for the network devices of up to 23% and 32%.

216CHAPTER 19. HIGH PERFORMANCE ARTIFICIAL INTELLIGENCE SYSTEMS RESEARCH TEAM

0

10

20

30

40

50

60

70

80

90

128 256 512 1024 2048

Ti
m

e
pe

r E
po

ch
 (H

ou
rs

)

GPUs

HI DDEN SI ZE = 1920
ATT. HEADS = 20
LAYERS = 54
PARAMETERS = 2 . 5B

0

10

20

30

40

50

60

512 1024 2048
GPUs

HI DDEN SI ZE = 3072
ATT. HEADS = 32
LAYERS = 72
PARAMETERS = 8 . 3B

KARMA (DP Parity)MP+DP Megatron-LM MP+DP Megatron-LM (Opt. Gradient Ex.)

Figure 19.6: Parallelization performance of two Megatron-LM configurations. We compare using the same
number of GPUs (parity1). Megatron-LM: we compare the original data-/model-parallel hybrid, the original
plus our optimized phased gradient exchange, and data parallel KARMA

a) Ring-based algorithm: good for
large message size but worse with

inter-node comm.

b) Multileader hierarchical algorithm:
optimized for inter-node comm.

Figure 19.7: Multileader hierarchical reduction algorithm

19.3.6 Training Large 3D CNNs with Hybrid Parallelism

This work is conducted among Yosuke Oyama (Satoshi Matsuoka lab, Tokyo Tech), Center for Applied Scien-
tific Computing (CASC) at Lawrence Livermore National Laboratory, and National Energy Research Scientific
Computing Center (NERSC) at Lawrence Berkeley National Laboratory.

Recent advances in deep learning have demonstrated that deep neural networks, especially convolutional
neural networks (CNNs), can solve a lot of real-world problems. Specifically, 3D convolutional neural networks
have been applied to scientific workflows, including 3D medical images and simulation outputs, to perform
end-to-end inference without prior knowledge of underlying research fields. However, the training of 3D CNNs
requires much computational resources and time, especially GPU memory capacity, to store the networks’
intermediate data due to their gigantic data volume. This problem worsens when higher-resolution data is fed
to the networks, which can improve the inference accuracy of the networks. 3D CNNs can consume tens to

19.3. RESEARCH RESULTS AND ACHIEVEMENTS 217

hundreds of gigabytes of memory, as exemplified in the cosmology and medical models evaluated in our work.

In our work, we present scalable hybrid-parallel algorithms for training large-scale 3D convolutional neural
networks. Deep learning-based emerging scientific workflows often require model training with large, high-
dimensional samples, which can make training much more costly and even infeasible due to excessive memory
usage. We solve these challenges by extensively applying hybrid parallelism throughout the end-to-end training
pipeline, including both computations and I/O. Our hybrid-parallel algorithm extends the standard data par-
allelism with spatial parallelism, which partitions a single sample in the spatial domain, realizing strong scaling
beyond the mini-batch dimension with a larger aggregated memory capacity. We evaluate our proposed train-
ing algorithms with two challenging 3D CNNs, CosmoFlow and 3D U-Net. Our comprehensive performance
studies show that good weak and strong scaling can be achieved for both networks using up 2K GPUs. More
importantly, we enable training of CosmoFlow with much larger samples than previously possible, realizing an
order-of-magnitude improvement in prediction accuracy.

0 100 200 300 400

Time [ms]

I/O
Update
F. Comm.
F. Shuffle
F. Comp.
B. Comm.
B. Shuffle
B. AR
B. Comp.128

64
32
16

8

128

2048
1024

512
256

2048
1024

512

N
um

be
r

of
 G

P
U

s

N
=

1
N

=
16

N
=

64

6.1 s/s (1.48x)

10.8 s/s (2.65x)

10.7 s/s (2.62x)

7.1 s/s (1.72x)

4.1 s/s

80.5 s/s (1.30x)

131.5 s/s (2.12x)

123.1 s/s (1.98x)

86.8 s/s (1.40x)

62.1 s/s

392.2 s/s (1.77x)

316.7 s/s (1.43x)

221.1 s/s

Figure 19.8: Strong scaling of the CosmoFlow network. Shaded bars show iteration time predicted by the
performance model.

19.3.7 Advanced and Scalable NLP Models

Subword-level information is crucial for capturing the meaning and morphology of words, especially for out-of-
vocabulary entries. We have proposed implementing linguistic compositionality using dedicated neural modules,
based on CNN or RNN architecture. Additionally, we propose a hybrid training scheme in which a pure subword-
level model is trained jointly with a conventional word-level embedding model based on lookup-tables. We have
shown that morphological information can be captured efficiently by extremely compact models. Embeddings
generated dynamically from just a few megabytes of parameters significantly outperform conventional (word2vec
and FastText) models on morphology related tasks. Additionally, this indicates the vast limitation of the ability
of conventional models to capture morphological information.

To model both morphological and semantic information, we have implemented two methods for combining
strength of compact subword-level- and lookup-table based models: merging trained embeddings and training
jointly. The resulting embeddings achieved high accuracy on a range of benchmarks and are particularly
promising for datasets with high OOV rate.

We have showed that for languages with logographic scripts (fig. 19.10), such as Japanese, we can go even
deeper than subword level and leverage sub-character information to improve accuracy of NLP applications
with rare words.

Finally, we have identified that skewed distribution of different lexical elements in the training corpora is
negatively affecting models’ convergence dynamics under large minibatch sizes. We have introduced sample
mining technique with which we prefetch more uniformly distributed training samples (with respect to involved
linguistic phenomena) which allows us to train models with larger batch sizes and, in turn, enables better
performance on a single GPU and scalability to multy-GPU clusters.

218CHAPTER 19. HIGH PERFORMANCE ARTIFICIAL INTELLIGENCE SYSTEMS RESEARCH TEAM

target word

lookup table
(word vectors)

word 3word 2word 1
contextual word

target word

characters or character ngrams

char 1 char 2 char 3 char 4 char 5

lookup table (character vectors)

lookup table

(word vectors)

hybrid training schema

(optional)sum

word 3word 2word 1

contextual word

sum

word 3word 2word 1

contextual word

flatten+fully

connected layer

max pooling

1D convolution

char 1 char 2 char 3 char 4 char 5

target word

characters or character ngrams

lookup table (character vectors)

lookup table

(word vectors)

hybrid training schema

(optional)sum

char 1 char 2 char 3 char 4 char 5

word 3word 2word 1

contextual word

characters or character ngrams

lookup table

(word vectors)

hybrid training schema

(optional)sum

target word

Bi-direction

LSTM

sum

lookup table (character vectors)

Figure 19.9: different neural nets as a compositional function

劣

少 力

丿 �小 丿

shallow
decomposition

deep
decomposition

Original sentence: 彼は数学の天才だが、パソコンには劣る。

Translation:
He is a genius at math, but will lose to a computer.

Shallow decomposition:
(彳皮)彼は (娄攵)数 (�冖子)学の
(一大)天 (才)才だが、パソコンには (少力)劣る。

Figure 19.10: example of subcharacter information in Japanese characters

19.3.8 Performance evaluation of deep learning software and systems

The diverse tools used for the development and deployment of machine learning (ML) and deep learning (DL)
applications makes benchmarking difficult. This diversity includes: different hardware (e.g. GPUs, TPUs,
different CPUs such as A64FX of the Fugaku Supercomputer), multiple frameworks (e.g. TensorFlow, PyTorch),
with numerous backends (e.g. BLAS, MKL, cuBLAS, cuDNN) executing different neural network neural network
arcitectures (e.g. ResNet, BERT) running on various datasets synthetic or real (such as MNIST, ImageNet,
COCO) and hyperparameters (e.g. batch size, precision).

We are developing Benchmarker, a modular benchmarking software, to tackle this problem. Benchmarker
has well-defined interfaces, which enables easy addition of components at all levels mentioned above. It can
generates logs in human- and machine-readable JSON format with detailed platform information. From these
logs, it can generate visualisations, such as relative comparison over the any dimensions (frameworks, hardware,
hyperparameter etc).

The purpose of such fine grained benchmarking, is to help pinpoint bottlenecks in the different implementa-
tions, but, more importantly, to provide insight into the reason behind the efficiency (or the lack of it) of certain
implementations. Figure 19.11 shows the relative performance of 5 different deep learning models executed on
4 different hardware platforms with mixed and single precision.

19.3. RESEARCH RESULTS AND ACHIEVEMENTS 219

ge
m

m

be
rt

re
sn

et
50

vg
g1

6

nc
f

problem.name

0

10

20

30

40

50

60

re
la

tiv
e

pe
ro

fm
an

ce
 to

 X
eo

n
26

50

device/backend
P100-PCIE/FP32
P100-PCIE/mixed
RTX 2070/FP32
RTX 2070/mixed
V100-SXM2/FP32
V100-SXM2/mixed
Xeon E5-2650 v4/FP32
Xeon Gold 6148/FP32

Figure 19.11: Relative performance of different models on various hardware

19.3.9 Predicting GPU Performance Using Collaborative Filtering

Graphical Processing Units (GPUs) are the de-facto source of performance in high performance computing.
With the rapid increase in number and types of GPUs available, finding the best hardware accelerator for each
application is a challenge. For that matter, it is time consuming and tedious to execute every application on
every GPU system to learn the correlation between application properties and hardware characteristics. To
address this problem, we use collaborative filtering to build an analytical model which can analyze and predict
performance of applications across different GPU systems. Our model learns representations, or embeddings
(dense vectors of latent features) for applications and systems and uses them to characterize the performance
of various GPU-accelerated applications. We improve state-of-the-art collaborative filtering approach based on
matrix factorization (MF) by building a multi-layer perceptron (MLP) as shown in figure 19.12.

Application

System

Application
Latent Vector

System
Latent Vector

		 Application
 Embeddings

				 System
 Embeddings

	
L
a
y
e
r

1
	

	
L
a
y
e
r

2

Concatenation

	
	
L
a
y
e
r

N

	

�	��	 predicted
score

Multi-Layer Perceptron

ReLU ReLU ReLU

Figure 19.12: Multi-layer perceptron model using latent features

We evaluate our approach on a set of 30 well-known micro-applications and seven Nvidia GPUs of multiple
generations. Figure 19.13 shows the prediction accuracy for MF and two variants of MLP when predicting
instructions per second (IPS). As a result, we can predict expected IPS values with 90.6% accuracy in average.

220CHAPTER 19. HIGH PERFORMANCE ARTIFICIAL INTELLIGENCE SYSTEMS RESEARCH TEAM

MF MLP-1 MLP-2
Models

0
10
20
30
40
50

Pr
ed

ict
io

n
Er

ro
r (

%
)

Figure 19.13: Prediction performance of MF, MLP-1 and MLP-2 using IPS dataset

19.4 Schedule and Future Plan

Activity within some of the existing research directions by the team are scheduled according to objective factors.
For instance, creating deep learning ecosystem for Fugaku supercomputer is paced so that working solutions
are ready for the general acceptance of the machine. Other directions are of more exploratory in nature and
are being implemented depending on the current progress of the team and in the field in general. Such, withing
natural language processing direction we incorporate large-scale experiments with transformer-based language
models to reflect current trends in the field of NLP.

Within the general paradigm of the team, we are exploring new promising research direction as well. Two
of such new directions are approximate computing and quantum computing.

19.5 Publications

19.5.1 Articles/Journal

[1] Nagasaka, Yusuke; Matsuoka, Satoshi; Azad, Ariful; Buluc, Aydin ”Performance optimization, modeling
and analysis of sparse matrix-matrix products on multi-core and many-core processors” Parallel Comput-
ing

[2] Bofang Li, Aleksandr Drozd, Yuhe Guo, Tao Liu, Satoshi Matsuoka and Xiaoyong Du “Scaling Word2Vec
on Big Corpus”

19.5.2 Conference Papers

[3] Jens Domke, Kazuaki Matsumura, Mohamed Wahib, Haoyu Zhang, Keita Yashima,Toshiki Tsuchikawa,
Yohei Tsuji, Artur Podobas and Satoshi Matsuoka “Double-precision FPUs in High-Performance Com-
puting: an Embarrassment of Riches?” IPDPS’19

[4] Shweta Salaria, Aleksandr Drozd, Artur Podobas and Satoshi Matsuoka “Learning Neural Representations
for Predicting GPU Performance”

[5] Yusuke Nagasaka, Akira Nukada, Ryosuke Kojima and Satoshi Matsuoka “Batched Sparse Matrix Multi-
plication for Accelerating Graph Convolutional Networks”

[6] Jens Domke, Satoshi Matsuoka, Ivan R. Ivanov, Yuki Tsushima, Tomoya Yuki, Akihiro Nomura, Shin’ichi
Miura, Nic McDonald, Dennis L. Floyd and Nicolas Dube “The First Supercomputer with HyperX Topol-
ogy: A Viable Alternative to Fat-Trees?”

19.5. PUBLICATIONS 221

[7] Chen Peng, Wahib Mohamed, Takizawa Shinichiro and Matsuoka Satoshi “A Versatile Software Systolic
Execution Model for GPU Memory Bound Kernels”

[8] Chen Peng, Wahib Mohamed, Takizawa Shinichiro and Matsuoka Satoshi “iFDK: A Scalable Framework
for Instant High-Resolution Image Reconstruction”

[9] Hamid Reza Zohouri, Satoshi Matsuoka “The Memory Controller Wall: Benchmarking the Intel FPGA
SDK for OpenCL Memory Interface”

[10] Kazuki Oosawa, Youhei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota and Satoshi Matsuoka “Second-
order Optimization Method for Large Mini-batch: Training ResNet-50 on ImageNet in 35 Epochs”

[11] Youhei Tsuji, Kazuki Oosawa, Yuichiro Ueno, Akira Naruse, Rio Yokota, Satoshi Matsuoka “Performance
Optimizations and Analysis of Distributed Deep Learning with Approximated Second-Order Optimization
Method”

[12] Hideyuki Jitsumoto, Yuya Kobayashi, Akihiro Nomura, Satoshi Matsuoka “MH-QEMU: Memory-State-
Aware Fault Injection Platform”

19.5.3 Posters

[13] Yosuke Oyama, Naoya Maruyama, Nikoli Dryden, Peter Harrington, Jan Balewski, Satoshi Matsuoka,
Marc Snir, Peter Nugent, Brian Van Essen “Toward Training a Large 3D Cosmological CNN with Hybrid
Parallelization” ICPP 2019 Kyoto, Japan

[14] Haoyu Zhang,Wahib Mohamed, Pen Chen, Satoshi Matsuoka “Can Local Binary Convolutions Make
Neural Networks Models Smaller?” ICPP 2019 Kyoto, Japan

[15] Lingqi Zhang,Wahib Mohamed, Satoshi Matsuoka “Understanding the Overheads of Launching CUDA
Kernels” ICPP 2019 Kyoto, Japan

[16] Chen Peng, Wahib Mohamed, Takizawa Shinichiro, Matsuoka Satoshi “High resolution Image Reconstruc-
tion on Super computers” GTC 2020 Online (COVID-19), Originally San Jose, CA, USA

[17] Ryan Barton, Wahib Mohamed, Artur Podobas, Satoshi Matsuoka “BITFLEX: A Dynamic Runtime
Library for Bit-Level Precision Manipulation and Approximate Computing” HPCAsia 2020 Fukuoka,
Japan

[18] Chen Peng, Wahib Mohamed, Takizawa Shinichiro, Matsuoka Satoshi “A Software Systolic Array on
GPUs GTC 2020” Online (COVID-19), Originally San Jose, CA, USA

19.5.4 Invited Talks

[19] Satoshi Matsuoka, “Riken R-CCS, Fugaku and AI”, Shanghai Arm Symposium, 2019/07/11, Shanghai,
China

[20] Satoshi Matsuoka, “Fugaku: Co-Designing the first ‘Exascale’ Supercomputer with Real Application
Performance as the Primary Target”, French-Germany-Japan HPC Workshop, 2019/11/06, Tokyo, Japan

[21] Satoshi Matsuoka, “The first ”exascale” supercomputer Fugaku & beyond”, HPC China Keynote, 2019/08/22,
Hohhot, Inner Mongolia, China

[22] Satoshi Matsuoka, “A64fx and Fugaku - A Game Changing, HPC / AI Optimized Arm CPU to enable
Exascale Performance”, HPC User Forum, 2019/10/11, Edinburgh, UK

[23] Satoshi Matsuoka, “Arm A64fx and Post-K: Game Changing CPU & Supercomputer for HPC and its
Convergence of with Big Data / AI”, Hyperion HPC User’s Forum, 2019/04/03, Santa Fe, New Mexico

[24] Satoshi Matsuoka, “Fugaku and its Facilities”, ICPP 2019 EEHC Workshop, 2019/08/05, Kyoto, Japan

[25] Satoshi Matsuoka, “スーパーコンピュータ「京」「富岳」の概要”, JST-CRD 「社会革新を先導する量
子科学技術」ワークショップ, 2019/06/14, 東京

222CHAPTER 19. HIGH PERFORMANCE ARTIFICIAL INTELLIGENCE SYSTEMS RESEARCH TEAM

[26] Satoshi Matsuoka, “The first “exascale” supercomputer Fugaku – HPC, BD & AI”, JST Singapore 10th
Anniversary Symposium, 2020/01/10, Biopolis, Singapore

[27] Satoshi Matsuoka, “The first ”exascale” supercomputer Fugaku & beyond”, DoE Workshop on Modeling
and Simulation (ModSim) 2019, 2019/08/15, Seattle, WA

[28] Satoshi Matsuoka, “Fugaku as the Centerpiece of Society5.0 Revolution”, Multicore World 2020, 2020/02/20,
Wellington, New Zealand

[29] Satoshi Matsuoka, “RIKEN R-CCS OpenACC Presentation”, Annual OpenACC Meeting Presentation,
2019/09/02, Kobe, Japan

[30] Satoshi Matsuoka, “Fugaku: The first ‘Exascale’ Supercomputer with Real Application Performance as
the Primary Target, and Towards the Future”, PPAM 2019 Keynote, 2019/09/08, Bialystok, Poland

[31] Satoshi Matsuoka, “Fugaku as the Centerpiece of Society5.0 Revolution”, 2nd Annual R-CCS Symposium
Keynote, 2020/02/18, Kobe, Japan

[32] Satoshi Matsuoka, “Post-K: the first ‘exascale’ supercomputer for convergence of HPC and big data/AI
Numerical algorithms for high-performance computational science”, The Royal Society, 2019/04/09, Lon-
don, UK

[33] Satoshi Matsuoka, “AI for HPC and HPC for AI: Bidirectional Convergence Efforts of HPC and AI on the
Fugaku Supercomputer”, Deep Learning on Supercomputers Workshop Keynote, Supercomputing 2019,
2019/11/18, Denver, Colorado, USA

[34] Satoshi Matsuoka, “Toward Scaling Deep Learning to 100,000 Processors – The Fugaku Challenge”, ScalA
2019 Workship Keynote, Supercomputing 2019, 2019/11/18, Denver, Colorado, USA

[35] Satoshi Matsuoka, “Fugaku: Co-Designing the first ‘Exascale’ Supercomputer with Real Application
Performance as the Primary Target”, SPPEXA Final Symposium, 2019/10/23, Dresden, Germany

[36] Satoshi Matsuoka, “Fugaku and AI”, HPC Summer School, 2019/07/08, Kobe, Japan

[37] Aleksandr Drozd, “Deep Learning Ecosystem for ARM-Based Flagship Supercomputer”, Linaro Connect
2019, 2019/10/20, San Diego

	High Performance ArtifcialIntelligence Systems Research Team

