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15.2 Overview of Research Activities

The High Performance Big Data Research Team has been studying and developing software for accelerating
“machine learning, deep learning and large-scale big data processing (AI techniques)” on the K and the Fu-
gaku supercomputers (HPC for AI). We also study for accelerating HPC applications and HPC systems by
using these AI techniques (AI for HPC). In FY2019, our team made several achievements which include: (1)
Improving Data Compression with Deep Predictive Neural Network for Time Evolutional Data; (2) Breakdown
of Modern HPC Applications: Less Double-Precision Floating-Point Units and Faster Memory are Needed;
(3) The First Supercomputer with HyperX Topology: A Viable Alternative to State-of-the-Art Fat-Trees
Topologies; (4) Counter-based Performance Extrapolation Toolchain; (5) Optimizing Asynchronous Multi-level
Checkpoint/Restart Configurations with Machine Learning; (6) Evaluating the Relationship between System
Utilization and Benefits of Combining Different Scheduling Policies with Backfilling.

15.3 Research Results and Achievements

15.3.1 Improving Data Compression with Deep Predictive Neural Network for
Time Evolutional Data

A lot of intermediate data has to be generated and transferred for further analysis in data science. A Large
Hadron Collider (LHC) in CERN generated about 88PB of data in 2018 and foresees “Data archival is expected
to be two-times higher during Run 3 and five-times higher or more during Run 4 (foreseen for 2026 to 2029).“.
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Figure 15.2: Data compression with predictive neural network

RIKEN also has a large synchrotron radiation facility (SPring-8). Spring-8 public beamline generated 0.32
PB/year in 2017. In 2025, with the next generation detector (CITISU), it is projected that a single beamline
will generate 1.3 Exabytes of data per year. For the data analysis, checkpointing, debugging, visualization, etc.,
data generated by the scientific applications or simulations must be transferred from the sensors to computer
systems. Fast transfer of such huge scale data from the sensors to computer systems is critical.

One of the approaches to accelerate data transfer is to reduce data size, i.e., data compression. However,
existing compression algorithms show a low compression ratio for such kind of random evenly distributed
floating-point data. As a result, achieving significant I/O acceleration is not possible with existing compressors.
One of the promising approaches is predictive delta compression. Predictive delta compression is a technique to
store only difference between original data and predicted data or the difference between consecutive predicted
frames. Therefore, accurate prediction to the original data, which is data to compress, is important (Figure 15.1),
both for increasing the compression ratio by making the delta values very small. Because the image data from
sensors are time-evolutional images, we need a technique to accuracy predict future image frames.

Predictive neural network is a predictive coding based deep convolutional neural network which learns to
predict future frames of a video sequence. PredNet is such an architecture which is trained to predict the future
movement of objects. We use PredNet to predict the future frames from the given time evolutional frames.
First, we train PredNet to learn movement of pixels by giving a number of time-evolutional frames generated
from the sensor. In the example, in Figure 15.2, when we compress frames from t=2 to t=5, we predict future
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frames from original frame (t=1), we compute the difference and then apply conventional compressors such as
gzip. Since we can always generate the predicted frames with the original frame at t=1 with the help of trained
neural network. we can restore the original frames by only storing (1) the original frame; (2) the trained neural
network; (3) compressed frames from t=2 and t=5. For compressing the frames we pass the delta data through
two steps. The steps are spatial delta encoding and entropy coding.

In the evaluation, we observe that we can compress SPring-8 data by a factor of 40 compared to original
size. Our approach shows 2.8x time better compression ratio compared to a recent compression algorithm SZ.

15.3.2 Breakdown of Modern HPC Applications: Less Double-Precision Floating-
Point Units and Faster Memory are Needed

Historically, most of the compute silicon has been allocated to double-precision (DP; 64-bit) compute. Nowadays,
in processors such as AA64FX and NVIDIA Volta, the trend (mostly driven by market/AI demands) is to
replace some of the double-precision units with lower-precision units. Lower-precision units occupy less area
(up to 3x going from double- to single-precision FMA), leading to more on-chip resources (more instruction-level
parallelism), potentially lowered energy consumption, and a definitive decrease in external memory bandwidth
pressure (i.e., more values per unit bandwidth). The gains: up to four times over their DP variants with little
loss in accuracy are attractive and clear, but what is the impact on performance (if any) on existing HPC
applications? What performance impact can HPC users expect when migrating their code to future processors
with a different distribution in floating-point precision support? Finally, how can we empirically quantify this
impact on performance using existing processors in an apples-to-apples comparison on real-life use cases without
relying on tedious, slow, and potentially inaccurate simulators?

To answer these questions, we selected two processors with identical micro-architecture, where the main
difference is in the relative allocation of double-precision units, namely Intel’s Knights Landing and Knights
Mill architecture and a reference compute node which is commonly found in modern HPC systems. We stressed
both processors with 22 HPC benchmarks and procurement application from the Exascale Computing Project
and RIKEN’s R-CCS Fiber Miniapp Suite. An in depth analysis of various aspects for these applications
revealed that most of them are either memory-bound or perform little FP64 operations, as can be seen in the
roofline plot in Figure 15.3.

Figure 15.3: Roofline plot (w.r.t dominant floating-point operations and DRAM bandwidth) for Broadwell-EP
reference system; Intel KNL/KNM reults omitted to improve visual appearance (they showed similar behavior)

By studying a large number of HPC proxy application, we found no significant performance difference be-
tween these two processors, despite one having more double-precision compute than the other. Our study points
toward a growing need to re-iterate and re-think architecture design decisions in high-performance computing,
especially with respect to precision. Our versatile evaluation toolchain which we developed for this study has
been publicly released, alongside the peer-reviewed publication [2], and will allow follow-up and replication
studies by researchers and industry.
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15.3.3 The First Supercomputer with HyperX Topology: A Viable Alternative
to State-of-the-Art Fat-Trees Topologies

The recent generation of supercomputers underwent a drastic scale-out effect, e.g., reaching the extremes of K
or Sunway TaihuLight with over 80,000 and over 40,000 nodes, respectively, to tackle the ending of Moore’s
law. The interconnect in these HPC systems faces increasing demands for ultra-low latency from legacy HPC
workloads, and new needs for high throughput of large messages from deep learning frameworks. Deploying
Clos or Fat-Tree topologies will provide the needed throughput, but at a high cost. Furthermore, additional
tree levels (to achieve this scale-out) will negatively affect the observable latency. Low-diameter, “electrically-
optimized” topologies have been proposed, such as Dragonfly, Dragonfly+, or Slimfly. Another alternative is
the HyperX which can provide high-throughput and low network dimensionality for ultralow latency.

We built the first large-scale HyperX prototype from the remains of the decommissioned TSUBAME2
supercomputer in collaboration with the Tokyo Institute of Technology and Hewlett Packard Enterprise. In
a multi-months effort, we constructed the largest possible HPC system, given our hardware constraints, with
HyperX network resulting in a 12x8 2D topology with 7 nodes per switch. The 672 compute nodes and
96 InfiniBand edge switches, composing our HyperX network, were distributed over 24 compute racks. The
resulting system with two separate network rails, one of the old fat-trees and the new HyperX, see Figure 15.4,
allowed for a near-perfect 1-to-1 comparison between the two topologies, which we published in two peer-reviewed
conferences [3] and [4]. For these studies, we not only executed numerous MPI benchmarks and parallel HPC
applications, but also developed a novel routing algorithm (PARX) to overcome the missing adaptive routing
capabilities in the InfiniBand hardware.

12x8 HyperX
14-ary-3-tree
Fat-Tree

18

15 (4x)

18

Figure 15.4: Depiction of one of 24 racks of our 672-node supercomputer with two edge switches connecting
to the 3-level Fat-Tree and four switches for the 12x8 HyperX network (brown = rack-internal passive copper
cables; gaps used for cable management)
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Figure 15.5: Capacity run for all five combinations over a 3 h time period for 14 concurrently running applications
(using 32 or 56 nodes) while occupying 98.8% of the supercomputer; “HyperX / DFSSSP / linear” yields the
highest number of finished compute jobs, outperforming the Fat-Tree by 12.7%, followed by PARX routing
which yields 3% higher throughput.

The collected data from our 1-to-1 comparison implies that even a HyperX topology with roughly half-
bisection bandwidth, and hence drastically reduced deployment costs, can compete with our 18-ary 3-tree,
which theoretically offers more than full-bisection due to the reduced node count at the leafs. This result is
even more astonishing, considering that we only had deprecated IB equipment (QDR type) available, which does
not feature the required adaptive routing for the HyperX topology. We investigated two strategies: MPI rank
placement and our novel PARX routing, which shows great potential as depicted in Figure 15.5, to circumvent
the bottleneck arising from applying a shortest-path, static routing to a HyperX.
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15.3.4 Counter-based Performance Extrapolation Toolchain

Nowadays, co-design efforts are aided by simulators, such as RIKEN’s gem5-based architecture simulator for
Supercomputer Fugaku. However, such simulators have severe drawbacks. First, development cost (human time
and labor) is substantial while still delivering runtime estimation errors in the lower double-digit percentage
area. Second, this labor-intensity and required computer architecture knowledge means that a near-accurate
simulation approach can only be used towards the end of a co-design effort, when the system deployment is
only few years or months away. And lastly, simulator have reported slowdowns of 1000-10,000x compared to
executing the program on real hardware, and therefore only small “toy-codes” or application hotspots can be
tested, instead of full scientific programs running on future HPC systems.

Figure 15.6: Counter-aided Performance Extrapolation Toolchain

We are currently exploring an alternative approach [8], by combining various tools into a framework designed
to quickly test new ideas and extrapolate the performance of known/legacy application into the 5-to-10 year
future. This toolchain, see Figure 15.6 shall aid processor and full-system architects in their early “what-
if” stages to estimate the effect of a proposed architecture change for the full application runtime. Using
existing hardware, we extract performance counters/data and internal information of the application, such as
instruction- and memory-traces, and correlate this data with the basic blocks of the program. Defining a future
node architecture and adjusting architecture characteristics, e.g., memory bandwidth and latency, can then be
used to extrapolate the effects of such changes for individual basic blocks. Hence, knowing the speed up for
each block yields an estimate of the performance benefit of the full application gained from a architecture.

15.3.5 Optimizing Asynchronous Multi-level Checkpoint/Restart Configurations
with Machine Learning

To reliably run applications on current petascale systems in High-performance computing (HPC) , a commonly
used technique is checkpoint/restart(CR). In CR, the system writes a snapshot of the application’s state at
fixed intervals to the different levels of storage hierarchy based on the configuration of the system. Though
checkpoint and restart are useful for large scale systems, the checkpointing overhead can be enormous in an
extensive system, which becomes one of the issues in the CR method.

One of approaches to reduce the overhead of CR is to determine the optimal checkpoint interval and check-
point count. Poorly determined checkpoint interval makes system resilience worse. There are two approaches
for obtaining the optimal checkpoint interval and checkpoint count values for any given configuration, namely
the modeling approach and the simulation approach. The modeling approach mainly formulates an analytical
solution to obtain optimal values, whereas the simulation approach runs the application across multiple failures
to check different scenarios for obtaining the optimal values.

In this research, we try to use machine learning models in combination with an accurate simulation approach
to determine the optimized checkpoint configuration. Specifically, the simulator has been developed to replicate
the behavior of real-world scenarios when using a multi-level checkpoint for large scale systems. The simulator
is provided with three critical parameters for each level, checkpoint overhead, check-point restart time, and
failure rates as shown in Figure 15.7.
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Figure 15.7: Workflow for Optimizing Checkpoint Configuration
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Figure 15.8: Neural Network Models Performance Improvement vs Machine Learning Models for three-level
checkpoint model

The above simulation run provides the elapsed time and efficiency of a system with a specific configuration.
The simulator we have developed not only provides the elapsed time and efficiency for a system but also performs
simulation across different settings of the checkpoint system to determine the optimal checkpoint count for
each level of the multi-level checkpoint system. The optimized configurations are obtained by modulating the
checkpoint configuration values starting with checkpoint interval. After the peaks for all the configuration
parameters are captured by the simulator, the user is provided with the optimized configuration for the given
system based on the overhead, restart time, and failure rates. Once a significant amount of data is collected
from the simulator, the information is passed on to different machine learning and neural network models to
predict the optimized checkpoint configuration for other systems with different over-head, restart time, and
failure rates.

we present an idea to combine the simulation approach with machine learning models to reduce the time
taken to determine the optimized parameter values of check-point interval and checkpoint count for different
configurations of CR. With our approach and design optimizations, we show that our models can predict the
optimized parameter values when trained with the simulation approach. We have also demonstrated that using
techniques such as neural networks can improve the performance over the machine learning models with neural
network sometime exceeding the performance of a machine learning model by 50% as Figure 15.8 shows.

15.3.6 Evaluating the Relationship between System Utilization and Benefits of
Combining Different Scheduling Policies with Backfilling

HPC users are required to estimate the job execution time and computing resource of their jobs before sub-
mitting, then the resource and job management systems (RJMSs) will submit jobs to HPC systems through
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different scheduling policies for job execution. Related studies have shown that the EASY-Backfilling, also
known as EASY-FCFS (EASY-First-Come-First-Served) is the most widely used scheduling policy in a lot of
HPC systems due to its simple and robust implementation and increasing the overall utilization of the platform.
On the other hand, because each of the HPC systems has its own scheduling policies, applications and users,
which results in different system utilizations. Although with the same scheduling policy, there will be different
benefits under different system utilizations of HPC systems. In this paper, we used real workload logs-based
simulation to deep mining and analyze the relationship between system utilization and the benefits of combining
different scheduling policy with backfilling for job scheduling in HPC systems.

In this research, we used real workload logs-based simulation to deep mining and analyze the relationship
between system utilization and the benefits of different backfilling scheduling policies for job scheduling in
HPC systems. Specifically, we would like to research the difference about the benefits of combining different
scheduling policies with backfilling on different HPC systems. Meanwhile, we also want to explore and analyze
how about the performance gap between different scheduling policies on low and medium utilization systems?
And is a backfilling mechanism necessary on high utilization systems?

15.3.6.1 Current Progress

Currently, we have done a preliminary analysis on the three datasets (CEA Curie, LLNL Thunder and AIST
AAIC): including the distribution of user estimated job execution time / real job execution time, the distribution
of job states, etc. Firstly, we would like to check the real job execution time which was recorded after job
execution to see whether the job execution time by a user conforms to a certain distribution law, e.g. a normal
distribution? We analyse the distribution the real job execution time based-on the user-vector which is generated
by combination of userID, groupID, queue, nodes, req walltime from SWF file (A file format for saving HPC
system log). The reason why we use user-vectors for splitting jobs because we assume that vectors with the same
information (same userID, groupID, queue, nodes and req walltime) represent that the user is submitting same
applications for same purpose. Figure 15.9 is an example of distribution the real job execution time based-on
the user-vector generated by using real workloads from CEA Curie dataset, we can see that the distribution the
real job execution time of this user is random distribution which cannot be easily predicted.

Figure 15.9: Histogram example of real job execution time from CEA Curie system, which is a user who
submitted a total of 618,657 minutes.

Then, we also analyze the relationship between submit time and real job execution time base on user-vectors.
We would like to see whether jobs submitted over a period of time by one user have the similar execution time.
From Figure 15.10 we can see that job submitted over a period of time by one user has similar execution time.
This phenomenon is common in other users. Generally speaking, job scheduling-related experiments cannot be
performed directly on a real HPC system at the beginning. Most researchers choose to do their research with
using job scheduling simulators. After deployment and adjustment of the simulators, we would like to start our
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Experimental designing for our research. This research will base on a hypothesis that there is a relationship
between different system utilization and the benefits of combining different scheduling policies with backfilling.

Figure 15.10: Jobs submitted over a period of time by one user have the similar execution time.

In this research, we also would like to conduct our experiments with simulation. After examining the
popularity in recent research paper, updating frequency, functionality, and ease of use, we tentatively decided
to use two simulators, BatSim and Slurm Simulator as our experiment platforms of job scheduling simulation
in our research.

Future Plan

If everything goes well, we would like to follow tasks remain for the 2020 fiscal year:

• Extend this research to optimize job scheduling by predicting job execution time with AI

• Try to evaluate and test some of the latest AI-based (Machine Learning and Deep Learning-based) opti-
mization studies for job scheduling in HPC systems

15.4 Schedule and Future Plan

In FY2020, we continuously work on HPC-for-AI, AI-for-HPC and many other researches and developments for
HPC. These research topic include: (1) Fast and scalable parallel I/O by taking advantage of next-generation
memory (e.g., Non-volatile memory) in big data processing and machine learning; (2) Scalable checkpointing
for fault tolerance by taking advantage of next-generation memory (e.g., Non-volatile memory); (3) Scalable
algorithms for deeply hieratical memory and storage architecture; (4) Fast data transfer technique for multi-
petabyte of big data on high-speed network; (5) Integration of software stacks of big data, machine learning and
HPC, and their optimization; (6) Visualization and UI techniques of big data; (7) Other research and software
development related to big data, machine learning and I/O.
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