
Chapter 14

Next Generation High Performance
Architecture Research Team

14.1 Members

Masaaki Kondo (Team Leader)

Yiyu Tan (Research Scientist)

14.2 Overview of Research Activities

The next generation high performance architecture research team is conducting research and development of a
next-generation high-performance computer architecture. Currently, we are mainly focusing on non-von Neu-
mann architectures such as systolic arrays and neuromorphic computers based on the latest advances in device
technologies, architectures that can integrate next generation non-volatile memories and/or various types of
accelerators into a general-purpose processor, the advancement of scientific simulations by accelerating machine
learning computations, and hybrid computing architectures that combine the benefits of quantum computing
and classical computing. We are also performing detailed co-design evaluations of the computer architectures
noted above as well as the co-design evaluations of algorithms that take advantage of them on the supercom-
puters K and Fugaku.

Another important aspect of designing future high-performance systems is power consumption. Power con-
sumption is a prerequisite design constraint for developing exascale or next-generation computer systems. In
order to maximize effective performance within a given power constraint, we need a new system-design concept
in which the system’s peak power is allowed to exceed maximum power provisioning using adaptively controlling
power knobs incorporated in hardware components so that effective power consumption is maintained below
the power constraint. This concept is recently known as hardware overprovisioning. In such systems, it is
indispensable to allocate the power budget adaptively among various hardware component such as processors,
memories, and interconnects, or among co-scheduled jobs, instead of fully utilizing all available hardware re-
sources. We are researching strategies to improve the power efficiency and total system throughput for future
hardware overprovisioned supercomputer systems.

In this fiscal year, we have conducted several researches including evaluations of domain-specific architectures,
a prototype implementation of a systolic array in FPGAs, neuromorphic computing for graph processing, and
power consumption analysis for low-precision floating-point arithmetic on numerical codes.

14.3 Research Results and Achievements

14.3.1 Real-chip evaluation of a scalable accelerator core for deep neural networks

Recently, a Convolutional Neural Network (CNN) is utilized in many applications such as image recognition and
object detection. One of the challenges for executing CNNs is developing a high-performance inference engine
with high power efficiency. Several CNN accelerator architectures or LSI chips have been proposed so far for
high-performance and low-power CNN executions.

163

RIKEN R-CCS Annual Report FY2019

164CHAPTER 14. NEXT GENERATION HIGH PERFORMANCE ARCHITECTURE RESEARCH TEAM

Though existing CNN accelerator architectures can successfully achieve high energy efficiency, they typically
focus on optimized execution for either of convolutional or fully connected layers. They also sometimes need to
change the network structure which may limit the applicability to the variety of network structures. Since DNN
algorithm and organization is now continuing to evolve, it is desirable for CNN accelerators to have flexibility
to handle various types of network structure.

(a) Core architecture (b) Chip layout

Figure 14.1: Core Microarchitecture and Chip Layout of Designed DNN Accelerator

To this end, we have been conducting research and development of the architecture and LSI design of a
flexible and scalable DNN accelerator. This is a joint work with several universities in Japan. Our accelerator
is a multi-core accelerator with several cores each of which consists of a micro-controller and a SIMD multiply
and accumulate (MAC) unit. Figure 14.1 (a) presents the schematic view of the overall accelerator architecture
with four cores, each of which has five scratch-pad memories, an instruction memory (inst), a stream buffer
(sbuf), a temporal data memory (dmem), a lookup table (lut), and an output memory (omem).

We designed and implemented an accelerator core in real chip. we laid out the chip and taped out it with
Renesas Electronics 65nm SOTB process technology. Figure 14.1 (b) shows the layout of the chip. The chip
size is 3mm times 6mm with four cores. Due to the chip size limitation, only four cores were implemented on
the chip. The chip contains 68-KB of distributed on-chip SRAMs. One core has 2KB instruction and 2KB
lookup table memories. The size of dmem and sbuf is 4KB each. The four cores share the 4KB of omem. Each
core has 18,8864 logic gates.

The prototype chip was successfully operated and we evaluated performance and power-efficiency of the
prototype chip with the LeNet CNN model. We used the MNIST dataset as the image recognition workload.
We found that the power consumption is less than 12mW at 50MHz clock frequency. As for performance,
we compare the chip with a MIPS R3000 compatible embedded processor which was also developed by our
collaborators using the same process technology. We found that our DNN accelerator can achieve 20x higher
performance than the general purpose processor.

14.3.2 Neuromorphic graph processing for minimum weight perfect matching

The trend of exponential growth of processor performance known as Moore’s law is expected to end in the near
future because semiconductor process advancement is almost reaching its physical limit. To achieve further
performance improvement in post-Moore era, we need to make use of new types of computer architectures and
computing models such as Neuromorphic Computing (NC). The computer systems with NC are attracting a
lot of attention as a post-Moore architecture for various reasons. For example, it can potentially mitigate the
von Neumann bottleneck and it is inherently power efficient.

In NC, many simple processing elements which are inspired by neurons of a human brain work as computation
cores. The communication among them is relatively simple and based on the form of spikes. Therefore,
NC has the potential to achieve higher computational efficiency and lower power consumption compared to
traditional architectures. Although most of the applications of NC are typically based on neural networks, NC
characteristic, massively parallel computation with many simple computational units, can be applied to other
types of applications.

14.3. RESEARCH RESULTS AND ACHIEVEMENTS 165

We studied on using NC for a graph problem specially a minimum weight matching problem. In particular,
we proposed an approximate algorithm for minimum weight perfect matching with NC. We proposed a neuron-
like unit named “Spike Delay Neuron” to solve MWPM problems. Figure 14.2 shows the Way to map a target
graph to NC with Spike Delay neurons.

Neuromorphic Graph Processing

for Minimum Weight Perfect Matching
Yosuke Ueno1), Masaaki Kondo1), 2)

1) Graduate School of Information Science and Technology, The University of Tokyo 2) RIKEN-CCS

INTRODUCTION

Neuromorphic Computing (NC)

NC is a new computing paradigm inspired by a human brain. NC

architecture consists of many simple processing elements that are

inspired by neurons. The communication among them is relatively simple

and based on the form of spikes. NC is often realized by a custom

hardware with Spiking Neural Network (SNN) models.

METHOD

Spike Delay Neuron

We propose a neuron-like unit named “Spike Delay Neuron” to solve

MWPM problems.

The neuron has three states:

• Stop / Inhibited: Before stimulated or inhibited by other neurons

• Firing: Stimulated and waiting for spike generation

• Spike: After generating a spike without inhibition from other neurons

HARDWARE IMPLEMENTATION

MethodEXPERIMENTS & RESULTS

Approximation Degree (AD)

We show AD which means the

ratio of weighted sum for

proposed solution to optimal

solution. The higher the value, the

better it is. If the density of edges

is small, AD is high. As the

density increases, AD trends to

get worse but It increases again

for higher density.

Graph Matching Problem

To find a edge set 𝑀 = {𝐄𝐝𝐠𝐞𝐬 𝐰𝐢𝐭𝐡𝐨𝐮𝐭 𝐜𝐨𝐦𝐦𝐨𝐧 𝐯𝐞𝐫𝐭𝐢𝐜𝐞𝐬}

Edge-weighted graph 𝐺

Fig 2: Types of Matching

Fig4: Way to solve matching problem with Spike Delay neurons

Note that by this algorithm, it is guaranteed that we can get maximal

matching but maximum matching or perfect matching is not guaranteed.

Fig 6: Neuron unit

𝑣2 𝑣6

𝑣8𝑣1

𝑣4

𝑣5

𝑣3 𝑣7

𝑣2 𝑣6

𝑣8𝑣1

𝑣4

𝑣5

𝑣3 𝑣7

𝑣2 𝑣6

𝑣8𝑣1

𝑣4

𝑣5

𝑣3 𝑣7

Not Matching Maximal Matching Maximum and perfect

Matching

Overview of Architecture

Assume that the number of

neuron units is |𝐸|. An |𝐸|-bits

register named “spike register”

holds spike information of all

neuron units. An adjacent matrix

and weights of 𝐺 are saved in a

memory which can be either on-

chip SRAM or off-chip DRAM.

The weights are used for the

initial value of each neuron's

spike delay. The matrix and the

spike register are used for

calculating inhibition of each

neuron.

NC has several features as follow

• Massively parallel computation with many simple

computational elements

• Non von Neumann architecture

• To map a non-neural network application onto NC

systems is often non-trivial
Fig 1: Concept of SNN

Research Purpose

Apply NC to solve MWPM problems efficiently.

How to map graphs to network of Spike Delay Neurons

To get vertex-weighted graph from edge-weighted graph 𝐺(𝑉, 𝐸), we

calculate the line graph of 𝐺. Each edge of 𝐺 is converted to a vertex in its

line graph and the vertices of line graph are connected if the corresponding

edges in 𝐺 have common vertices.

By making weights of line graph to the initial value of the neuron delay, we

map graph 𝐺 to a network of spike delay neurons.

1

4

2

5

3

𝑤3 𝑤2

𝑤1

𝑤4

𝑤5

𝑤6

𝑤2

𝑤4

𝑤5
𝑤6

𝑤1

𝑤3

(1, 4)
Stop
d=𝑤3

(4, 5)
Stop
d=𝑤6

(1, 2)
Stop
d=𝑤1

(2, 5)
Stop
d=𝑤4

(1, 3)
Stop
d=𝑤2(3, 4)

Stop
d=𝑤5

(1, 4)

d=…

(4, 5)

d=…

(1, 2)

d=…

(2, 5)
Spike
d=0

(1, 3)
Spike
d=0

(3, 4)

d=…

Inhibited

Inhibited

Inhibited

Inhibited

1

4

2

5

3

𝑤2
𝑤3

𝑤1

𝑤4𝑤5

𝑤6

Line graph of 𝐺 Network of spike delay neurons

Get steady state of the network

The edges corresponding to spiked

neurons are maximal matching

Stimulate all neurons at 𝑇 = 0

𝑇 = 1 Steady state at 𝑇 = 2

Fig3: Example of how multiple spike delay neurons work

Minimum Weight Perfect Matching (MWPM) Problem

To find a perfect matching with minimum weight sum 𝑊 in an edge-

weighted graph 𝐺(𝑉, 𝐸).
Solution: Edmond’s blossom algorithm (𝑂 𝑉 3 time algorithm)

DELAY
REGISTER

-

FIRING
REGISTER

bitwise
and

reduce
or

=

1 0

|E|

|E|

8

|E|

8

8

8

Spike data path
Weight data path
Adj matrix data path

Neuron

Fig 5: Overview of architecture

Neuron Unit

Each neuron has 3 inputs,

adjacent matrix, weighted and

spike information. The former

two are used to check any

neuron that is firing and adjacent to the neuron. Moreover, it has 1 output

indicating whether the neuron is spiked or not. Two Registers named

“Firing register” and “Delay register” represent state and spike delay,

respectively. The output of neuron unit is 1 if Delay register holds 0 and

otherwise 0. If Firing register is 1, the value of Delay register is

decremented at each time step.

FPGA Implementation

Tab1: The logic synthesis results of 128 spike delay neurons network

Fig 7: Approximation degree and edge density

Frequency of optimal solution

Fig 8 shows the frequency of

maximum matching and optimal

solutions obtained by proposed

algorithm. |𝑉| means number of

vertices. Small graph (𝑉 = 10)

have relatively good results. In

perfect graph (edge density=1.0),

there are no difference between

maximum matching and maximal

matching.
Fig 8: Histogram of maximum matching

and optimal solution

Stop
d=3

Stop
d=1

Stop
d=4

Stop
d=2

Firing
d=3

Firing
d=1

Firing
d=4

Firing
d=2

Inhibited
d=2

Spike
d=0

Inhibited
d=3

Firing
d=1

Inhibited
d=2

Spike
d=0

Inhibited
d=3

Spike
d=0

Initial state

Neuron[|E|-1]

On-chip SRAM
or

Off-chip DRAM

SPIKE
REGISTER ...

Neuron[0]

Neuron[1]

Network

Spike data path
Weight data path
Adj matrix data path

Host computer

|E|

8×|E|

|E|×|E|

8

8

8

|E|

|E|

|E|

Figure 14.2: A way to solve matching problem by NC with Spike Delay neurons

We also implemented the proposed NC algorithm on an FPGA device. The overview of the hardware
architecture is shown in Fig. 14.3. Assuming that the number of neuron units is E, an E-bits register named
spike register holds spike information of all neuron units. An adjacent matrix and weights of the target graph
are saved in a memory which can be either onchip SRAM or off-chip DRAM. The weights are used for the initial
value of the spike delay of each neuron.

Neuromorphic Graph Processing

for Minimum Weight Perfect Matching
Yosuke Ueno1), Masaaki Kondo1), 2)

1) Graduate School of Information Science and Technology, The University of Tokyo 2) RIKEN-CCS

INTRODUCTION

Neuromorphic Computing (NC)

NC is a new computing paradigm inspired by a human brain. NC

architecture consists of many simple processing elements that are

inspired by neurons. The communication among them is relatively simple

and based on the form of spikes. NC is often realized by a custom

hardware with Spiking Neural Network (SNN) models.

METHOD

Spike Delay Neuron

We propose a neuron-like unit named “Spike Delay Neuron” to solve

MWPM problems.

The neuron has three states:

• Stop / Inhibited: Before stimulated or inhibited by other neurons

• Firing: Stimulated and waiting for spike generation

• Spike: After generating a spike without inhibition from other neurons

HARDWARE IMPLEMENTATION

MethodEXPERIMENTS & RESULTS

Approximation Degree (AD)

We show AD which means the

ratio of weighted sum for

proposed solution to optimal

solution. The higher the value, the

better it is. If the density of edges

is small, AD is high. As the

density increases, AD trends to

get worse but It increases again

for higher density.

Graph Matching Problem

To find a edge set 𝑀 = {𝐄𝐝𝐠𝐞𝐬 𝐰𝐢𝐭𝐡𝐨𝐮𝐭 𝐜𝐨𝐦𝐦𝐨𝐧 𝐯𝐞𝐫𝐭𝐢𝐜𝐞𝐬}

Edge-weighted graph 𝐺

Fig 2: Types of Matching

Fig4: Way to solve matching problem with Spike Delay neurons

Note that by this algorithm, it is guaranteed that we can get maximal

matching but maximum matching or perfect matching is not guaranteed.

Fig 6: Neuron unit

𝑣2 𝑣6

𝑣8𝑣1

𝑣4

𝑣5

𝑣3 𝑣7

𝑣2 𝑣6

𝑣8𝑣1

𝑣4

𝑣5

𝑣3 𝑣7

𝑣2 𝑣6

𝑣8𝑣1

𝑣4

𝑣5

𝑣3 𝑣7

Not Matching Maximal Matching Maximum and perfect

Matching

Overview of Architecture

Assume that the number of

neuron units is |𝐸|. An |𝐸|-bits

register named “spike register”

holds spike information of all

neuron units. An adjacent matrix

and weights of 𝐺 are saved in a

memory which can be either on-

chip SRAM or off-chip DRAM.

The weights are used for the

initial value of each neuron's

spike delay. The matrix and the

spike register are used for

calculating inhibition of each

neuron.

NC has several features as follow

• Massively parallel computation with many simple

computational elements

• Non von Neumann architecture

• To map a non-neural network application onto NC

systems is often non-trivial
Fig 1: Concept of SNN

Research Purpose

Apply NC to solve MWPM problems efficiently.

How to map graphs to network of Spike Delay Neurons

To get vertex-weighted graph from edge-weighted graph 𝐺(𝑉, 𝐸), we

calculate the line graph of 𝐺. Each edge of 𝐺 is converted to a vertex in its

line graph and the vertices of line graph are connected if the corresponding

edges in 𝐺 have common vertices.

By making weights of line graph to the initial value of the neuron delay, we

map graph 𝐺 to a network of spike delay neurons.

1

4

2

5

3

𝑤3 𝑤2

𝑤1

𝑤4

𝑤5

𝑤6

𝑤2

𝑤4

𝑤5
𝑤6

𝑤1

𝑤3

(1, 4)
Stop
d=𝑤3

(4, 5)
Stop
d=𝑤6

(1, 2)
Stop
d=𝑤1

(2, 5)
Stop
d=𝑤4

(1, 3)
Stop
d=𝑤2(3, 4)

Stop
d=𝑤5

(1, 4)

d=…

(4, 5)

d=…

(1, 2)

d=…

(2, 5)
Spike
d=0

(1, 3)
Spike
d=0

(3, 4)

d=…

Inhibited

Inhibited

Inhibited

Inhibited

1

4

2

5

3

𝑤2
𝑤3

𝑤1

𝑤4𝑤5

𝑤6

Line graph of 𝐺 Network of spike delay neurons

Get steady state of the network

The edges corresponding to spiked

neurons are maximal matching

Stimulate all neurons at 𝑇 = 0

𝑇 = 1 Steady state at 𝑇 = 2

Fig3: Example of how multiple spike delay neurons work

Minimum Weight Perfect Matching (MWPM) Problem

To find a perfect matching with minimum weight sum 𝑊 in an edge-

weighted graph 𝐺(𝑉, 𝐸).
Solution: Edmond’s blossom algorithm (𝑂 𝑉 3 time algorithm)

DELAY
REGISTER

-

FIRING
REGISTER

bitwise
and

reduce
or

=

1 0

|E|

|E|

8

|E|

8

8

8

Spike data path
Weight data path
Adj matrix data path

Neuron

Fig 5: Overview of architecture

Neuron Unit

Each neuron has 3 inputs,

adjacent matrix, weighted and

spike information. The former

two are used to check any

neuron that is firing and adjacent to the neuron. Moreover, it has 1 output

indicating whether the neuron is spiked or not. Two Registers named

“Firing register” and “Delay register” represent state and spike delay,

respectively. The output of neuron unit is 1 if Delay register holds 0 and

otherwise 0. If Firing register is 1, the value of Delay register is

decremented at each time step.

FPGA Implementation

Tab1: The logic synthesis results of 128 spike delay neurons network

Fig 7: Approximation degree and edge density

Frequency of optimal solution

Fig 8 shows the frequency of

maximum matching and optimal

solutions obtained by proposed

algorithm. |𝑉| means number of

vertices. Small graph (𝑉 = 10)

have relatively good results. In

perfect graph (edge density=1.0),

there are no difference between

maximum matching and maximal

matching.
Fig 8: Histogram of maximum matching

and optimal solution

Stop
d=3

Stop
d=1

Stop
d=4

Stop
d=2

Firing
d=3

Firing
d=1

Firing
d=4

Firing
d=2

Inhibited
d=2

Spike
d=0

Inhibited
d=3

Firing
d=1

Inhibited
d=2

Spike
d=0

Inhibited
d=3

Spike
d=0

Initial state

Neuron[|E|-1]

On-chip SRAM
or

Off-chip DRAM

SPIKE
REGISTER ...

Neuron[0]

Neuron[1]

Network

Spike data path
Weight data path
Adj matrix data path

Host computer

|E|

8×|E|

|E|×|E|

8

8

8

|E|

|E|

|E|

Figure 14.3: Overview of the hardware architecture

We applied it to several random graphs of different scales and concluded that the proposed algorithm is
equivalent to a greedy algorithm whose approximation degree is 1

2 .

14.3.3 Power consumption analysis for low-Precision floating-point arithmetic on
numerical codes

The low-precision floating point arithmetic that performs computation by reducing numerical accuracy with
narrow bit-width is attracting since it can improve the performance of the numerical programs. Small memory
footprint, faster computing speed, and energy saving are expected by performing calculation with low precision
data. However, there have not been many studies on how low-precision arithmetics affects power and energy con-
sumption of numerical codes. Therefore, we investigated the power efficiency improvement by aggressively using
low-precision arithmetics for HPC applications. We analyzed power characteristics of the Poisson’s equation and
the ground motion simulation programs with double precision and single precision floating point arithmetics.

166CHAPTER 14. NEXT GENERATION HIGH PERFORMANCE ARCHITECTURE RESEARCH TEAM

We changed applications’ codes written with double-precision to single-precision and measured execution time,
power consumption, and the accuracy of the final result.

In the experiments, we used Reedbush-L supercomputer system installed in the Information Technology
Center of the University of Tokyo. Since the effect of using low-precision arithmetics does not change even with
parallel computation, we used only a single node. In addition, because power consumption may vary depending
on compute nodes to be used due to manufacturing variations, we used a fixed node so that all evaluations
are performed on the same compute node. To measure both CPU and DRAM power consumption, we used
the Intel RAPL interface which provides power management functionality. It is possible to measure the power
and energy consumption of CPU packages and DRAM modules. We create a power measurement library which
supports measuring power and energy consumption of a Region of Interest (ROI) portion of the codes. In
Poisson’s equation solver, a kernel code of the ICCG method was measured. For the earthquake simulation,
only the Adaptive CG part is measured. The Reedbush system has two Xeon processors, but we use only one
of the processors. The application codes were compiled by Intel compiler with the -O3 option.

The E�ectiveness of Low-Precision Floating Arithmetic on Numerical Codes: A Case Study on Power Consumption HPCAsia2020, January 15–17, 2020, Fukuoka, Japan

Figure 3: Power consumption of Adap-
tive CG. This �gure shows the overall ex-
ecution time (2212 sec.). The green area
is shown in Fig. 4.

Figure 4: Power consumption of the
�rst 150 sec. in Adaptive CG. The arrow
shows one iteration. The green area is
shown in Fig. 5.

Figure 5: Power consumption of one iter-
ation in Adaptive CG (67 sec.).

Figure 6: Comparison of average power consumption of
ICCG solver with double-precision and single-precision

Figure 7: Comparison of energy with double-precision and
single-precision

The execution time and the energy consumption results are
shown in �gure 9. We can see that execution time becomeminimum
when the number of OpenMP threads is 9 in both cases of double-
precision and single-precision codes even though the evaluated

Figure 8: Comparison of average power consumption of
Adaptive CG with double precision and single precision

Figure 9: Comparison of energy with double precision and
single precision

CPU has 18 physical cores per socket. When we compare double-
precision with single-precision, it is con�rmed that the execution
time is signi�cantly shortened by using single-precision as in the
ICCG result. As a result, it is found that the energy e�ciency is the

Figure 14.4: Comparison of energy consumption
for ICCG solver

The E�ectiveness of Low-Precision Floating Arithmetic on Numerical Codes: A Case Study on Power Consumption HPCAsia2020, January 15–17, 2020, Fukuoka, Japan

Figure 3: Power consumption of Adap-
tive CG. This �gure shows the overall ex-
ecution time (2212 sec.). The green area
is shown in Fig. 4.

Figure 4: Power consumption of the
�rst 150 sec. in Adaptive CG. The arrow
shows one iteration. The green area is
shown in Fig. 5.

Figure 5: Power consumption of one iter-
ation in Adaptive CG (67 sec.).

Figure 6: Comparison of average power consumption of
ICCG solver with double-precision and single-precision

Figure 7: Comparison of energy with double-precision and
single-precision

The execution time and the energy consumption results are
shown in �gure 9. We can see that execution time becomeminimum
when the number of OpenMP threads is 9 in both cases of double-
precision and single-precision codes even though the evaluated

Figure 8: Comparison of average power consumption of
Adaptive CG with double precision and single precision

Figure 9: Comparison of energy with double precision and
single precision

CPU has 18 physical cores per socket. When we compare double-
precision with single-precision, it is con�rmed that the execution
time is signi�cantly shortened by using single-precision as in the
ICCG result. As a result, it is found that the energy e�ciency is the

Figure 14.5: Comparison of energy consumption
for Adaptive CG

we evaluated the average power, execution time, and the energy consumption comparing the cases of double-
precision with single-precision. In the evaluation, for the ICCG solver, we varied the data arrangement method
(Coalesced, Sequential) and the number of color divisions (8, 32, and 128 which are denoted as c8, c32, and
c128, respectively). For the Adaptive CG code, six cases of the number of OpenMP threads, 3, 6, 9, 12, 15,
and 18, were evaluated. Figure 14.4 and 14.5 show the results of the execution time and energy consumption
for the ICCG solver and Adaptive CG, respectively.

From the figures, it is confirmed that the execution time is greatly shortened by lowering the compute
precision. Since the average power consumption using single-precision did not change very much with the
double-precision case, the energy consumption is greatly reduced by using single-precision. As for ICCG, in
particular, when the number of colors is 8 (c8) and Sequential is used , energy saving becomes up to 34% in
single-precision compared to double-precision. In the case of Coalesced, energy consumption can be reduced by
23.7% on average, whereas in the case of Sequential, energy was reduced by 32.1% on average. If the number
of divisions is large, the execution time becomes longer causing the energy efficiency loss.

As for Adaptive CG, the execution time becomes minimum when the number of OpenMP threads is 9 in
both cases of double-precision and single-precision even though the evaluated CPU has 18 physical cores per
socket. As a result, the best energy efficiency was obtained by using 9 threads with single-precision. Overall,
single-precision, we can reduce energy consumption by up to 38.3% and energy saving is 32.4% on average by
utilizing single-precision arithmetics.

14.4 Schedule and Future Plan

In order to achieve further performance improvement for next generation HPC systems in post-Moore era, it
is necessary to explore various types of devices, hardware architectures, system software/programming models,
and algorithms that may contribute to the future system designs. We need to evaluate and analyze huge amount
of possible scenarios varying the architectural parameters on wide variety of underlying system architecture.
We plan to evaluate several benchmark applications which are expected to become important in future high-

14.5. PUBLICATIONS 167

performance computing including big-data and AI as well as traditional simulation applications. We will analyze
their performance requirement and execution characteristics. We will also establish a performance model or
performance simulation environment that enables to evaluate wide variety of future HPC architectures.

Beside exploring traditional CMOS-based computer systems, we will consider post-CMOS high-performance
and low-power computing devices for post-Moore era. We also continue to study an ultra-high-performance
accelerator system with an emerging device called SFQ (single-flux-quantum).

14.5 Publications

14.5.1 Articles/Journal

[1] 塚田 峰登, 近藤 正章, 松谷 宏紀, ”OSUAD: FPGAを用いたオンライン逐次学習型教師無し異常検知器”,
情報処理学会論文誌コンピューティングシステム (ACS65), Vol.12, No.3, pp.34-45, 2019年7月.

14.5.2 Conference Papers

[2] Rei Ito, Mineto Tsukada, Masaaki Kondo Hiroki Matsutani, “An Adaptive Abnormal Behavior Detection us-
ing Online Sequential Learning”, In the 17th International Conference on Embedded and Ubiquitous Computing
(EUC’19), Aug 2019.
[3] Ryohei Tomura, Takuya Kojima, Hideharu Amano, Ryuichi Sakamoto, and Masaki Kondo, “A Real Chip
Evaluation of a CNN Accelerator SNACC”, In the 22nd Workshop on Synthesis And System Integration of
Mixed Information Technologies, Oct. 2019.
[4] Sayaka Terashima, Takuya Kojima, Hayate Okuhara, Kazusa Musha, Hideharu Amano, Ryuichi Sakamoto,
Masaaki Kondo and Mitaro Namiki, “A Preliminary Evaluation of Buiding Block Computing Systems”, In
13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC-2019), pp.312-
319, Oct. 2019.
[5] Shaswot Shresthamali, Masaaki Kondo, and Hiroshi Nakamura, “Power Management of Wireless Sensor
Nodes with Coordinated Distributed Reinforcement Learning”, In the 37th IEEE International Conference on
Computer Design (ICCD2019), pp.638-647, Nov. 2019.
[6] Ryuichi Sakamoto, Masaaki Kondo, Kohei Fujita, Tsuyoshi Ichimura, and Kengo Nakajima, “The Effec-
tiveness of Low-Precision Floating Arithmetic on Numerical Codes: A Case Study on Power Consumption”, In
International Conference on High Performance Computing in Asia Pacific Region (HPCAsia 2020), pp.199–206,
Jan. 2020.

14.5.3 Posters

[7] Siddhartha Jana, Christopher Cantalupo, Jonathan Eastep, Masaaki Kondo, Matthias Maiterth, Aniruddha
Marathe, Tapasya Patki, Barry Rountree, Ryuichi Sakamoto Martin Schulz, Carsten Trinitis, Josef Weidendor-
fer, “The HPC PowerStack: A Community-wide Collaboration Towards an Energy Efficient Software Stack”,
In ISC High Performance 2019 poster, June 2019.
[8] Siddhartha Jana, Stephanie Brink, Christopher Cantalupo, Jonathan Eastep, Masaaki Kondo, Matthias
Maiterth, Aniruddha Marathe, Tapasya Patki, Barry Rountree, Ryuichi Sakamoto Martin Schulz, Carsten
Trinitis, Josef Weidendorfer, “The HPC PowerStack: A Community-wide Collaboration Towards an Energy Ef-
ficient Software Stack”, In the International Conference for High Performance Computing, Networking, Storage
and Analysis (SC’19) poster, Nov. 2019.
[9] Yosuke Ueno and Masaaki Kondo, “Neuromorphic Graph Processing for Minimum Weight Perfect Matching”,
In the 2nd R-CCS international symposium poster, Feb. 2020.

14.5.4 Invited Talks

[10] Masaaki Kondo, “A Design of Scalable Deep Neural Network Accelerator Cores with 3D Integration”,
International Forum on MPSoC for Software-defined Hardware (MPSoC’19), July 2019.

	Next Generation High PerformanceArchitecture Research Team

