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14.2 Overview of Research Activities

The next generation high performance architecture research team is conducting research and development of a
next-generation high-performance computer architecture. Currently, we are mainly focusing on non-von Neu-
mann architectures such as systolic arrays and neuromorphic computers based on the latest advances in device
technologies, architectures that can integrate next generation non-volatile memories and/or various types of
accelerators into a general-purpose processor, the advancement of scientific simulations by accelerating machine
learning computations, and hybrid computing architectures that combine the benefits of quantum computing
and classical computing. We are also performing detailed co-design evaluations of the computer architectures
noted above as well as the co-design evaluations of algorithms that take advantage of them on the supercom-
puters K and Fugaku.

Another important aspect of designing future high-performance systems is power consumption. Power con-
sumption is a prerequisite design constraint for developing exascale or next-generation computer systems. In
order to maximize effective performance within a given power constraint, we need a new system-design concept
in which the system’s peak power is allowed to exceed maximum power provisioning using adaptively controlling
power knobs incorporated in hardware components so that effective power consumption is maintained below
the power constraint. This concept is recently known as hardware overprovisioning. In such systems, it is
indispensable to allocate the power budget adaptively among various hardware component such as processors,
memories, and interconnects, or among co-scheduled jobs, instead of fully utilizing all available hardware re-
sources. We are researching strategies to improve the power efficiency and total system throughput for future
hardware overprovisioned supercomputer systems.

In this fiscal year, we have conducted several researches including evaluations of domain-specific architectures,
a prototype implementation of a systolic array in FPGAs, neuromorphic computing for graph processing, and
power consumption analysis for low-precision floating-point arithmetic on numerical codes.

14.3 Research Results and Achievements

14.3.1 Real-chip evaluation of a scalable accelerator core for deep neural networks

Recently, a Convolutional Neural Network (CNN) is utilized in many applications such as image recognition and
object detection. One of the challenges for executing CNNs is developing a high-performance inference engine
with high power efficiency. Several CNN accelerator architectures or LSI chips have been proposed so far for
high-performance and low-power CNN executions.
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Though existing CNN accelerator architectures can successfully achieve high energy efficiency, they typically
focus on optimized execution for either of convolutional or fully connected layers. They also sometimes need to
change the network structure which may limit the applicability to the variety of network structures. Since DNN
algorithm and organization is now continuing to evolve, it is desirable for CNN accelerators to have flexibility
to handle various types of network structure.

(a) Core architecture (b) Chip layout

Figure 14.1: Core Microarchitecture and Chip Layout of Designed DNN Accelerator

To this end, we have been conducting research and development of the architecture and LSI design of a
flexible and scalable DNN accelerator. This is a joint work with several universities in Japan. Our accelerator
is a multi-core accelerator with several cores each of which consists of a micro-controller and a SIMD multiply
and accumulate (MAC) unit. Figure 14.1 (a) presents the schematic view of the overall accelerator architecture
with four cores, each of which has five scratch-pad memories, an instruction memory (inst), a stream buffer
(sbuf), a temporal data memory (dmem), a lookup table (lut), and an output memory (omem).

We designed and implemented an accelerator core in real chip. we laid out the chip and taped out it with
Renesas Electronics 65nm SOTB process technology. Figure 14.1 (b) shows the layout of the chip. The chip
size is 3mm times 6mm with four cores. Due to the chip size limitation, only four cores were implemented on
the chip. The chip contains 68-KB of distributed on-chip SRAMs. One core has 2KB instruction and 2KB
lookup table memories. The size of dmem and sbuf is 4KB each. The four cores share the 4KB of omem. Each
core has 18,8864 logic gates.

The prototype chip was successfully operated and we evaluated performance and power-efficiency of the
prototype chip with the LeNet CNN model. We used the MNIST dataset as the image recognition workload.
We found that the power consumption is less than 12mW at 50MHz clock frequency. As for performance,
we compare the chip with a MIPS R3000 compatible embedded processor which was also developed by our
collaborators using the same process technology. We found that our DNN accelerator can achieve 20x higher
performance than the general purpose processor.

14.3.2 Neuromorphic graph processing for minimum weight perfect matching

The trend of exponential growth of processor performance known as Moore’s law is expected to end in the near
future because semiconductor process advancement is almost reaching its physical limit. To achieve further
performance improvement in post-Moore era, we need to make use of new types of computer architectures and
computing models such as Neuromorphic Computing (NC). The computer systems with NC are attracting a
lot of attention as a post-Moore architecture for various reasons. For example, it can potentially mitigate the
von Neumann bottleneck and it is inherently power efficient.

In NC, many simple processing elements which are inspired by neurons of a human brain work as computation
cores. The communication among them is relatively simple and based on the form of spikes. Therefore,
NC has the potential to achieve higher computational efficiency and lower power consumption compared to
traditional architectures. Although most of the applications of NC are typically based on neural networks, NC
characteristic, massively parallel computation with many simple computational units, can be applied to other
types of applications.
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We studied on using NC for a graph problem specially a minimum weight matching problem. In particular,
we proposed an approximate algorithm for minimum weight perfect matching with NC. We proposed a neuron-
like unit named “Spike Delay Neuron” to solve MWPM problems. Figure 14.2 shows the Way to map a target
graph to NC with Spike Delay neurons.
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INTRODUCTION

Neuromorphic Computing (NC)

NC is a new computing paradigm inspired by a human brain. NC 

architecture consists of many simple processing elements that are 

inspired by neurons. The communication among them is relatively simple 

and based on the form of spikes. NC is often realized by a custom 

hardware with Spiking Neural Network (SNN) models.

METHOD

Spike Delay Neuron

We propose a neuron-like unit named “Spike Delay Neuron” to solve 

MWPM problems.

The neuron has three states:

• Stop / Inhibited: Before stimulated or inhibited by other neurons

• Firing: Stimulated and waiting for spike generation

• Spike: After generating a spike without inhibition from other neurons
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MethodEXPERIMENTS & RESULTS

Approximation Degree (AD)

We show AD which means the 

ratio of weighted sum for 

proposed solution to optimal 

solution. The higher the value, the 

better it is. If the density of edges 

is small, AD is high. As the 

density increases, AD trends to 

get worse but It increases again 
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Graph Matching Problem

To find a edge set 𝑀 = {𝐄𝐝𝐠𝐞𝐬 𝐰𝐢𝐭𝐡𝐨𝐮𝐭 𝐜𝐨𝐦𝐦𝐨𝐧 𝐯𝐞𝐫𝐭𝐢𝐜𝐞𝐬}

Edge-weighted graph 𝐺

Fig 2: Types of Matching

Fig4: Way to solve matching problem with Spike Delay neurons

Note that by this algorithm, it is guaranteed that we can get maximal 

matching but maximum matching or perfect matching is not guaranteed.

Fig 6: Neuron unit
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Assume that the number of 

neuron units is |𝐸|. An |𝐸|-bits 

register named “spike register” 

holds spike information of all 

neuron units. An adjacent matrix 

and weights of 𝐺 are saved in a 

memory which can be either on-

chip SRAM or off-chip DRAM. 

The weights are used for the 

initial value of each neuron's 

spike delay. The matrix and the 

spike register are used for 

calculating inhibition of each 

neuron.

NC has several features as follow

• Massively parallel computation with many simple 

computational elements 

• Non von Neumann architecture

• To map a non-neural network application onto NC 

systems is often non-trivial
Fig 1: Concept of SNN

Research Purpose

Apply NC to solve MWPM problems efficiently.

How to map graphs to network of Spike Delay Neurons

To get vertex-weighted graph from edge-weighted graph 𝐺(𝑉, 𝐸), we 

calculate the line graph of 𝐺. Each edge of  𝐺 is converted to a vertex in its 

line graph and the vertices of line graph are connected if the corresponding 

edges in 𝐺 have common vertices.

By making weights of line graph to the initial value of the neuron delay, we 

map graph 𝐺 to a network of spike delay neurons.
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Minimum Weight Perfect Matching (MWPM) Problem

To find a perfect matching with minimum weight sum 𝑊 in an edge-

weighted graph 𝐺(𝑉, 𝐸).
Solution: Edmond’s blossom algorithm (𝑂 𝑉 3 time algorithm)
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Neuron Unit

Each neuron has 3 inputs, 

adjacent matrix, weighted and 

spike information. The former 

two are used to check any

neuron that is firing and adjacent to the neuron. Moreover, it has 1 output 

indicating whether the neuron is spiked or not. Two Registers named 

“Firing register” and “Delay register” represent state and spike delay, 

respectively. The output of neuron unit is 1 if Delay register holds 0 and 

otherwise 0. If Firing register is 1, the value of Delay register is 

decremented at each time step.

FPGA Implementation

Tab1: The logic synthesis results of 128 spike delay neurons network

Fig 7: Approximation degree and edge density 
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Figure 14.2: A way to solve matching problem by NC with Spike Delay neurons

We also implemented the proposed NC algorithm on an FPGA device. The overview of the hardware
architecture is shown in Fig. 14.3. Assuming that the number of neuron units is E, an E-bits register named
spike register holds spike information of all neuron units. An adjacent matrix and weights of the target graph
are saved in a memory which can be either onchip SRAM or off-chip DRAM. The weights are used for the initial
value of the spike delay of each neuron.
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Figure 14.3: Overview of the hardware architecture

We applied it to several random graphs of different scales and concluded that the proposed algorithm is
equivalent to a greedy algorithm whose approximation degree is 1

2 .

14.3.3 Power consumption analysis for low-Precision floating-point arithmetic on
numerical codes

The low-precision floating point arithmetic that performs computation by reducing numerical accuracy with
narrow bit-width is attracting since it can improve the performance of the numerical programs. Small memory
footprint, faster computing speed, and energy saving are expected by performing calculation with low precision
data. However, there have not been many studies on how low-precision arithmetics affects power and energy con-
sumption of numerical codes. Therefore, we investigated the power efficiency improvement by aggressively using
low-precision arithmetics for HPC applications. We analyzed power characteristics of the Poisson’s equation and
the ground motion simulation programs with double precision and single precision floating point arithmetics.
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We changed applications’ codes written with double-precision to single-precision and measured execution time,
power consumption, and the accuracy of the final result.

In the experiments, we used Reedbush-L supercomputer system installed in the Information Technology
Center of the University of Tokyo. Since the effect of using low-precision arithmetics does not change even with
parallel computation, we used only a single node. In addition, because power consumption may vary depending
on compute nodes to be used due to manufacturing variations, we used a fixed node so that all evaluations
are performed on the same compute node. To measure both CPU and DRAM power consumption, we used
the Intel RAPL interface which provides power management functionality. It is possible to measure the power
and energy consumption of CPU packages and DRAM modules. We create a power measurement library which
supports measuring power and energy consumption of a Region of Interest (ROI) portion of the codes. In
Poisson’s equation solver, a kernel code of the ICCG method was measured. For the earthquake simulation,
only the Adaptive CG part is measured. The Reedbush system has two Xeon processors, but we use only one
of the processors. The application codes were compiled by Intel compiler with the -O3 option.

The E�ectiveness of Low-Precision Floating Arithmetic on Numerical Codes: A Case Study on Power Consumption HPCAsia2020, January 15–17, 2020, Fukuoka, Japan
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we evaluated the average power, execution time, and the energy consumption comparing the cases of double-
precision with single-precision. In the evaluation, for the ICCG solver, we varied the data arrangement method
(Coalesced, Sequential) and the number of color divisions (8, 32, and 128 which are denoted as c8, c32, and
c128, respectively). For the Adaptive CG code, six cases of the number of OpenMP threads, 3, 6, 9, 12, 15,
and 18, were evaluated. Figure 14.4 and 14.5 show the results of the execution time and energy consumption
for the ICCG solver and Adaptive CG, respectively.

From the figures, it is confirmed that the execution time is greatly shortened by lowering the compute
precision. Since the average power consumption using single-precision did not change very much with the
double-precision case, the energy consumption is greatly reduced by using single-precision. As for ICCG, in
particular, when the number of colors is 8 (c8) and Sequential is used , energy saving becomes up to 34% in
single-precision compared to double-precision. In the case of Coalesced, energy consumption can be reduced by
23.7% on average, whereas in the case of Sequential, energy was reduced by 32.1% on average. If the number
of divisions is large, the execution time becomes longer causing the energy efficiency loss.

As for Adaptive CG, the execution time becomes minimum when the number of OpenMP threads is 9 in
both cases of double-precision and single-precision even though the evaluated CPU has 18 physical cores per
socket. As a result, the best energy efficiency was obtained by using 9 threads with single-precision. Overall,
single-precision, we can reduce energy consumption by up to 38.3% and energy saving is 32.4% on average by
utilizing single-precision arithmetics.

14.4 Schedule and Future Plan

In order to achieve further performance improvement for next generation HPC systems in post-Moore era, it
is necessary to explore various types of devices, hardware architectures, system software/programming models,
and algorithms that may contribute to the future system designs. We need to evaluate and analyze huge amount
of possible scenarios varying the architectural parameters on wide variety of underlying system architecture.
We plan to evaluate several benchmark applications which are expected to become important in future high-
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performance computing including big-data and AI as well as traditional simulation applications. We will analyze
their performance requirement and execution characteristics. We will also establish a performance model or
performance simulation environment that enables to evaluate wide variety of future HPC architectures.

Beside exploring traditional CMOS-based computer systems, we will consider post-CMOS high-performance
and low-power computing devices for post-Moore era. We also continue to study an ultra-high-performance
accelerator system with an emerging device called SFQ (single-flux-quantum).
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