

Center for Extreme Data Management, Analysis, and Visualization

The OpenVisus Framework for Extreme Data Management, Analysis and Visualization

Steve Petruzza, Aniketh Venkat, Nate Morrical, Giorgio Scorzelli, Valerio Pascucci, and Many Many Many Others

Generate Big Data Challenges and Opportunities

OpenViSUS: A Data Intensive Collaborative Analytics and Visualization Platform

OpenViSUS Software Platform

A set of interoperable components easily customized and deployed for different solutions as needed

PIDX demo

- Reference: <u>https://github.com/sci-visus/PIDX/</u>
- Optional: go through the code of the PIDX examples
- Run checkpoint-restart example to produce data in IDX format using PIDX
- Add dataset to the data portal
- Show data from the web viewer of the data portal

Demo: Interactive Remote Analysis and Visualization of 6TB Imaging Data

Pascucci-23

High Resolution Seismic Models

~					
win64-release-1b8b3cd25d90a5b	4d5b720b5	:81b03e0	db2aa936-"juce"-"opengl" –		×
FILE EDIT VIEW BOOKMA	RKS NET	WORK			
Explorer	GLCanvas	Log	Dataflow		
🔻 🚱 World					
🛱 glcamera					
File:///C:/demo/exxonmo					
🔯 time	1				
quality					
progression					
enable_viewdep	1				
🔻 🏠 Volume 1	/				
position					
fieldname					
quality					
progression	1				
enable_viewdep	1				
Scripting	1				
Palette	1				
🖌 Render Node					
V Slice 1	N.				
position	N.				
fieldname					
quality					
progression	CC				
enable_viewdep	20	1		TO.	
Scripting	www.sci	utah.edu		VISU	JS

Ready runtime(1.821sec) nthreads(10) 10(501/31.3mb/0) NE1(0/0/0) RAM(141.8mb/8.0gb/31.8gb) GP0(1.9mb/0/0)

Demo: large Scale Geology Data

A Science Cyberinfrastructure Requires **Efficient Big Data Management and Processing**

- Advanced data storage techniques:
 - Data re-organization.
 - Compression.
- Advanced algorithmic techniques:
 - Streaming.
 - **Progressive multi-resolution.**
 - Out of core computations.
- Scalability across a wide range of running conditions:
 - From laptop, to office desktop, to cluster of PC, to BG/L.
 - Memory, to disk, to remote data access.

A Scalable Solution for Acquisition and Processing High Resolution Data

Applications: Microscopy for Neuroscience

CEDMAV

Demo Data Portal: convert and publish

- Reference: <u>https://wiki.visus.org/index.php/ViSUS_Data_Portal</u>
- Sample data (to unzip):
 - Asteroid (500x500x500 float32): https://drive.google.com/open?id=1wHdWynj9jnlf5NrRnzSZyOHbOMwKmltQ
 - Heart (stack of images): <u>https://drive.google.com/open?id=1NLWe2FVhUUoEaaA8JZ2w61H_dT77z1La</u>

Demo

- Start/login your Docker installation
- docker pull visus/dataportal
- docker run –p 8080:80 visus/dataportal
- Portal login:
 - User: admin
 - Password: password
- Manage data
 - Asteroid: convert single file (browse, upload, select, insert information, convert)
 - Heath: convert stack of images (browse, upload folder, select folder, convert)
- Add to server
 - After 1-2 min data should be available for streaming on the viewer (Explore data)

Pascucci-11

UNIVERSITY Pacific Northwes

We Characterize Algorithmic Classes Based on Effect in a Processing Network

The use of top-down and bottom-up processes have a strong impact on the data stream

We Allow Distributed Computations at **Different Stages of the Data Stream**

Progressive Image Differencing + Editable GPU filter.

Progressive differencing + GPU edge detection

We are Developing Progressive Scheme for Content Based Image Processing

• Sample:

EDMAN

• Progressive Analysis:

Poisson Solver for Image Cloning in Massive Image Collections

Color correction of 600+ images in real time

Poisson solver for composition of massive images

 Pasting a 300GB satellite image of a city in background world map merged in real time

Server can be wrapped in Apache plug-in Client can be run in a web browser

Pascucci-18

High Performance Data Movements for Real-Time Monitoring of Large Scale Simulations

Scale simulation dumps to 130K cores with better performance than state of

the art libraries while enabling real-time, remote visualization

End User

THE UNIVERSITY Pacific Northwest

PIDX High Write Performance on Mira

Data Movement

Performance Evaluation

Server can be wrapped in Apache plug-in Client can be run in a web browser

A Scalable Solution for Acquisition and Processing High Resolution Data

Applications: Microscopy for Neuroscience

CEDMAV

Remote Monitoring of Data Quality During Acquisition

High Performance Data Movements for Real-Time Access to Large Scale Experimental Data

- Experiment run at Advance Photon Source at ANL
- Materials Scientists at University of Utah

Scalable Deployment: Real Time Exploration of <u>3.5 Petabytes</u> of Weather/Climate Data

Streaming Analytics and Visualization

Infrastructure that scales gracefully with available hardware resources

Demo Interactive Data Analysis with Python

- Reference: <u>https://github.com/sci-visus/OpenVisus</u>
- Jupyter examples: <u>https://github.com/sci-visus/OpenVisus/tree/master/Samples/jupyter</u>
- Installation with pip:
 - python -m pip install --user numpy OpenVisus==1.3.3

Demo

- Use standalone viewer and python scripting for interactive analysis
- Use Jupyter notebook to fetch data from a server visualize, analyze and share with other tools (e.g., with the standalone viewer)

High Resolution Display Platforms for High Resolution Outcrop and Seismic Data

Pascucci-28

ViSUS PowerWall: Installed and Fully Operational in a Few Hours at KAUST

Pascucci-29

ViSUS PowerWall: RIKEN

We Allow Distributed Computations at Different Stages of the Data Stream

Progressive Image Differencing + Editable GPU filter.

Progressive differencing + GPU edge detection

https://visoar.org/mamografia/

ViSOAR: a Unified Solution for Distribution of Imaging Data in Medical and Geology

Example of Visualization and Annotation of outcrop and medical data

Healthcare: remote access and diagnostics for Doctor and Patients on commodity devices

Mohamed E. Salama, MD, Chief of Hematopathology, Professor of

Pathology

ViSOAR Medical

Teaching Histopathology with a Great Group of Students!!!

For more information see: www.visus.org

Pascucci-35

Computed Tomography Exploration: Volume Rendering

An OpenViSUS Pipeline for Dynamic Data-Intensive Agricultural Applications

Pascucci-37

ViSUS Gigapixel Progressive Dtitching for Aerial Imagery

ViSUS Gigapixel stitching for aerial imagery

Farmers want actionable information

High yield More Nitrogen To achieve this goal and enable wide-spread adoption of aerial imagery use in crop management there is an urgent need for real-time image stitching on high-latency low-bandwidth networks in rural areas

Pascucci-40

OpenVisus references

- Main website: <u>https://www.visus.org/</u>
- Documentation website: <u>https://wiki.visus.org/</u>
- Gitter chat: <u>https://gitter.im/sci-visus/OpenViSUS</u>
- PIDX code: https://github.com/sci-visus/PIDX/
- OpenViSUS code: <u>https://github.com/sci-visus/OpenVisus</u>
- Jupyter examples: <u>https://github.com/sci-</u> visus/OpenVisus/tree/master/Samples/jupyter

