Beating heart simulation driven by three dimensional molecular dynamics model

Takumi Washio (UT-Heart Inc.) Ryo Kanada (RIKEN) Xiaoke Cui (UT-Heart Inc.) Seiryo Sugiura (UT-Heart Inc.) Yasushi Okuno (Kyoto Univ.) Toshiaki Hisada (UT-Heart Inc.) Heart + Cell + Motor proteins FEM FEM MonteCarlo

Multiscale Challenge on K-computer (2012)

Model size

6
6
5
0
0

Performance

	Pflop/s			% of peak		
model\#nodes	20736	41472	82944	20736	41472	82944
49KDOF	0.72	1.39	2.74	28.10	27.43	27.72

$\begin{array}{ll} I\!I\!I\!B & Coronary Circulation \\ \sum_{C(K,J)=C} \overline{\eta}_{K} \left(\overline{\mu}_{C} - \overline{\mu}_{C(K,J)} \right) = 0, \ \forall C \quad \text{(c)} \\ \sum_{c(k,j)=c} \left(\frac{\pi}{4} D_{kj} \dot{D}_{kj} L_{k} + \eta_{k} \left(\mu_{c} - \mu_{c(k,j)} \right) \right) = 0, \ \forall c \ \text{(d)} \\ D_{i}(t) = \beta \cdot \left((\mu_{i}(t) - \overline{p}_{m}(t)) - (\mu_{i}^{*} - \overline{p}_{m}^{*}) \right) + D_{i}^{*} \ \text{(e)} \\ \Delta V_{cap} = \overline{\omega} \frac{\pi}{8} \sum_{k} L_{k} \sum_{c,j}^{2} \left(D_{kj}^{2} - D_{kj}^{0} \right)^{2} \quad \text{(f)} \end{array}$

IIA Macroscopic Muscle and Blood

Conventional Multiscale Approach

Heart –Sarcomere Coupling Model

Research directions for Post-K : from 1d MC to 3d MD

Cafemol (Takada Lab., Kyoto Univ.) Focusing on inside of the molecular motor

Switch the potentials at the state transitions

Thin filament (modeled by a rigid bar)

Preliminary test using Cafemol-Ring Coupling model

Micro-Macro interaction through the thin filament sliding

Behavior of the molecular motor under physiological condition

Verification of Pocket Deformation Feedback Model

Contour of the pocket deformation of the basic model

Verification of Pocket Deformation Feedback Model

Benefits of the feedback mechanism

- 1. 3% increase of blood ejection
- 2. 10% reduction of ATP consumption

Coupling technique : Efficiency & Stability

- 1. Reduction of communication overheads by the multiple time step method
- 2. Stability by taking the active stiffness

Coupling technique : Efficiency & Stability

- 1. Reduction of communication overheads by the multiple time step method
- 2. Stability by taking the active stiffness

Coupling technique : Efficiency & Stability

- Reduction of communication overheads by the multiple time step method 1.
- 2. Stability by taking the active stiffness

Strain in the fiber direction

Concluding Remarks

We constructed a multiscale platform that enables us to analyze the stochastic dynamics of motor proteins under the condition : that is generated by the protein motors themselves that can't be made from artificial boundary conditions

Big data & Al

- Huge numerical simulation data of the molecular behavior
- Seeking correlations between the functional parts in the protein motors
- Optimization of parameters of numerical models

