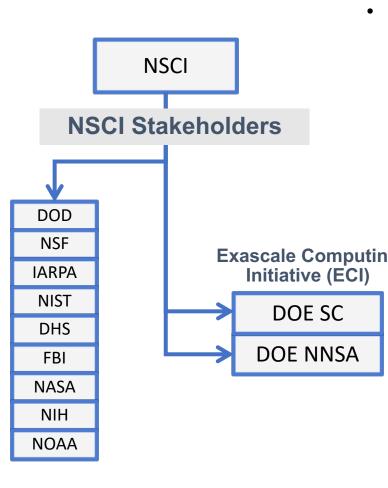
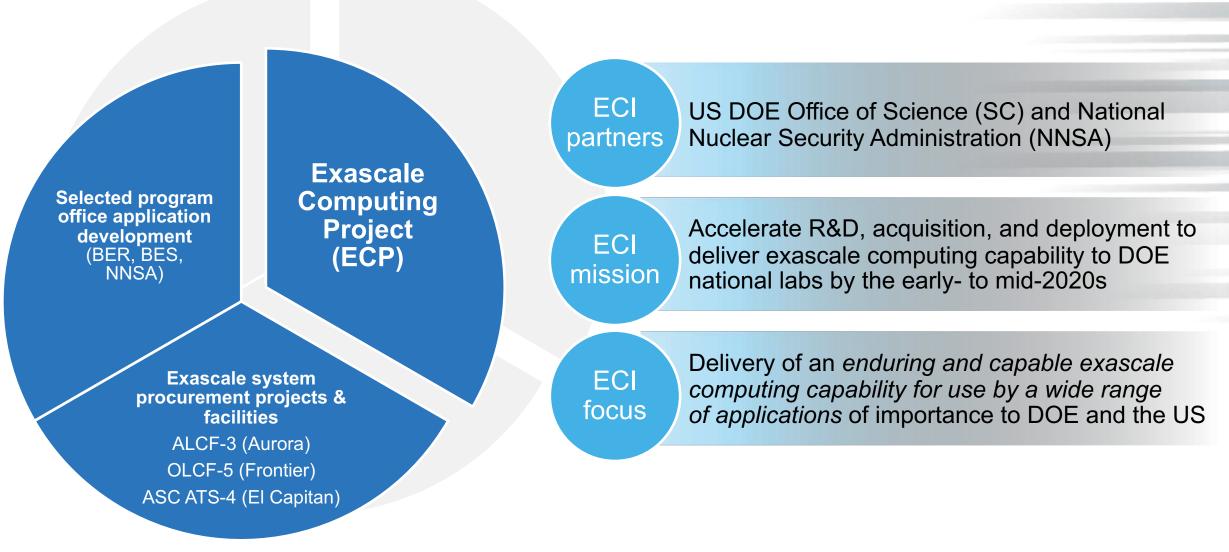
Exascale, AI and Cancer!



Rick Stevens Argonne National Laboratory The University of Chicago

Crescat scientia; vita excolatur

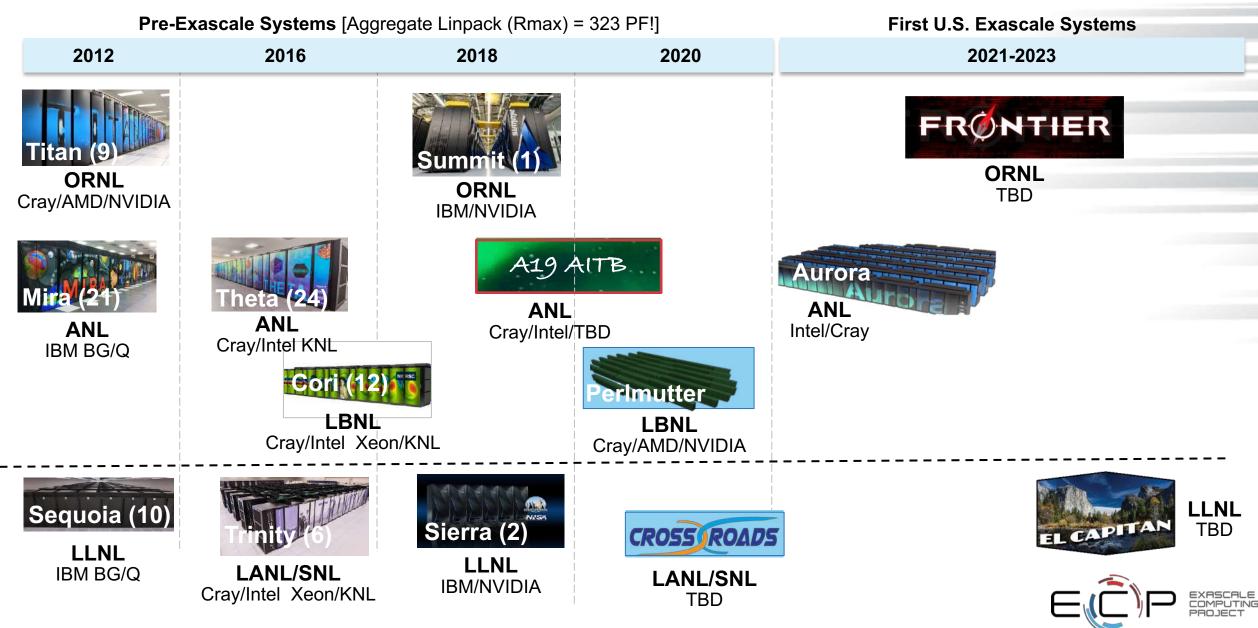
National Strategic Computing Initiative (NSCI)


"The NSCI is a whole-of-government effort designed to create a cohesive, multi-agency strategic vision and Federal investment strategy, executed in collaboration with industry and academia, to maximize the benefits of HPC for the United States." – *Executive Order, July 2015*

- The NSCI Strategic Plan calls out five objectives:
 - Accelerate delivery of a capable exascale computing system delivering approximately 100 times the performance of current systems across *a range of applications*;
 - Increase coherence between the technology base used for modeling and simulation (M&S) and that used for data analytic computing (DAC);
 - Establish a viable path forward for future HPC systems even after the limits of current semiconductor technology are reached (the "post-Moore's Law era");
 - Increase the capacity and capability of an enduring *national HPC ecosystem*; and
 - Develop an enduring public-private collaboration to ensure that the benefits of the research and development advances are shared among government, industrial, and academic sectors.

Key Examples from NSCI Strategic Plan				
National Security	Economic Competitiveness	Scientific Discovery		
stockpile stewardship decision support battlefield command counter-terrorism secure communication cyber defense nuclear non-proliferation signals intelligence	energy production and security advanced manufacturing digital engineering drug design personalized medicine epidemiology health care business analytics financial services	climate science fusion science materials genome particle physics neuroscience weather prediction genomic discovery		

DOE Exascale Program: The Exascale Computing Initiative (ECI)


Three Major Components of the ECI

ECP by the Numbers

4

Department of Energy (DOE) Roadmap to Exascale Systems

ECP Industry Council Members

ECP applications target national problems in 6 strategic areas

National security	Energy security	Economic security	Scientific discovery	Earth system	Health care
Stockpile stewardshipNext-generation electromagnetics simulation of hostile environment and virtual flight testing for hypersonic re-entry vehiclesImage: testing for bypersonic re-entry testing for testing for <br< td=""><td>Turbine wind plant efficiencyHigh-efficiency, low-emission combustion engine and gas turbine designMaterials design for extreme environments of nuclear fission and fusion reactorsDesign and commercialization of Small Modular ReactorsSubsurface use for carbon capture, petroleum extraction, waste disposalScale-up of clean fossil fuel combustionBiofuel catalyst design</td><td><text><text><text></text></text></text></td><td>Find, predict, and control materials and properties Cosmological probe of the standard model of particle physics Validate fundamental laws of nature Demystify origin of chemical elements Light source-enabled analysis of protein and molecular structure and design Whole-device model of magnetically confined fusion plasmas</td><td>Accurate regional impact assessments in Earth system models Stress-resistant crop analysis and catalytic conversion of biomass-derived alcohols Metagenomics for analysis of biogeochemical cycles, climate change, environmental remediation</td><td><image/><image/><image/></td></br<>	Turbine wind plant efficiencyHigh-efficiency, low-emission combustion engine and gas turbine designMaterials design for extreme environments of nuclear fission and fusion reactorsDesign and commercialization of Small Modular ReactorsSubsurface use for carbon capture, petroleum extraction, waste disposalScale-up of clean fossil fuel combustionBiofuel catalyst design	<text><text><text></text></text></text>	Find, predict, and control materials and properties Cosmological probe of the standard model of particle physics Validate fundamental laws of nature Demystify origin of chemical elements Light source-enabled analysis of protein and molecular structure and design Whole-device model of magnetically confined fusion plasmas	Accurate regional impact assessments in Earth system models Stress-resistant crop analysis and catalytic conversion of biomass-derived alcohols Metagenomics for analysis of biogeochemical cycles, climate change, environmental remediation	<image/> <image/> <image/>

Common Challenges

1) Optimization for accelerator-based architectures

2) Exposing additional parallelism

3) Coupling codes to create new multiphysics capability

4) Adopting new mathematical approaches

5) Algorithmic or model improvements

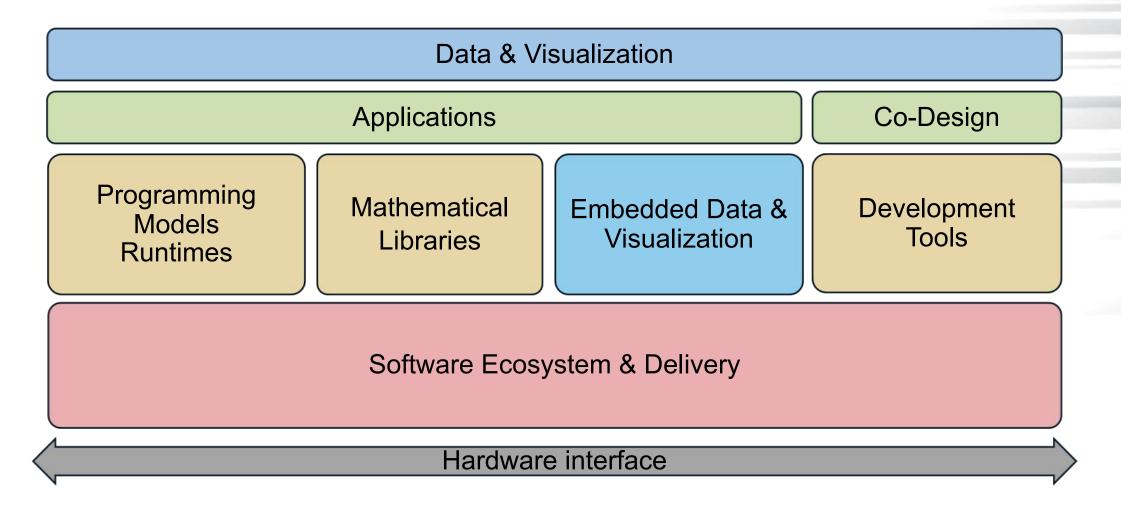
6) Leveraging optimized libraries

Co-Design

Develop efficient exascale libraries that address computational motifs common to multiple application projects

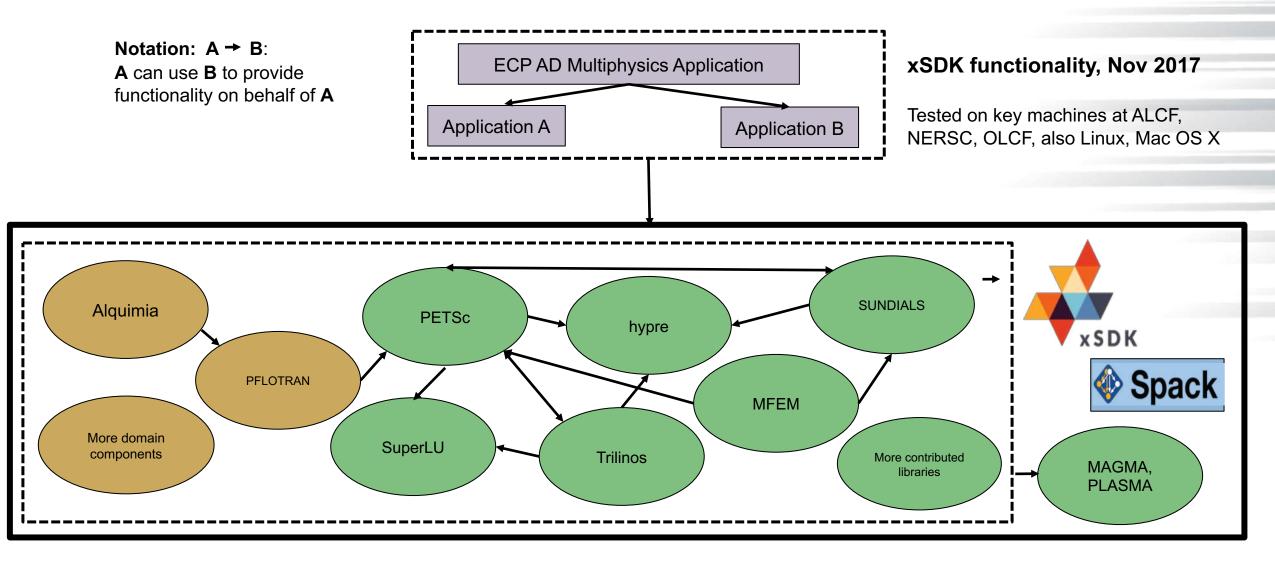
CODAR	Advance understanding of the constraints, mappings, and configuration choices that determine interactions of applications, data analysis and reduction, and exascale platforms
COPA	Create co-designed numerical recipes for particle-based methods that meet application team requirements within design space of STs and subject to constraints of exascale platforms
AMReX	Build framework to support development of block-structured adaptive mesh refinement algorithms for solving systems of partial differential equations on exascale architectures
CEED	Develop next-generation discretization software and algorithms that will enable a wide range of finite element applications to run efficiently on future hardware
ExaGraph	Develop methods and techniques for efficient implementation of key combinatorial (graph) algorithms
ExaLearn	Target learning methods to aid application and experimental facility workflows: deep neural networks (RNNs, CNNs, GANs), kernel & tensor methods, decision trees, ensemble methods, graph models, reinforcement learning
Proxy Apps	Improve the quality of proxy applications created by ECP and maximize the benefit received from their use. Maintain and distribute ECP Proxy App Suite.

Exascale Software Infrastructure


Example Products	Engagement
MPI – Backbone of HPC apps	Explore/develop MPICH and OpenMPI new features & standards.
OpenMP/OpenACC –On-node parallelism	Explore/develop new features and standards.
LLVM/Vendor compilers	Injecting HPC features, testing/feedback to vendors.
PAPI, TAU, HPCToolkit – Perf Tools	Explore/develop new features.
Math Libraries: BLAS, sparse solvers, etc.	Scalable algorithms and software, critical enabling technologies.
IO: HDF5, MPI-IO, ADIOS	Standard and next-gen IO, leveraging non-volatile storage.
Viz/Data Analysis	ParaView-related product development, node concurrency.

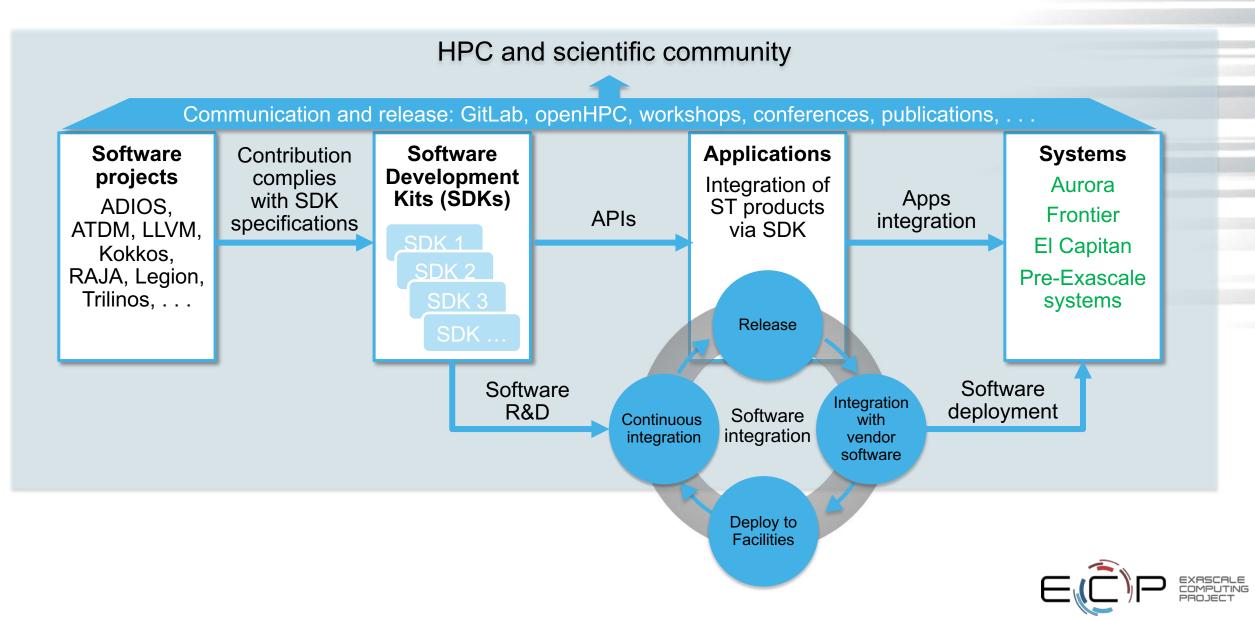
Key theme: Exploration/development of new algorithms/software for emerging HPC capabilities:

- High-concurrency node architectures and advanced memory & storage technologies.
- Enabling access and use via standard APIs.
- The next generation of capabilities that the HPC community will need.


ECP Software Stack

ECP's Math SDK (xSDK)

Key interactions with apps, packages, Spack



Many ECP ST products are available (many github sites)

ECP's Flow of Product Delivery and Deployment

ECP Progress Report

We are currently "on track" for meeting our key performance parameters (> 50x on applications)

Applications

- 25 application teams actively engaged in targeted development and capability enablement for 2+ years
- Apps have well-defined exascale challenge problem targets with associated "science work rate" goals
- Initial performance experiences on pre-exascale systems (Summit, Sierra) exceeding expectations

Software Stack

- Regular capability assessment of software stack products ensures line-of-sight to apps and HPC Facilities
- Software product impact goals and metrics defined and being measured regularly
- Plans for broad containerized delivery of products via Software Development Kits (SDKs) being executed

Hardware & Integration

- Return on PathForward vendor hardware R&D element evident in recent exascale RFP responses
- Plans for deployment and continuous integration of SDKs into DOE HPC Facilities being executed
- Prioritized performance engineering of applications targeting first three exascale systems underway

Aurora (A21) The Argonne Exascale System

Architecture supports three types of computing

- Large-scale Simulation (PDEs, traditional HPC)
- Data Intensive Applications (scalable science pipelines)
- Deep Learning and Emerging Science AI (training and inferencing)

Targets for Exascale Computers

Simulation Applications

- Materials Science
- Cosmology
- Molecular Dynamics
- Nuclear Reactor Modeling
- Combustion
- Quantum Computer
 Simulation
- Climate Modeling
- Power Grid
- Discrete Event Simulation
- Fusion Reactor Simulation
- Brain Simulation
- Transportation Networks

Big Data Applications

- APS Data Analysis
- HEP Data Analysis
- LSST Data Analysis
- SKA Data Analysis
- Metagenome Analysis
- Battery Design Search
- Graph Analysis
- Virtual Compound Library
- Neuroscience Data Analysis
- Genome Pipelines

Deep Learning Applications

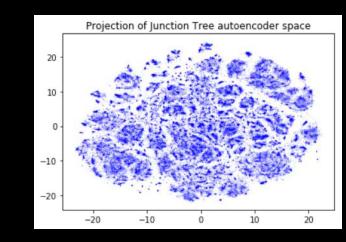
- Drug Response Prediction
- Scientific Image Classification
- Scientific Text Understanding
- Materials Property Design
- Gravitational Lens Detection
- Feature Detection in 3D
- Street Scene Analysis
- Organism Design
- State Space Prediction
- Persistent Learning
- Hyperspectral Patterns

Targets for Exascale Computers

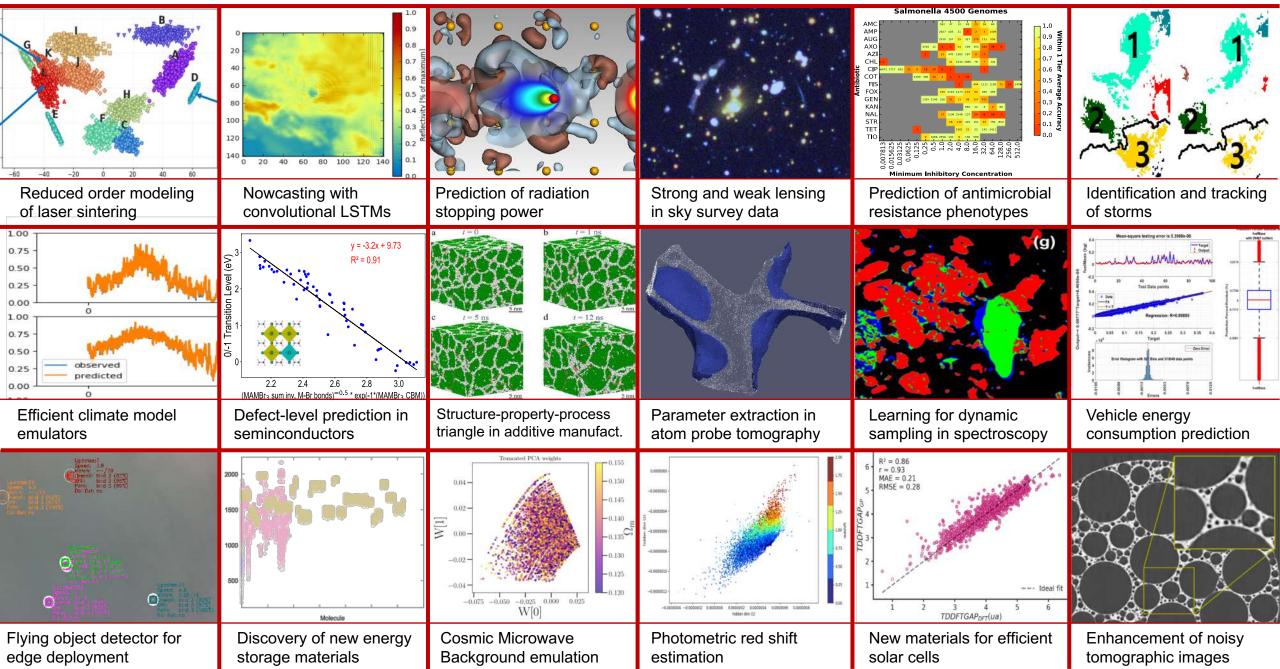
Simulation Applications

- Materials Science
- Cosmology
- Molecular Dynamics
- Nuclear Reactor Modeling
- Combustion
- Quantum Computer
 Simulation
- Climate Modeling
- Power Grid
- Discrete Event Simulation
- Fusion Reactor Simulation
- Brain Simulation
- Transportation Networks

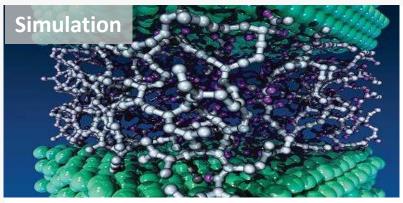
Big Data Applications


- APS Data Analysis
- HEP Data Analysis
- LSST Data Analysis
- SKA Data Analysis
- Metagenome Analysis
- Battery Design Search
- Graph Analysis
- Virtual Compound Library Generation
- Neuroscience Data Analysis
- Genome Pipelines

Deep Learning Applications


- Drug Response Prediction
- Scientific Image Classification
- Scientific Text Understanding
- Materials Property Design
- Gravitational Lens Detection
- Feature Detection in 3D
- Street Scene Analysis
- Organism Design
- State Space Prediction
- Persistent Learning
- Hyperspectral Patterns

Integration of Simulation and AI/ML

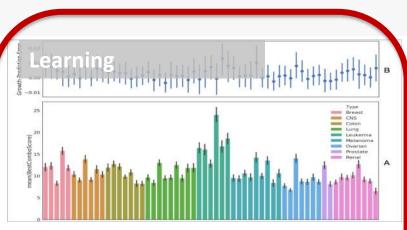

- Steering of simulations and Planning ahead
 - ML/RL making decisions what to do next
- Embedding ML into Simulation
 - Replacing explicit functions/kernels with learned models
 - Trading accuracy for speed/power improvements ±7% for 2x ?
- Tuning or Customization of Kernels and Parameters
 - Customization of force fields in MD simulations (most accurate H₂O sim)
- Function/Property association
 - VAE to map latent representation to properties and generating candidates
- Student Teacher Model for Learning
 - Augment training data with simulation generated ground truth

Al at Argonne: Broad Span of Scientific Targets

Expanding Leadership Computing Reach

Reactive Mesoscale Simulations of Tribological Interfaces

PI: S. Sankaranarayanan, Argonne


Insight to the complex processes that make oils, coatings, electrodes, and other electrochemical interfaces effective. Using Mira, this team discovered a self-healing, anti-wear coating that drastically reduces friction. Their findings are being used to virtually test other potential self-regenerating catalysts.

Large-Scale Computing on the Connectomes of the Brain

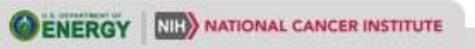
PI: D. Gursoy, Argonne

3D reconstructions of high-resolution imaging will provide a clearer understanding of how even the smallest changes to the brain play a role in the onset and evolution of neurological diseases, such as Alzheimer's and autism, and perhaps lead to improved treatments or even a cure.

CANcer Distributed Learning Environment (CANDLE)

PI: R. Stevens, Argonne

CANDLE is tackling the hardest deep learning problems in cancer research. Its first architecture release for largescale model hyperparameter exploration uses representative problems--coded as deep learning problems--at the core of the predictive oncology challenge. Future data parallelism work will allow the training of a single model across several nodes.

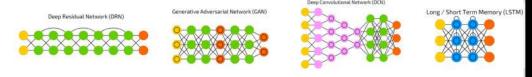


CANDLE Goal

Enable the most challenging deep learning problems in cancer research to be pursued on the most capable supercomputers in the DOE

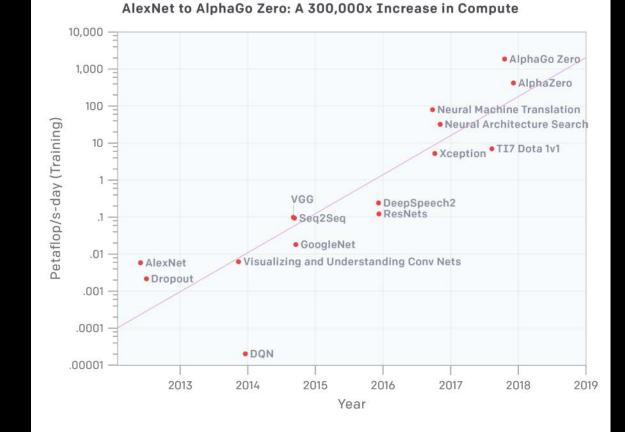
Machine Learning In Cancer Research

- Cancer Susceptibility
- Cancer Detection and Diagnosis
- Cancer Recurrence
- Cancer Prognosis and Survival
- Cancer Classification and Clustering
- Cancer Drug Response Prediction
- Cancer Genomics Analysis
- Cancer Medical Records Analysis
- Cancer Biology

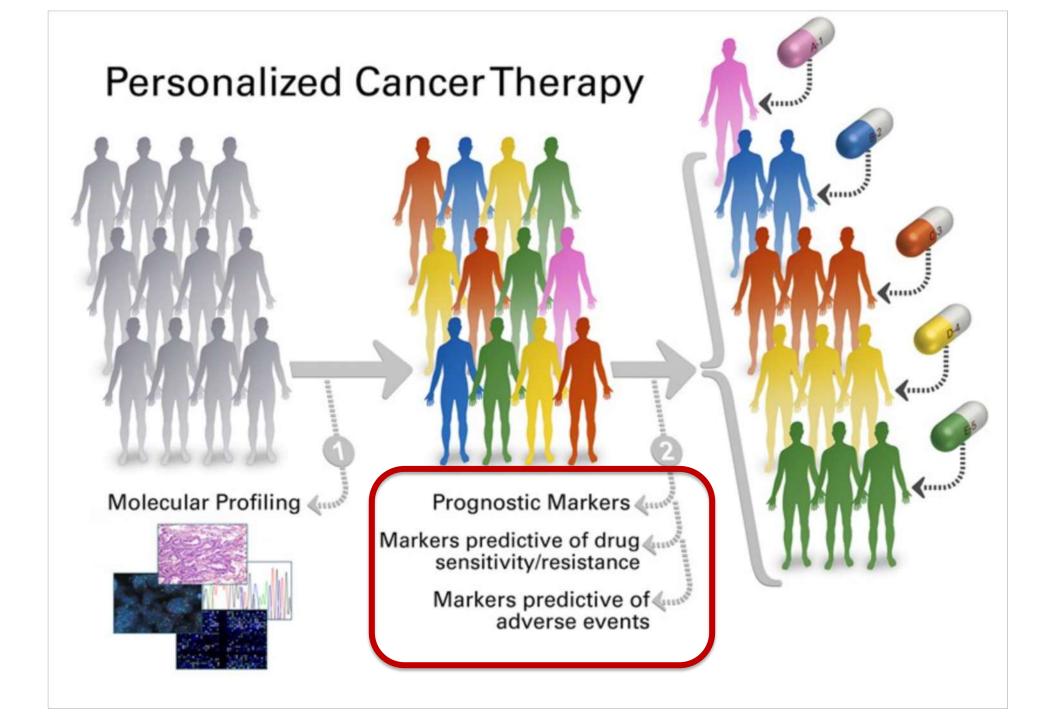


Deep Learning in Cancer \Rightarrow many Methods

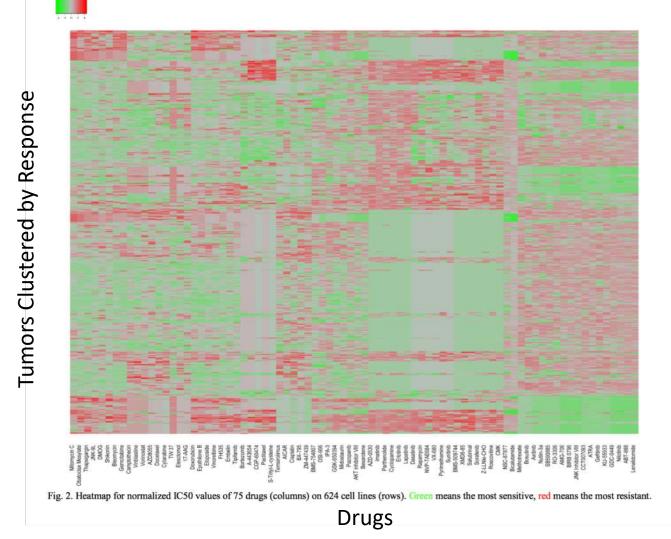
 AutoEncoders – learning data representations for classification and prediction of drug response, molecular trajectories


- VAEs and GANs generating data to support methods development, data augmentation and feature space algebra, drug candidate generation
- **CNNs, Attention** type classification, drug response, outcomes prediction, drug resistance
- RNNs sequence, text and molecular trajectories analysis

CANDLE: Deep Learning Meets HPC


Exascale Needs for Deep Learning

- Automated Model Discovery
- Hyper Parameter Optimization
- Uncertainty Quantification
- Flexible Ensembles
- Cross-Study Model Transfer
- Data Augmentation
- Synthetic Data Generation
- Reinforcement Learning

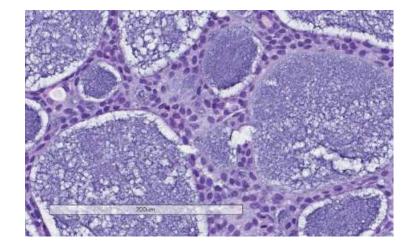


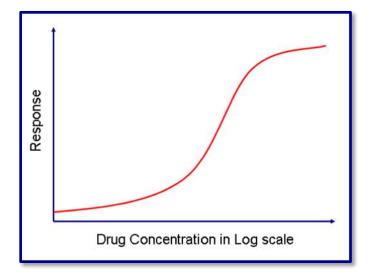
CANDLE Project Components

- **CANDLE Python Library** make it easy to run on DOE Big Machines, scale for HPO, UQ, Ensembles, Data Management, Logging, Analysis
- CANDLE Benchmarks exemplar codes/models and data representing the three primary challenge problems
- Runtime Software Supervisor, Reporters, Data Management, Run Data Base
- Tutorials Well documented examples for engaging the community
- **Contributed Codes** Examples outside of Cancer, including Climate Research, Materials Science, Imaging, Brain Injury
- Frameworks Leverage of TensorFlow, Keras, Horovod, PyTorch, etc.
- LL Libraries CuDNN, MKL, etc. (tuned to DOE machines)

Drug Response is specific to Cancer type and specific genetic variance in each tumor

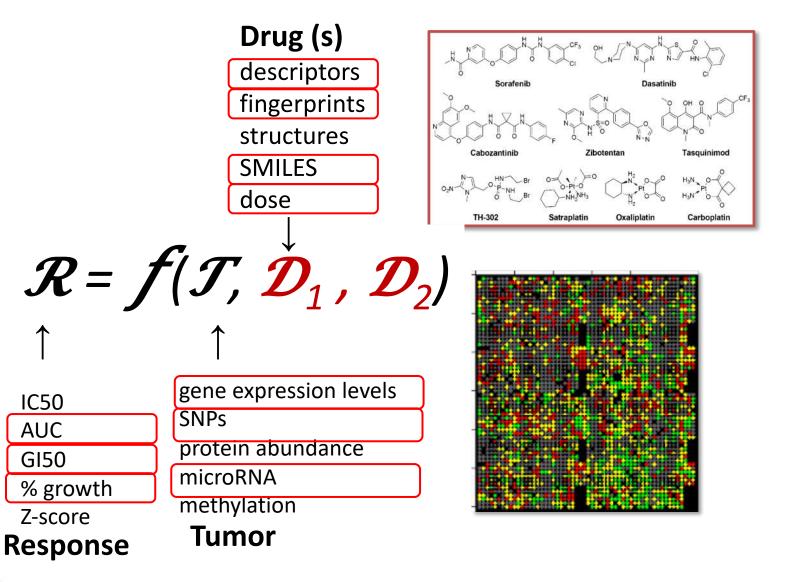
Green means Sensitive

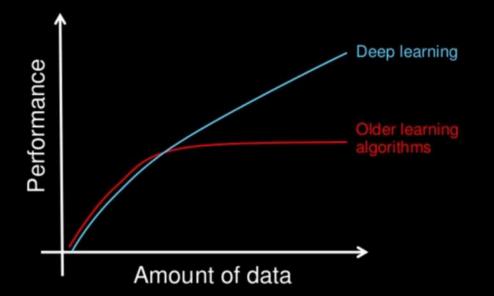

Red means Resistant

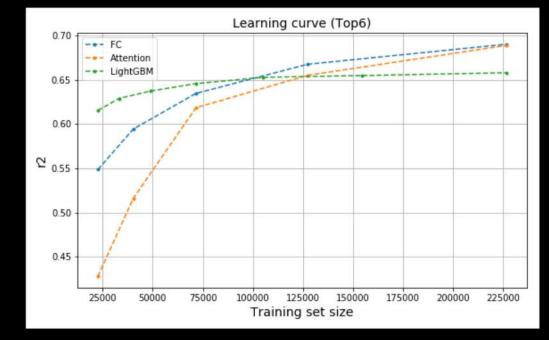

IEEE_J_Biomed_Health_Inform_2015_Sheng.pdf

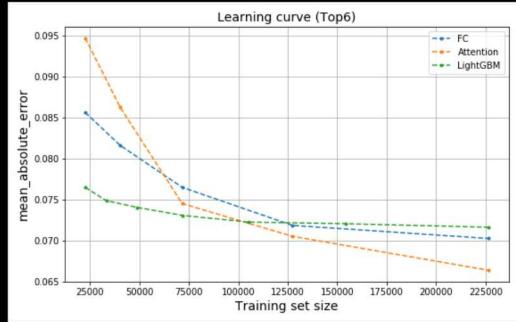
Our Predictive Oncology Goal

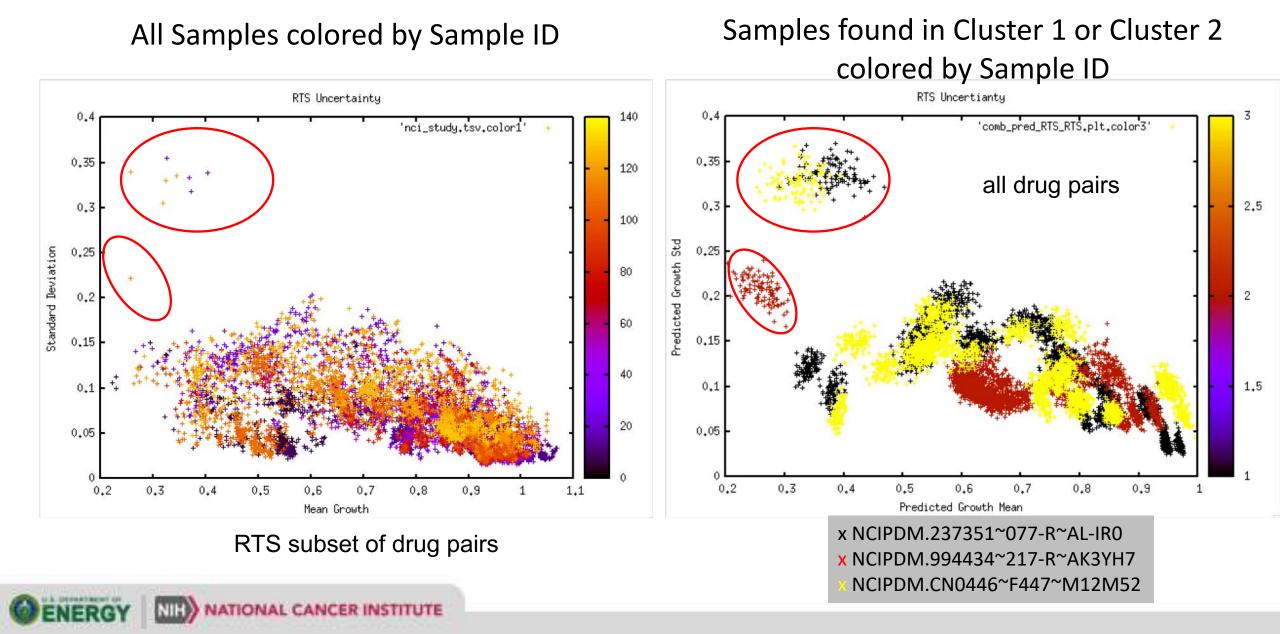
A single model trained on data from many cancer samples, many drugs and that can predict drug response across wide range of tumors and drug combinations


Modeling Cancer Drug Response




ENERGY


NIH) NATIONAL CANCER INSTITUTE



Pilot 1

"Uno" Model Predictions with Dropout UQ (trained on ALMANAC)

CANDLE GitHub and FTP

• ECP-CANDLE GitHub Organization:

https://github.com/ECP-CANDLE

• ECP-CANDLE FTP Site:

• The FTP site hosts all the public datasets for the benchmarks <u>http://ftp.mcs.anl.gov/pub/candle/public/</u>

Summary: DL Cancer Drug Response

- Can we build models that are predictive of drug response?
 - Yes demonstrated with cross validation between cell line studies
- What features to use to represent drugs and tumors?
 - tumors: transcripts, SNPs, drugs: descriptors, latent space (embeddings)
- Are our models competitive with models from others?
 - Yes we have achieved and advanced state-of-the-art
- Can we build models that generalize across studies?
 - Yes drug diversity and scale of study is important

NATIONAL CANCER INSTITUTE

- How much data do we need to train drug response models?
 - ~50K-100K high-quality dose independent samples maybe sufficient
- Are models trained on cell lines predictive for PDX models?
 - Indications are positive achieving > 0.30 spearman rank correlation
- Will active learning improve the learning curves for drug response models?
 - Likely but only after sufficient data scale and error rate has been achieved

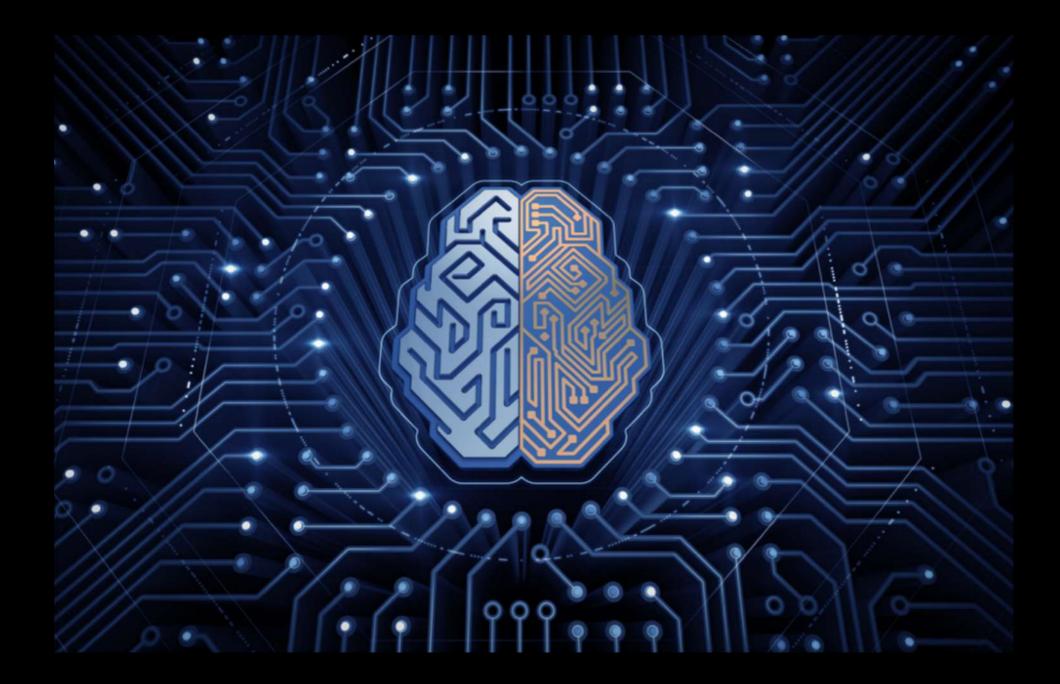
UnoMT Multitask Deep Learning Cross-Study Best out of Study R² = 0.61

Table 6. Best cross study validation results with a 3-task UnoMT

		Testing set							
		NCI60	CTRP	GDSC	CCLE	gCSI	N/T Cat Acc	Site Acc	Type Acc
Training set	NCI60	R2 = 0.81 MAE = 17.1	R2 = 0.38 MAE = 32.2	R2 = 0.24 MAE = 35.3	R2 = 0.48 MAE = 33.4	R2 = 0.46 MAE = 33.4	99.43%	96.75%	96.97%
	CTRP	R2 = 0.44 MAE = 29.8	R2 = 0.68 MAE = 22.7	R2 = 0.23 MAE = 34.4	R2 = 0.61 MAE = 28.3	R2 = 0.60 MAE = 28.5	99.56%	96.62%	96.58%
	GDSC	R2 = 0.32 MAE = 34.0	R2 = 0.25 MAE = 36.7	R2 = 0.53 MAE = 27.2	R2 = 0.50 MAE = 32.6	R2 = 0.60 MAE = 29.2	99.43%	96.93%	96.97%
	CCLE	R2 = 0.27 MAE = 36.9	R2 = 0.20 MAE = 39.2	R2 = 0.11 MAE = 38.9	R2 = 0.68 MAE = 25.4	R2 = 0.39 MAE = 34.2	99.12%	96.36%	96.36%
	gCSI	R2 = 0.00 MAE = 44.9	R2 = 0.11 MAE = 43.1	R2 = 0.05 MAE = 42.8	R2 = 0.33 MAE = 40.6	R2 = 0.80 MAE = 192	99.43%	96.84%	96.62%

Conclusion and Summary

- The US Exascale Computing Initiative is on track
 - First US Exascale Systems will be deployed in 2021
 - Wide range of applications and software is under development
- AI (ML/DL) is growing in importance in HPC
 - Our Exascale machines will be well suited for AI problems
 - The DOE labs have growing AI portfolios, key software is being built
- Health care applications (Cancer, Brain Injury, etc.) are driving investment and innovation from DOE in AI on HPC
 - CANDLE project is supporting Cancer and other areas
 - Deep Learning is an HPC and Exascale problem
- Progress on building DL models for Precision Oncology
 - Drug response prediction is one target where deep learning is having impact
 - Population level studies and Cancer biology are also targets


Acknowledgements

Many thanks to DOE, NSF, NIH, DOD, ANL, UC, Moore Foundation, Sloan Foundation, Apple, Microsoft, Cray, Intel and IBM for supporting my research group over the years

Discussion

