The 1st R-CCS

International Symposium

K and Post-K: Simulation, Big Data and AI supporting Society 5.0

VALIDATION OF ALTERNATIVE TECHNOLOGY BY DIRECT TURBULENCE SIMULATION FOR TOWING TANK EXPERIMENT

Dr. Tatsuo Nishikawa,

Shipbuilding Research Centre of Japan,

February 17, 2019, Kobe International Conference Center

TOWING TANK TEST

FRAMEWORK

- 2011 Development - K and Post-K Project Priority Issue 8				
University of Tokyo	Mizuho Informat	Mizuho Information and Research Institute		
Prof. C. Kato	Mr. Yamamde	Mr. Yamamde		
Shipbuilding Research Centre Dr. Nishikawa				
In ab ari Shiphuildin a	Opennichi Deeluverd	Oshima Shiphuildina		
imapan shippoliaing		Oshima shippolialng		
Ship Kurushima Dockyard	Sanovaru Shinbuildi	Ing Naikai Zasan		
Shin Kurushin du Duckyuru				
Namura Shinbuildina	Tshupoishi Shiphuilding	8 maior domestic		
Namora Shippoliaing	TSHUMEISHI SHIPDUIQING	shipyards		
— 2013 Validation —	K Industrial Use —			

K AND POST-K PROJECT PRIORITY ISSUE 8

Development 2011-2018

COMPUTATIONAL METHOD

- FrontFlow/blue (FFB)
 - Incompressible, LES, finite element method, fractional step, BCGStab
 - Dynamic overset, VOF, ALE, 6DOF, etc.
- Large-scale industrial LES
 - Grid generation
 - Refine in the solver
 - CAD data is referred
 - Massively-parallel computation
 - Use double and single precision as the situation demands
 - Low Byte/Flops algorithm using bit operation (low memory transfer)

MODEL(KVLCC2)

Initial mesh(67 million cells for hull, 20 million cells for propeller)

VORTEX DISTRIBUTION AT THE MIDSHIP

TOTAL RESISTANCE 2013

WAVE-MAKING RESISTANCE

SELF-PROLUSION

船舶設計の効率化に向け、 数年後の実用化を目指す 利用者アンケート結果のご紹介

利用支援のご案内

2.就水槽試験中の400m水槽 国立研究開発法人 海上・港湾・航空技術研究所

K INDUSTRIAL USE

Validation 2013-2018

CFD WORKSHOP 2015 K Industrial Use

JAPAN BULK CARRIER (JBC)

Energy Saving Device

Pressure Distributions and Limiting Streamlines

PRACTICAL USE

- Commercial viability.
 - SRC has a long history of commercial towing tank test.
 - Possible to use same business framework.
 - Third party standpoint
- Market research to domestic shipyards.
 - Reality is not so simple
 - Surprise and compliment at first
 - Shortage of money (as usual)
 - Changing their mind
 - CFD is not cheaper than experiment anymore
- Validation data is not enough yet
 - Ballast loading condition
 - Energy saving device
 - Continue to increase more experience

POST K

- Wall-resolved LES in higher Reynolds number.
 - Impossible for actual ship scale simulation.
 - Possible to extrapolate performance better than now.
 - Wall-modeled LES becomes in the scope.
- Maneuverability performance.
- Resistance increase in wave condition.
 - Necessary long period of simulation
 - Feasible only by Post K
- Surface roughness in actual use.
 - Manufacturing limitation/error
 - Biofouling