Are you stroked? Stroke prediction tool for doctors.

Group C

Abdi Essamade Saufi, Masamitsu Nakayama, Sameer Satish Deshmukh, and Yen Chen Chen
Mentors: Seiya Nishizawa, Rahul Bale
Abdi Essamade Saafi
Politecnico di Milano, Italy / PhD

(Presentation title)
Direct Numerical Simulation of the evaporation and combustion of suspended fuel droplets

(Research field / theme)
Computational Fluid Dynamics of Multiphase Flows

Sameer Satish Deshmukh
Tokyo Tech, JPN / PhD

(Presentation title)
Distributed direct solvers for hierarchical matrices.

(Research field / theme)
Distributed LU factorization of hierarchical matrices

Masamitsu Nakayama
Tokai U, JPN / PhD

(Presentation title)
Prediction of bound Thrombin to Platelet Glycoprotein Ibα and von Willebrand Factor Complex using Molecular Dynamics Simulations

(Research field / theme)
Molecular dynamics simulation

Yen Chen Chen
The U of Tokyo, JPN / PhD

(Presentation title)
A Parallel-in-Space/ Time Method for Explicit Time-Marching Schemes

(Research field / theme)
Parallel-in-Space/ Time Methods
Comfort

Provide goods and services that granularly address manifold latent needs without disparity

Vitality

Liberated from cumbersome work, effectively utilizing time

Society 5.0

To balance economic advancement with the resolution of social problems

High-quality Lives

Advance fusion of cyberspace and physical space

Everyday life is happy and fun

Benefit everyone regardless of age and gender
What is Stroke?

Stroke is a condition that affects the arteries leading to and within the brain. It is the No. 3 cause of death and a leading cause of disability in Japan. A stroke occurs when a blood vessel that carries oxygen and nutrients to the brain is either blocked by Thrombus.

Masamitsu
Prediction tool for stroke

Stroke happens suddenly in daily life. It is hard to predict precisely from medical data, because human body is very complicated.

We provide an AI-based tool for doctors to predict probability of stroke by combining Molecular Dynamics, Computational Fluid Dynamics, Machine Learning and the power of Fugaku.

The input data for prediction from patient test results, MRI image and blood pressure, etc.
Methodology

1. Thrombus formation accumulation by Molecular Dynamics
2. Machine learning interface
3. Computational fluid dynamics blood simulation
 a. Efficient matrix solver
 b. Parallel-in-time method
4. CFD based machine learning database for doctors
Thrombus formation (platelet aggregation)
Thrombus formation is occurred by protein interaction
Thrombus formation is occurred by protein interaction

We will calculate the probability of the platelet attaching through MD simulation, in various parameters, viscosity, velocity and pressure changed.

Masamitsu
From Molecular Dynamics to CFD

- From the simulation data of Molecular Dynamics, we construct a machine learning interface that tells the attach rate of the platelet.

\[P(\text{platelet attach}) \]

- From the platelet attach probability, we get the growth speed of the thrombus.
- We expect that order of 100 datasets would be enough.
Blood fluid dynamics

Navier-Stokes equations can be numerically solved to obtain the velocity and pressure fields in arteries and veins.

\[
\rho \frac{\partial \vec{v}}{\partial t} + \rho(\vec{v} \cdot \nabla) \vec{v} = -\nabla P + \gamma \rho + \mu \nabla^2 \vec{v}
\]

Problems: geometry definition, mesh construction, total simulation cost.
Heart modeling

The heart acts as a pump. It is needed for blood circulation.

Its modeling is complex, but the research is advancing in this field.
Mesh and geometry

The geometry only accounts for the large arteries and veins, with a total length of 12 m.

N of cells: 1×10^8 (with AMR it can decrease even further)

N of CPUs: $\sim 10^4$ (Spatial parallelization saturation)

The stability condition involves the Courant number (it has to be lower than one). The relative time step is 2×10^4 s. Total simulation time 10 h.
Adaptive mesh for platelets accumulation

From the molecular dynamic simulation we obtain the **probability of particle attachment**.

With this, we modify the geometry (at each time step) of the domain to account for the thrombus presence.
Better convergence for the CFD solver

- The CFD simulation of the blood requires us to solve a large sparse matrix of the order 10^8 at 10^{-1} s per iteration.
- openFOAM GMRES would take about 10^8 seconds (about 3 years).
- H-matrix LU preconditioners along with parallelization can reduce the time to execute by 10 times (about 4 months) and then more depending on number of compute resources.
Using H-matrix LU factorization based preconditioners

The H-LU preconditioning changes the structure of the matrix and reduces the number of iterations for convergence. Approximation reduces time to compute.
Parallel-in-Time acceleration

- Assuming we have enough computing power, it still takes 10^{-1} time per time step at saturation.
- By introducing Parallel-in-Time method to the solver, we can expect further acceleration.
- With some error tolerance, we could leverage similar parallelization with parallel-in-time method.
- With 10^6 CPUS, we could further accelerate the computation about 100 times.
Using Fugaku for increased parallelization

With Parallel-in-time method, we could further parallelize the problem and we expect that with 10% of the Fugaku computation resource, we would be able to do a single calculation in one day.
Stroke prediction tool for doctors

- From the CFD prediction, we predict the accumulation speed of the thrombus formation given the patient information.
- From the prediction data, we could further build a Machine Learning model for doctors telling whether a patient would have a stroke.
- The parameters of the Deep Neural Network will be various factors determined by the simulation and other external factors.
- The depth of NN and number of parameters might vary depending on the detail we want to consider.
From the CFD prediction, we predict the accumulation speed of the thrombus formation given the patient information.

From the prediction data, we could further build a Machine Learning model for doctors telling whether a patient would have a stroke.

The parameters of the Deep Neural Network will be various factors determined by the simulation and external factors.