Iterative Linear Solvers for Sparse Matrices

Kengo Nakajima
Information Technology Center, The University of Tokyo, Japan

RIKEN AICS Spring School 2014
March 5-7, 2014
TOC

- Sparse Matrices
- Iterative Linear Solvers
 - Preconditioning
 - Parallel Iterative Linear Solvers
 - Multigrid Method
 - Recent Technical Issues
- Example of Parallel MGCG
Goal

- Introduction to Parallel Iterative Solvers

There are a lot of topics and issues all of which I cannot cover. I just try to talk about my experiences in the area of scientific applications and parallel numerical algorithms, with some general introductions.
Finite-Element Method (FEM)

- One of the most popular numerical methods for solving PDE’s.
 - elements (meshes) & nodes (vertices)
- Consider the following 2D heat transfer problem:

\[\lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + Q = 0 \]

- 16 nodes, 9 bi-linear elements
- uniform thermal conductivity ($\lambda = 1$)
- uniform volume heat flux ($Q = 1$)
- $T = 0$ at node 1
- Insulated boundaries
Galerkin FEM procedures

- Apply Galerkin procedures to each element:

\[\int_V [N]^T \left\{ \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + Q \right\} dV = 0 \]

where \(T = [N] \phi \) in each elem.

\{\phi\} : T at each vertex

\[[N] : \text{Shape function (Interpolation function)} \]

- Introduce the following “weak form” of original PDE using Green’s theorem:

\[- \int_V \lambda \left(\frac{\partial [N]^T}{\partial x} \frac{\partial [N]}{\partial x} + \frac{\partial [N]^T}{\partial y} \frac{\partial [N]}{\partial y} \right) dV \cdot \{\phi\} + \int_V Q [N]^T dV = 0 \]
Element Matrix

- Apply the integration to each element and form “element” matrix.

\[- \int_v \lambda \left(\frac{\partial [N]^T \partial [N]}{\partial x} + \frac{\partial [N]^T \partial [N]}{\partial y} \right) dV \cdot \{\phi\} + \int_v Q[N]^T dV = 0\]

\[
\begin{bmatrix}
\phi_A^{(e)} \\
\phi_B^{(e)} \\
\phi_C^{(e)} \\
\phi_D^{(e)}
\end{bmatrix}
=
\begin{bmatrix}
k_{AA}^{(e)} & k_{AB}^{(e)} & k_{AC}^{(e)} & k_{AD}^{(e)} \\
k_{BA}^{(e)} & k_{BB}^{(e)} & k_{BC}^{(e)} & k_{BD}^{(e)} \\
k_{CA}^{(e)} & k_{CB}^{(e)} & k_{CC}^{(e)} & k_{CD}^{(e)} \\
k_{DA}^{(e)} & k_{DB}^{(e)} & k_{DC}^{(e)} & k_{DD}^{(e)}
\end{bmatrix}
\begin{bmatrix}
f_A^{(e)} \\
f_B^{(e)} \\
f_C^{(e)} \\
f_D^{(e)}
\end{bmatrix}
\]
Global (Overall) Matrix
Accumulate each element matrix to “global” matrix.

\[[K] \{ \Phi \} = \{ F \} \]
To each node ...
Effect of surrounding elem’s/nodes are accumulated.

\[
[K]\{\Phi\} = \{F\}
\]

\[
\begin{bmatrix}
D & X & X & X \\
X & D & X & X & X \\
X & D & X & X & X \\
X & X & D & X & X & X \\
X & X & X & D & X & X & X \\
X & X & X & D & X \\
X & X & X & D & X \\
X & X & X & D & X \\
X & X & X & D & X \\
X & X & X & D & X \\
X & X & X & D & X \\
X & X & X & D & X \\
X & X & X & D & X \\
X & X & X & D & X \\
X & X & X & D & X
\end{bmatrix}
\]

\[
\begin{bmatrix}
F_1 \\
F_2 \\
F_3 \\
F_4 \\
F_5 \\
F_6 \\
F_7 \\
F_8 \\
F_9 \\
F_{10} \\
F_{11} \\
F_{12} \\
F_{13} \\
F_{14} \\
F_{15} \\
F_{16}
\end{bmatrix} =
\begin{bmatrix}
\Phi_1 \\
\Phi_2 \\
\Phi_3 \\
\Phi_4 \\
\Phi_5 \\
\Phi_6 \\
\Phi_7 \\
\Phi_8 \\
\Phi_9 \\
\Phi_{10} \\
\Phi_{11} \\
\Phi_{12} \\
\Phi_{13} \\
\Phi_{14} \\
\Phi_{15} \\
\Phi_{16}
\end{bmatrix}
\]
Solve the obtained global eqn’s under certain boundary conditions ($\Phi_1=0$ in this case)
Result ...
2D FDM Mesh (5-point stencil)
Coef. Matrix derived from FDM/FEM

- **Sparse Matrix**
 - Many “0”s

- **Storing all components (e.g. \(A(i,j) \)) is not efficient for sparse matrices**
 - \(A(i,j) \) is suitable for dense matrices

- **Number of non-zero off-diagonal components is \(O(10^2) \) in FEM**
 - If number of unknowns is \(10^8 \):
 - \(A(i,j) \): \(O(10^{16}) \) words
 - Actual Non-zero Components: \(O(10^{10}) \) words

- **Only (really) non-zero off-diag. components should be stored on memory**
Mat-Vec. Multiplication for Sparse Matrix
Memory-Bound Process
Compressed Row Storage (CRS)

\(\{Y\} = [A] \{X\} \)

\[
\begin{align*}
\text{do } i &= 1, N \\
\quad Y(i) &= \text{Diag}(i) \times X(i) \\
\text{do } k &= \text{Index}(i-1) + 1, \text{Index}(i) \\
\quad Y(i) &= Y(i) + \text{Amat}(k) \times X(\text{Item}(k)) \\
\text{endo do}
\end{align*}
\]
CRS or CSR ? for Compressed Row Storage

• In Japan and USA, “CRS” is very general for abbreviation of “Compressed Row Storage”, but they usually use “CSR” in Europe (especially in France).

• “CRS” in France
 – Compagnie Républicaine de Sécurité
 • Republic Security Company of France

• French scientists may feel uncomfortable when we use “CRS” in technical papers and/or presentations.
Mat-Vec. Multiplication for Dense Matrix

Very Easy, Straightforward

\[
\begin{bmatrix}
 a_{11} & a_{12} & \ldots & a_{1,N-1} & a_{1,N} \\
 a_{21} & a_{22} & \ldots & a_{2,N-1} & a_{2,N} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 a_{N-1,1} & a_{N-1,2} & \ldots & a_{N-1,N-1} & a_{N-1,N} \\
 a_{N,1} & a_{N,2} & \ldots & a_{N,N-1} & a_{N,N}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_{N-1} \\
x_N
\end{bmatrix} =
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_{N-1} \\
y_N
\end{bmatrix}
\]

\[
\{Y\} = [A] \{X\}
\]

\[
\text{do } j = 1, N \\
\quad Y(j) = 0. \text{do} \\
\quad \text{do } i = 1, N \\
\quad \quad Y(j) = Y(j) + A(i, j) \cdot X(i) \\
\quad \text{enddo} \\
\text{enddo}
\]
Compressed Row Storage (CRS)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>2.4</td>
<td>0</td>
<td>0</td>
<td>3.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4.3</td>
<td>3.6</td>
<td>0</td>
<td>2.5</td>
<td>0</td>
<td>3.7</td>
<td>0</td>
<td>9.1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>5.7</td>
<td>0</td>
<td>1.5</td>
<td>0</td>
<td>3.1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4.1</td>
<td>0</td>
<td>9.8</td>
<td>2.5</td>
<td>2.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3.1</td>
<td>9.5</td>
<td>10.4</td>
<td>0</td>
<td>11.5</td>
<td>0</td>
<td>4.3</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>6.5</td>
<td>0</td>
<td>0</td>
<td>12.4</td>
<td>9.5</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>6.4</td>
<td>2.5</td>
<td>0</td>
<td>0</td>
<td>1.4</td>
<td>23.1</td>
<td>13.1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>9.5</td>
<td>1.3</td>
<td>9.6</td>
<td>0</td>
<td>3.1</td>
<td>0</td>
<td>51.3</td>
</tr>
</tbody>
</table>
Compressed Row Storage (CRS): C
Numbering starts from 0 in program

N= 8

Diagonal Components
Diag[0]= 1.1
Diag[1]= 3.6
Diag[2]= 5.7
Diag[3]= 9.8
Diag[4]= 11.5
Diag[5]= 12.4
Diag[6]= 23.1
Diag[7]= 51.3
Compressed Row Storage (CRS): C

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.1</td>
<td>2.4</td>
<td>3.2</td>
<td>4.1</td>
<td>5.7</td>
<td>6.4</td>
<td>9.5</td>
<td>11.5</td>
</tr>
<tr>
<td>1</td>
<td>3.6</td>
<td>4.3</td>
<td>2.5</td>
<td>3.7</td>
<td>1.5</td>
<td>2.7</td>
<td>2.5</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td>5.7</td>
<td>4.1</td>
<td>1.5</td>
<td>3.1</td>
<td>1.4</td>
<td>9.5</td>
<td>4.3</td>
<td>9.8</td>
</tr>
<tr>
<td>3</td>
<td>9.8</td>
<td>9.5</td>
<td>2.5</td>
<td>2.7</td>
<td>6.5</td>
<td>9.6</td>
<td>13.1</td>
<td>51.3</td>
</tr>
<tr>
<td>4</td>
<td>11.5</td>
<td>10.4</td>
<td>2.5</td>
<td>1.4</td>
<td>6.4</td>
<td>9.6</td>
<td>3.1</td>
<td>6.4</td>
</tr>
<tr>
<td>5</td>
<td>12.4</td>
<td>3.3</td>
<td>4.3</td>
<td>3.1</td>
<td>5.7</td>
<td>1.3</td>
<td>1.3</td>
<td>5.7</td>
</tr>
<tr>
<td>6</td>
<td>23.1</td>
<td>6.4</td>
<td>2.7</td>
<td>3.1</td>
<td>6.5</td>
<td>1.3</td>
<td>9.5</td>
<td>13.1</td>
</tr>
<tr>
<td>7</td>
<td>51.3</td>
<td>9.5</td>
<td>9.6</td>
<td>3.1</td>
<td>2.5</td>
<td>1.3</td>
<td>1.4</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Note: The values are placeholders and do not represent actual data.
Compressed Row Storage (CRS): C

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.1</td>
<td>2.4</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>3.6</td>
<td>4.3</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>5.7</td>
<td>1.5</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>9.8</td>
<td>4.1</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>11.5</td>
<td>3.1</td>
<td>9.5</td>
</tr>
<tr>
<td>5</td>
<td>12.4</td>
<td>6.5</td>
<td>9.5</td>
</tr>
<tr>
<td>6</td>
<td>23.1</td>
<td>6.4</td>
<td>2.5</td>
</tr>
<tr>
<td>7</td>
<td>51.3</td>
<td>9.5</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Diag (i) Diagonal Components (REAL, i=1~N)

Index (i) Number of Non-Zero Off-Diagonals at Each ROW (INT, i=0~N)

Item (k) Off-Diagonal Components (Corresponding Column ID) (INT, k=1, index(N))

AMat (k) Off-Diagonal Components (Value) (REAL, k=1, index(N))

\[
\{Y\} = [A] \{X\}
\]

```c
for (i=0; i<N; i++) {
    Y[i] = Diag[i] * X[i];
    for (k=Index[i]; k<Index[i+1]; k++) {
        Y[i] += AMat[k] * X[Item[k]];
    }
}
```
• Sparse Matrices

• Iterative Linear Solvers
 – Preconditioning
 – Parallel Iterative Linear Solvers
 – Multigrid Method
 – Recent Technical Issues

• Example of Parallel MGCG
Large-Scale Linear Equations in Scientific Applications

• Solving large-scale linear equations $Ax=b$ is the most important and **expensive** part of various types of scientific computing.
 – for both linear and nonlinear applications

• Various types of methods proposed & developed.
 – for dense and sparse matrices
 – classified into **direct** and **iterative** methods

• Dense Matrices : Globally Coupled Problems
 – BEM, Spectral Methods, MO/MD (gas, liquid)

• Sparse Matrices : Locally Defined Problems
 – FEM, FDM, DEM, MD (solid), BEM w/FMP
直接法（Direct Method）

- Gaussの消去法, 完全LU分解他
 - 行列の変形, 逆行列に相当するものの計算

- 利点
 - 安定, 幅広いアプリケーションに適用可能
 - Pivoting
 - 疎行列, 密行列いずれにも適用可能

- 欠点
 - 反復法よりもメモリ, 計算時間を必要とする
 - 密行列の場合, \(O(N^3)\)の計算量
 - 大規模な計算向けではない
 - \(O(N^2)\)の記憶容量, \(O(N^3)\)の計算量
反復法とは・・・

連立一次方程式

\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{pmatrix}
\]

初期解

\[
x^{(0)} =
\begin{pmatrix}
x_1^{(0)} \\
x_2^{(0)} \\
\vdots \\
x_n^{(0)}
\end{pmatrix}
\]

適当な初期解 \(x^{(0)}\)から始めて、繰り返し計算によって真の解に収束（converge）させていく

\(X^{(1)}, X^{(2)}, \ldots\)
反復法（Iterative Method）

• 定常（stationary）法
 – 反復計算中, 解ベクトル以外の変数は変化せず
 – SOR, Gauss-Seidel, Jacobiなど
 – 概して遅い

\[
Ax = b \Rightarrow \\
\quad x^{(k+1)} = Mx^{(k)} + Nb
\]

• 非定常（nonstationary）法
 – 拘束, 最適化条件が加わる
 – Krylov部分空間（subspace）への写像を基底として使用するため, Krylov部分空間法とも呼ばれる
 – CG（Conjugate Gradient: 共役勾配法）
 – BiCGSTAB（Bi-Conjugate Gradient Stabilized）
 – GMRES（Generalized Minimal Residual）
反復法（Iterative Method）（続き）

• 利点
 – 直接法と比較して、メモリ使用量、計算量が少ない。
 – 並列計算には適している。

• 欠点
 – 収束性が、アプリケーション、境界条件の影響を受けやすい。
 • 収束しない（答えが得られない）可能性がある
 – 前処理（preconditioning）が重要。
非定常反復法: クリロフ部分空間法（1/2）

Krylov Subspace Method

$$Ax = b \Rightarrow x = b + (I - A)x$$

以下の反復式を導入し \(x_0, x_1, x_2, \ldots, x_k\) を求める:

$$x_k = b + (I - A)x_{k-1}$$

$$= (b - Ax_{k-1}) + x_{k-1}$$

$$= r_{k-1} + x_{k-1} \quad \text{where } r_k = b - Ax_k : \text{残差ベクトル (residual)}$$

$$x_k = x_0 + \sum_{i=0}^{k-1} r_i$$

$$r_k = b - Ax_k = b - A(r_{k-1} + x_{k-1})$$

$$= (b - Ax_{k-1}) - Ar_{k-1} = r_{k-1} - Ax_{k-1}r_{k-1} = (I - A)r_{k-1}$$
非定常反復法: クリロフ部分空間法（2/2）

Krylov Subspace Method

\[x_k = x_0 + \sum_{i=0}^{k-1} r_i = x_0 + r_0 + \sum_{i=0}^{k-2} (I - A)r_i = x_0 + r_0 + \sum_{i=1}^{k-1} (I - A)^i r_0 \]

\[z_k = r_0 + \sum_{i=1}^{k-1} (I - A)^i r_0 = \left[I + \sum_{i=1}^{k-1} (I - A)^i \right] r_0 \]

\(z_k \) は \(k \) 次のクリロフ部分空間 (Krylov Subspace) に属するベクトル、問題はクリロフ部分空間からどのようにして解の近似ベクトル \(x_k \) を求めるかにある:

\[[r_0, Ar_0, A^2 r_0, \ldots, A^{k-1} r_0] \]
代表的な非定常反復法: 共役勾配法

• Conjugate Gradient法, 略して「CG」法
 - 最も代表的な「非定常」反復法
• 対称正定値行列 (Symmetric Positive Definite: SPD)
 - 任意のベクトル \{x\} に対して \{x\}^T[A]\{x\} > 0
 - 全対角成分 > 0, 全固有値 > 0, 全部分行列式（主小行列式・首座行列式） > 0 と同値

• アルゴリズム
 - 最急降下法 (Steepest Descent Method) の変種
 - \(x^{(i)} = x^{(i-1)} + \alpha_i p^{(i)} \)
 - \(x^{(i)} \): 反復解, \(p^{(i)} \): 探索方向, \(\alpha_i \): 定数
 - 厳密解を \(y \) とするとき \(\{x-y\}^T[A]\{x-y\} \) を最小とするような \(\{x\} \) を求める。
 - 詳細は参考文献参照
 - 例えば: 森正武「数値解析(第2版)」(共立出版)
共役勾配法（CG法）のアルゴリズム

Compute \(r^{(0)} = b - [A]x^{(0)} \)

for \(i = 1, 2, \ldots \)

\[\rho_{i-1} = r^{(i-1)} \cdot r^{(i-1)} \]

if \(i = 1 \)

\[p^{(1)} = r^{(0)} \]

else

\[\beta_{i-1} = \rho_{i-1}/\rho_{i-2} \]

\[p^{(i)} = r^{(i-1)} + \beta_{i-1} p^{(i-1)} \]

endif

\[q^{(i)} = [A]p^{(i)} \]

\[\alpha_i = \rho_{i-1}/p^{(i)} q^{(i)} \]

\[x^{(i)} = x^{(i-1)} + \alpha_i p^{(i)} \]

\[r^{(i)} = r^{(i-1)} - \alpha_i q^{(i)} \]

check convergence \(|r|\)

end

- 行列ベクトル積
- ベクトル内積
- ベクトル定数倍の加減（DAXPY）

\[x^{(i)} : \text{Vector} \]
\[\alpha_i : \text{Scalar} \]
共役勾配法（CG法）のアルゴリズム

Compute \(r^{(0)} = b - [A]x^{(0)} \)

for \(i = 1, 2, \ldots \)

\[\rho_{i-1} = r^{(i-1)} \cdot r^{(i-1)} \]

if \(i = 1 \)

\[p^{(1)} = r^{(0)} \]

else

\[\beta_{i-1} = \rho_{i-1}/\rho_{i-2} \]

\[p^{(i)} = r^{(i-1)} + \beta_{i-1} p^{(i-1)} \]

endif

\[q^{(i)} = [A]p^{(i)} \]

\[\alpha_i = \rho_i / p^{(i)} q^{(i)} \]

\[x^{(i)} = x^{(i-1)} + \alpha_i p^{(i)} \]

\[r^{(i)} = r^{(i-1)} - \alpha_i q^{(i)} \]

check convergence \(|r| \)

end

・行列ベクトル積
・ベクトル内積
・ベクトル定数倍の加減（DAXPY）

\(x^{(i)} : \) Vector

\(\alpha_i : \) Scalar
共役勾配法（CG法）のアルゴリズム

Compute \(r^{(0)} = b - [A]x^{(0)} \)

for i = 1, 2, ...

\[\rho_{i-1} = r^{(i-1)} \cdot r^{(i-1)} \]

if i = 1

\[p^{(1)} = r^{(0)} \]

else

\[\beta_{i-1} = \rho_{i-1} / \rho_{i-2} \]

\[p^{(i)} = r^{(i-1)} + \beta_{i-1} p^{(i-1)} \]

endif

\[q^{(i)} = [A]p^{(i)} \]

\[\alpha_{i} = \rho_{i-1} / p^{(i)}q^{(i)} \]

\[x^{(i)} = x^{(i-1)} + \alpha_{i}p^{(i)} \]

\[r^{(i)} = r^{(i-1)} - \alpha_{i}q^{(i)} \]

check convergence \(|r|\)

end

 Solver-Iterative

- 行列ベクトル積
- ベクトル内積
- ベクトル定数倍の加減（DAXPY）

\(x^{(i)} : \) Vector

\(\alpha_{i} : \) Scalar
共役勾配法（CG法）のアルゴリズム

$Compute \ r^{(0)} = b - [A]x^{(0)}$

$for \ i = 1, 2, \ldots$

$\rho_{i-1} = r^{(i-1)} \cdot r^{(i-1)}$

$if \ i = 1$

$p^{(1)} = r^{(0)}$

$else$

$\beta_{i-1} = \rho_{i-1} / \rho_{i-2}$

$p^{(i)} = r^{(i-1)} + \beta_{i-1} \cdot p^{(i-1)}$

$endif$

$q^{(i)} = [A]p^{(i)}$

$\alpha_i = \rho_{i-1} / p^{(i)} \cdot q^{(i)}$

$x^{(i)} = x^{(i-1)} + \alpha_i \cdot p^{(i)}$

$r^{(i)} = r^{(i-1)} - \alpha_i \cdot q^{(i)}$

check convergence $|r|$

end

• 行列ベクトル積
• ベクトル内積
• ベクトル定数倍の加減（DAXPY）
 - Double
 - $\{y\} = a \{x\} + \{y\}$

$x^{(i)} : Vector$

$\alpha_i : Scalar$
共役勾配法（CG法）のアルゴリズム

Compute $r^{(0)} = b - [A]x^{(0)}$

for $i = 1, 2, \ldots$

\[\rho_{i-1} = r^{(i-1)} \cdot r^{(i-1)} \]

if $i=1$

\[p^{(1)} = r^{(0)} \]

else

\[\beta_{i-1} = \rho_{i-1}/\rho_{i-2} \]

\[p^{(i)} = r^{(i-1)} + \beta_{i-1} p^{(i-1)} \]

endif

\[q^{(i)} = [A]p^{(i)} \]

\[\alpha_{i} = \rho_{i-1}/p^{(i)}q^{(i)} \]

\[x^{(i)} = x^{(i-1)} + \alpha_{i} p^{(i)} \]

\[r^{(i)} = r^{(i-1)} - \alpha_{i} q^{(i)} \]

check convergence $|r|$

end
CG法アルゴリズムの導出(1/5)

\[y \text{を厳密解 (} Ay=b \text{)とするとき, 下式を最小にする} x \text{を求める:} \]

\[(x - y)^T [A] (x - y)\]

\[
(x - y)^T [A] (x - y) = (x, Ax) - (y, Ax) - (x, Ay) + (y, Ay) \\
= (x, Ax) - 2(x, Ay) + (y, Ay) = (x, Ax) - 2(x, b) + (y, b)
\]

従って, 下記 \(f(x) \) を最小にする \(x \) を求めればよい:

\[f(x) = \frac{1}{2} (x, Ax) - (x, b) \]

\[f(x + h) = f(x) + (h, Ax - b) + \frac{1}{2} (h, Ah) \]

任意のベクトル \(h \)
\[
f(x) = \frac{1}{2} (x, Ax) - (x, b)
\]

\[
f(x + h) = f(x) + (h, Ax - b) + \frac{1}{2} (h, Ah)
\]

\[
f(x + h) = \frac{1}{2} (x + h, A(x + h)) - (x + h, b)
\]

\[
= \frac{1}{2} (x + h, Ax) + \frac{1}{2} (x + h, Ah) - (x, b) - (h, b)
\]

\[
= \frac{1}{2} (x, Ax) + \frac{1}{2} (h, Ax) + \frac{1}{2} (x, Ah) + \frac{1}{2} (h, Ah) - (x, b) - (h, b)
\]

\[
= \frac{1}{2} (x, Ax) - (x, b) + (h, Ax) - (h, b) + \frac{1}{2} (h, Ah)
\]

\[
= f(x) + (h, Ax - b) + \frac{1}{2} (h, Ah)
\]
CG法アルゴリズムの導出(2/5)

CG法は任意の \(x^{(0)} \) から始めて, \(f(x) \) の最小値を逐次探索する。今, \(k \) 番目の近似値 \(x^{(k)} \) と探索方向 \(p^{(k)} \) が決まったとすると:

\[
x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}
\]

\(f(x^{(k+1)}) \) を最小にするためには:

\[
f(x^{(k)} + \alpha_k p^{(k)}) = \frac{1}{2} \alpha_k^2 (p^{(k)}, Ap^{(k)}) - \alpha_k (p^{(k)}, b - Ax^{(k)}) + f(x^{(k)})
\]

\[
\frac{\partial f(x^{(k)} + \alpha_k p^{(k)})}{\partial \alpha_k} = 0 \implies \alpha_k = \frac{(p^{(k)}, b - Ax^{(k)})}{(p^{(k)}, Ap^{(k)})} = \frac{(p^{(k)}, r^{(k)})}{(p^{(k)}, Ap^{(k)})} \tag{1}
\]

\(r^{(k)} = b - Ax^{(k)} \) は第 \(k \) 近似に対する残差
CG法アルゴリズムの導出 (3/5)

残差 \(r^{(k)} \) も以下の式によって計算できる:

\[
 r^{(k+1)} = r^{(k)} - \alpha_k A p^{(k)} \quad (2)
\]

探索方向を以下の漸化式によって求める:

\[
 p^{(k+1)} = r^{(k+1)} + \beta_k p^{(k)}, \quad r^{(0)} = p^{(0)} \quad (3)
\]

本当のところは下記のように \((k+1)\) 回目に厳密解 \(y \) が求まれば良いのであるが、解がわかっていない場合は困難・・・

\[
 y = x^{(k+1)} + \alpha_{k+1} p^{(k+1)}
\]
CG法アルゴリズムの導出 (4/5)

ところで、下式のような都合の良い直交関係がある：

\[
(Ap^{(k)}, y - x^{(k+1)}) = 0
\]

\[
(Ap^{(k)}, y - x^{(k+1)}) = (p^{(k)}, Ay - Ax^{(k+1)}) = (p^{(k)}, b - Ax^{(k+1)})
\]

\[
= (p^{(k)}, b - A[x^{(k)} + \alpha_k p^{(k)}]) = (p^{(k)}, b - Ax^{(k)} - \alpha_k Ap^{(k)})
\]

\[
= (p^{(k)}, r^{(k)} - \alpha_k Ap^{(k)}) = (p^{(k)}, r^{(k)}) - \alpha_k (p^{(k)}, Ap^{(k)}) = 0
\]

\[
\therefore \alpha_k = \frac{(p^{(k)}, r^{(k)})}{(p^{(k)}, Ap^{(k)})}
\]

従って以下が成立する：

\[
(Ap^{(k)}, y - x^{(k+1)}) = (Ap^{(k)}, \alpha_{k+1} p^{(k+1)}) = 0 \Rightarrow (p^{(k+1)}, Ap^{(k)}) = 0
\]
CG法アルゴリズムの導出(5/5)

\[
(p^{(k+1)}, Ap^{(k)}) = (r^{(k+1)} + \beta_k p^{(k)}, Ap^{(k)}) = (r^{(k+1)}, Ap^{(k)}) + \beta_k (p^{(k)}, Ap^{(k)}) = 0
\]

\[\Rightarrow \beta_k = -\frac{(r^{(k+1)}, Ap^{(k)})}{(p^{(k)}, Ap^{(k)})}\] (4)

\[
(p^{(k+1)}, Ap^{(k)}) = 0
\]

\(p^{(k)}\) と \(p^{(k+1)}\) が行列Aに関して共役（conjugate）

Compute \(p^{(0)}=r^{(0)}= b-[A]x^{(0)}\)

for \(i= 1, 2, \ldots\)

calc. \(\alpha_{i-1}\)
\(x^{(i)}= x^{(i-1)} + \alpha_{i-1}p^{(i-1)}\)
\(r^{(i)}= r^{(i-1)} - \alpha_{i-1}[A]q^{(i-1)}\)

check convergence \(|r|\)
(if not converged)
calc. \(\beta_{i-1}\)
\(p^{(i)}= r^{(i)} + \beta_{i-1} p^{(i-1)}\)
end

\[\alpha_{i-1} = \frac{(p^{(i-1)}, r^{(i-1)})}{(p^{(i-1)}, Ap^{(i-1)})}\]

\[\beta_{i-1} = -\frac{(r^{(i)}, Ap^{(i-1)})}{(p^{(i-1)}, Ap^{(i-1)})}\]
任意の\((i,j)\)に対して以下の共役関係が得られる:

\[
(p^{(i)}, Ap^{(j)}) = 0 \quad (i \neq j)
\]

探索方向\(p^{(k)}\)，残差ベクトル\(r^{(k)}\)についても以下の関係が成立する:

\[
(r^{(i)}, r^{(j)}) = 0 \quad (i \neq j), \quad (p^{(k)}, r^{(k)}) = (r^{(k)}, r^{(k)})
\]

\(N\)次元空間で互いに直交で一次独立な残差ベクトル\(r^{(k)}\)は\(N\)個しか存在しない，従って共役勾配法は未知数が\(N\)個のときに\(N\)回以内に収束する⇒実際は丸め誤差の影響がある（条件数が大きい場合）

Top 10 Algorithms in the 20th Century (SIAM)

モンテカルロ法，シンプレックス法，クリロフ部分空間法，行列分解法，最適化Fortranコンパイラ，QR法，クイックソート，FFT，整数関係アルゴリズム，FMM（高速多重極法）
Features of CG Method

\[
(p^{(k+1)}, Ap^{(k)}) = (r^{(k+1)} + \beta_k p^{(k)}, Ap^{(k)}) = (r^{(k+1)}, Ap^{(k)}) + \beta_k (p^{(k)}, Ap^{(k)}) = 0
\]

\[
\Rightarrow \beta_k = -\frac{(r^{(k+1)}, Ap^{(k)})}{(p^{(k)}, Ap^{(k)})}
\]

\[
(p^{(k+1)}, Ap^{(k)}) = 0 \quad p^{(k)} \text{ is “conjugate” for matrix A}
\]

Following “conjugate” relationship is obtained for arbitrary \((i,j)\):

\[
(p^{(i)}, Ap^{(j)}) = 0 \quad (i \neq j)
\]

Following relationships are also obtained for \(p^{(k)}\) and \(r^{(k)}\):

\[
(r^{(i)}, r^{(j)}) = 0 \quad (i \neq j), \quad (p^{(k)}, r^{(k)}) = (r^{(k)}, r^{(k)}), \quad r^{(k)} = b - Ax^{(k)}
\]

In N-dimensional space, only N sets of orthogonal and linearly independent residual vector \(r^{(k)}\). This means CG method converges after N iterations if number of unknowns is N. Actually, round-off error sometimes affects convergence.
Proof (1/3)
Mathematical Induction
数学的帰納法

\[
\alpha_k = \frac{\left(p^{(k)}, r^{(k)}\right)}{\left(p^{(k)}, Ap^{(k)}\right)}
\]

(2) \quad r^{(k+1)} = r^{(k)} - \alpha_k Ap^{(k)}

(3) \quad p^{(k+1)} = r^{(k+1)} + \beta_k p^{(k)}, \quad r^{(0)} = p^{(0)}

(4) \quad \beta_k = -\frac{\left(r^{(k+1)}, Ap^{(k)}\right)}{\left(p^{(k)}, Ap^{(k)}\right)}

\[(r^{(i)}, r^{(j)}) = 0 \ (i \neq j)\]
\[(p^{(i)}, Ap^{(j)}) = 0 \ (i \neq j)\]
Proof (2/3)
Mathematical Induction
数学的帰納法

(1) \(\alpha_k = \frac{p^{(k)}, r^{(k)}}{p^{(k)}, Ap^{(k)}} \)

(2) \(r^{(k+1)} = r^{(k)} - \alpha_k Ap^{(k)} \)

(3) \(p^{(k+1)} = r^{(k)} + \beta_k p^{(k)} \)

(4) \(\beta_k = -\left(r^{(k+1)}, Ap^{(k)} \right) \frac{p^{(k)}, p^{(k)}}{p^{(k)}, Ap^{(k)}} \)

\[
\left(r^{(i)}, r^{(j)} \right) = 0 \quad (i \neq j) \quad (*)
\]

\[
\left(p^{(i)}, Ap^{(j)} \right) = 0 \quad (i \neq j) \quad (\ast)
\]

(\ast) is satisfied for \(i \leq k, j \leq k \) where \(i \neq j \) または \(0 \leq i < j \leq k \)

if \(i < k \) \[
\left(r^{(k+1)}, r^{(i)} \right) = \left(r^{(i)}, r^{(k+1)} \right) \tag{2}
\]

\[
= -\alpha_k \left(r^{(i)}, Ap^{(k)} \right) \tag{4}
\]

\[
\left(r^{(i)}, r^{(k)} \right) = \left(r^{(k)}, r^{(i)} \right) - \alpha_k Ap^{(k)} \quad (\ast)
\]

if \(i = k \) \[
\left(r^{(k+1)}, r^{(k)} \right) \tag{2}
\]

\[
\left(r^{(k)}, r^{(k)} \right) - \alpha_k Ap^{(k)} \quad (\ast)
\]

\[
= -\alpha_k \left(p^{(i)} - \beta_{i-1} p^{(i-1)}, Ap^{(k)} \right)
\]

\[
= -\alpha_k \left(p^{(i)} - \beta_{i-1} p^{(i-1)} + \alpha_k \beta_{i-1} \left(p^{(i-1)}, Ap^{(k)} \right) \right) \tag{1}
\]

\[
= -\alpha_k \left(p^{(i)} - \beta_{i-1} p^{(i-1)}, Ap^{(k)} \right) \tag{3}
\]

\[
= -\alpha_k \left(p^{(i)} - \beta_{i-1} p^{(i-1)} + \alpha_k Ap^{(k)} \right) \tag{3}
\]

\[
= -\beta_{k-1} \left(p^{(k-1)}, r^{(k)} \right) \tag{2}
\]

\[
= -\beta_{k-1} \left(p^{(k-1)} - \alpha_{k-1} Ap^{(k-1)} \right) \tag{1}
\]

\[
= -\beta_{k-1} \left(p^{(k-1)} - \alpha_{k-1} Ap^{(k-1)} \right) \tag{1}
\]

\[
= 0
\]
Proof (3/3)
Mathematical Induction

(∗) is satisfied for \(i \leq k, j \leq k \) where \(i \neq j \) または \(0 \leq i < j \leq k \)

if \(i < k \)

\[
\left(p^{(k+1)}, Ap^{(i)} \right) = \left(r^{(k+1)} + \beta_k p^{(k)}, Ap^{(i)} \right) \\
\overset{(*)}{=} \left(r^{(k+1)}, Ap^{(i)} \right)
\]

(1) \(\alpha_k = \frac{\left(p^{(k)}, r^{(k)} \right)}{\left(p^{(k)}, Ap^{(k)} \right)} \)

(2) \(r^{(k+1)} = r^{(k)} - \alpha_k Ap^{(k)} \)

(3) \(p^{(k+1)} = r^{(k+1)} + \beta_k p^{(k)} \)

(4) \(\beta_k = \frac{- \left(r^{(k+1)}, Ap^{(k)} \right)}{\left(p^{(k)}, Ap^{(k)} \right)} \)

if \(i = k \)

\[
\left(p^{(k+1)}, Ap^{(k)} \right) = \left(r^{(k+1)}, Ap^{(k)} \right) + \beta_k \left(p^{(k)}, Ap^{(k)} \right) \\
\overset{(4)}{=} 0
\]
\[(p^{(k)}, r^{(k)}) = (r^{(k)} + \beta_{k-1} p^{(k-1)}, r^{(k)}) = (\beta_{k-1} p^{(k-1)}, r^{(k)}) + (r^{(k)}, r^{(k)}) = (r^{(k)}, r^{(k)})\]

\[
\begin{align*}
\therefore (Ap^{(k)}, y - x^{(k+1)}) &= (p^{(k)}, Ay - Ax^{(k+1)}) \\
= (p^{(k)}, b - Ax^{(k+1)}) &= (p^{(k)}, r^{(k+1)}) = 0
\end{align*}
\]

\[(p^{(i)}, r^{(k+1)}) = 0, \quad i = 0, 1, \ldots, k\]

\[
x^{(k+1)} = x^{(i+1)} + \sum_{j=i+1}^{k} \alpha_j p^{(j)}
\]

\[
r^{(k+1)} = b - Ax^{(k+1)} = b - A \left[x^{(i+1)} + \sum_{j=i+1}^{k} \alpha_j p^{(j)} \right]
\]

\[
= \left[b - Ax^{(i+1)} \right] - \sum_{j=i+1}^{k} \alpha_j Ap^{(j)} = r^{(i+1)} - \sum_{j=i+1}^{k} \alpha_j Ap^{(j)}
\]

\[
(p^{(i)}, r^{(k+1)}) = (p^{(i)}, r^{(i+1)} - \sum_{j=i+1}^{k} \alpha_j Ap^{(j)})
\]

\[
= (p^{(i)}, r^{(i+1)}) - \left(p^{(i)}, \sum_{j=i+1}^{k} \alpha_j Ap^{(j)} \right) = 0
\]

\[(1) \quad \alpha_k = \frac{(p^{(k)}, r^{(k)})}{(p^{(k)}, Ap^{(k)})}
\]

\[(2) \quad r^{(k+1)} = r^{(k)} - \alpha_k Ap^{(k)}
\]

\[(3) \quad p^{(k+1)} = r^{(k+1)} + \beta_k p^{(k)}
\]

\[(4) \quad \beta_k = -\frac{(r^{(k+1)}, Ap^{(k)})}{(p^{(k)}, Ap^{(k)})}
\]
実際は\(\alpha_k, \beta_k \)はもうちょっと簡単な形に変形できる:

\[
\alpha_k = \frac{(p^{(k)}, b - Ax^{(k)})}{(p^{(k)}, Ap^{(k)})} = \frac{(p^{(k)}, r^{(k)})}{(p^{(k)}, Ap^{(k)})} = \frac{(r^{(k)}, r^{(k)})}{(p^{(k)}, Ap^{(k)})}
\]

\[
\therefore (p^{(k)}, r^{(k)}) = (r^{(k)}, r^{(k)})
\]

\[
\beta_k = -\frac{(r^{(k+1)}, Ap^{(k)})}{(p^{(k)}, Ap^{(k)})} = \frac{(r^{(k+1)}, r^{(k+1)})}{(r^{(k)}, r^{(k)})}
\]

\[
\therefore (r^{(k+1)}, Ap^{(k)}) = \frac{(r^{(k+1)}, r^{(k)} - r^{(k+1)})}{\alpha_k} = -\frac{(r^{(k+1)}, r^{(k+1)})}{\alpha_k}
\]
共役勾配法（CG法）のアルゴリズム

Compute \(r^{(0)} = b - [A]x^{(0)} \)

for \(i = 1, 2, \ldots \)

\[
\rho_{i-1} = r^{(i-1)} r^{(i-1)}
\]

if \(i = 1 \)

\[p^{(1)} = r^{(0)} \]

else

\[\beta_{i-1} = \rho_{i-1}/\rho_{i-2} \]

\[p^{(i)} = r^{(i-1)} + \beta_{i-1} p^{(i-1)} \]

endif

\[q^{(i)} = [A]p^{(i)} \]

\[\alpha_i = \rho_{i-1}/p^{(i)} q^{(i)} \]

\[x^{(i)} = x^{(i-1)} + \alpha_i p^{(i)} \]

\[r^{(i)} = r^{(i-1)} - \alpha_i q^{(i)} \]

check convergence \(|r| \)

end
プログラム例（CG法）（1/3）

```plaintext
do i = 1, N
    R(i) = B(i)
    do j = 1, N
        R(i) = R(i) - AMAT(i, j) * X(j)
    enddo
enddo

BNRM2 = 0.0D0
do i = 1, N
    BNRM2 = BNRM2 + B(i) ** 2
enddo

AMAT(i, j): Aのa_{ij}成分
B(i): bの各成分
X(i): xの各成分
P(i): pの各成分
Q(i): qの各成分
R(i): rの各成分

Compute \( r^{(0)} = b - [A]x^{(0)} \)
for \( i = 1, 2, \ldots \)
\( \rho_{i-1} = r^{(i-1)} r^{(i-1)} \)
if \( i = 1 \)
    \( p^{(1)} = r^{(0)} \)
else
    \( \beta_{i-1} = \rho_{i-1} / \rho_{i-2} \)
    \( p^{(i)} = r^{(i-1)} + \beta_{i-1} p^{(i-1)} \)
endif
q^{(i)} = [A]p^{(i)}
\( \alpha_i = \rho_{i-1} / p^{(i)} q^{(i)} \)
\( x^{(i)} = x^{(i-1)} + \alpha_i p^{(i)} \)
\( r^{(i)} = r^{(i-1)} - \alpha_i q^{(i)} \)
check convergence \( |r| \)
end
```
do iter = 1, ITERmax
 RHO = 0.d0
 do i = 1, N
 RHO = RHO + R(i)*R(i)
 enddo
 if (iter.eq.1) then
 do i = 1, N
 P(i) = R(i)
 enddo
 else
 BETA = RHO / RHO1
 do i = 1, N
 P(i) = R(i) + BETA*P(i)
 enddo
 endif
 do i = 1, N
 Q(i) = 0.d0
 do j = 1, N
 Q(i) = Q(i) + AMAT(i, j)*P(j)
 enddo
 enddo
enddo

Compute \(r^{(0)} = b - [A]x^{(0)} \)
for \(i = 1, 2, \ldots \)
\[
\rho_{i-1} = r^{(i-1)} r^{(i-1)} \\
\text{if } i=1 \quad p^{(1)} = r^{(0)} \\
\text{else} \quad \beta_{i-1} = \rho_{i-1}/\rho_{i-2} \quad p^{(i)} = r^{(i-1)} + \beta_{i-1} p^{(i-1)} \\
q^{(i)} = [A]p^{(i)} \\
\alpha_i = \rho_{i-1}/p^{(i)} q^{(i)} \\
x^{(i)} = x^{(i-1)} + \alpha_i p^{(i)} \\
r^{(i)} = r^{(i-1)} - \alpha_i q^{(i)} \\
\text{check convergence } |r|
end
do iter= 1, ITERmax
...

C1= 0. d0
do i= 1, N
 C1= C1 + P(i)*Q(i)
endo
ALPHA= RHO / C1

do i= 1, N
 X(i)= X(i) + ALPHA * P(i)
 R(i)= R(i) - ALPHA * Q(i)
endo

DNRM2 = 0.0
do i= 1, N
 DNRM2= DNRM2 + R(i)**2
endo

RESID= dsqrt(DNRM2/BNRM2)
if (RESID. le. EPS) exit

RH01 = RHO \rho_{i-1}=\rho_{i-2}
endo

Compute \(r^{(0)}= b- [A]x^{(0)} \)
for i= 1, 2, ...

\rho_{i-1}= r^{(i-1)} r^{(i-1)}
if i=1
 p^{(i)}= r^{(0)}
else
 \beta_{i-1}= \rho_{i-1}/\rho_{i-2}
 p^{(i)}= r^{(i-1)} + \beta_{i-1} p^{(i-1)}
endif
q^{(i)}= [A]p^{(i)}
\alpha_{i} = \rho_{i-1}/p^{(i)} q^{(i)}
\begin{align*}
x^{(i)} &= x^{(i-1)} + \alpha_{i} p^{(i)} \\
r^{(i)} &= r^{(i-1)} - \alpha_{i} q^{(i)}
\end{align*}
check convergence \(|r| \)
end
一次元熱伝導方程式
支配方程式: 熱伝導率 = 1 (一様)

\[
\frac{d^2 \phi}{dx^2} + BF = 0, \quad \phi = 0 \atop 0 \leq x \leq 0, \quad \frac{d\phi}{dx} = 0 \atop 0 \leq x \leq x_{\text{max}}
\]

\[
\phi = -\frac{1}{2} BF x^2 + BF x_{\text{max}} x
\]

以下のような離散化（要素中心で従属変数を定義）をしている
一次元熱伝導方程式
解析解

\[\phi = -\frac{1}{2} BF x^2 + BF x_{\text{max}} x \]

断熱となっているのはこの面、しかし温度は計算されない（\(X=X_{\text{max}}\)）。

\[\phi = 0 \]
\[X = 0 \]

\(\Delta x = 1.0d0\)、メッシュ数=50、すると、\(X_{\text{max}} = 49.5\),
●の点のX座標は49.0となる。BF=1.0d0すると●での温度は:

\[\phi = -\frac{1}{2} 49^2 + 49.5 \times 49 = -1200.5 + 985.05 = 1225 \]
計算例 (N=50) : Jacobi法

<table>
<thead>
<tr>
<th>反復回数</th>
<th>最大残差</th>
<th>(\phi (50))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 iters, RESID=5.443248E-01</td>
<td>PHI(N)=4.724513E+02</td>
<td></td>
</tr>
<tr>
<td>2000 iters, RESID=3.255667E-01</td>
<td>PHI(N)=7.746137E+02</td>
<td></td>
</tr>
<tr>
<td>3000 iters, RESID=1.947372E-01</td>
<td>PHI(N)=9.555996E+02</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34000 iters, RESID=2.347113E-08</td>
<td>PHI(N)=1.225000E+03</td>
<td></td>
</tr>
<tr>
<td>35000 iters, RESID=1.403923E-08</td>
<td>PHI(N)=1.225000E+03</td>
<td></td>
</tr>
<tr>
<td>35661 iters, RESID=9.999053E-09</td>
<td>PHI(N)=1.225000E+03</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>数値解, 解析解</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.000000E+00 0.000000E+00</td>
</tr>
<tr>
<td>2 4.899999E+01 4.900000E+01</td>
</tr>
<tr>
<td>3 9.699999E+01 9.700000E+01</td>
</tr>
<tr>
<td>4 1.440000E+02 1.440000E+02</td>
</tr>
<tr>
<td>5 1.900000E+02 1.900000E+02</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>41 1.180000E+03 1.180000E+03</td>
</tr>
<tr>
<td>42 1.189000E+03 1.189000E+03</td>
</tr>
<tr>
<td>43 1.197000E+03 1.197000E+03</td>
</tr>
<tr>
<td>44 1.204000E+03 1.204000E+03</td>
</tr>
<tr>
<td>45 1.210000E+03 1.210000E+03</td>
</tr>
<tr>
<td>46 1.215000E+03 1.215000E+03</td>
</tr>
<tr>
<td>47 1.219000E+03 1.219000E+03</td>
</tr>
<tr>
<td>48 1.222000E+03 1.222000E+03</td>
</tr>
<tr>
<td>49 1.224000E+03 1.224000E+03</td>
</tr>
<tr>
<td>50 1.225000E+03 1.225000E+03</td>
</tr>
</tbody>
</table>

\[
\phi = - \frac{1}{2} \times 49^2 + 49.5 \times 49 = -1200.5 + 9850.5 = 1225
\]
計算例（N=50）: Gauss-Seidel 法

1000 iters, RESID= 3.303725E-01 PHI(N)= 7.785284E+02
2000 iters, RESID= 1.182010E-01 PHI(N)= 1.065259E+03
3000 iters, RESID= 4.229019E-02 PHI(N)= 1.167848E+03
...
16000 iters, RESID= 6.657001E-08 PHI(N)= 1.225000E+03
17000 iters, RESID= 2.381754E-08 PHI(N)= 1.225000E+03
17845 iters, RESID= 9.993196E-09 PHI(N)= 1.225000E+03

1 0.000000E+00 0.000000E+00
2 4.899999E+01 4.900000E+01
3 9.699999E+01 9.700000E+01
4 1.440000E+02 1.440000E+02
5 1.900000E+02 1.900000E+02
...
41 1.180000E+03 1.180000E+03
42 1.189000E+03 1.189000E+03
43 1.197000E+03 1.197000E+03
44 1.204000E+03 1.204000E+03
45 1.210000E+03 1.210000E+03
46 1.215000E+03 1.215000E+03
47 1.219000E+03 1.219000E+03
48 1.222000E+03 1.222000E+03
49 1.224000E+03 1.224000E+03
50 1.225000E+03 1.225000E+03

数値解, 解析解
計算例（N=50）：CG法

<table>
<thead>
<tr>
<th></th>
<th>反復回数</th>
<th>最大残差</th>
<th>φ(50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49 iters, RESID= 0.000000E-00</td>
<td>PHI(N)= 1.225000E+03</td>
<td></td>
</tr>
</tbody>
</table>

1	0.000000E+00	0.000000E+00	
2	4.899999E+01	4.900000E+01	
3	9.699999E+01	9.700000E+01	
4	1.440000E+02	1.440000E+02	
5	1.900000E+02	1.900000E+02	
...			
41	1.180000E+03	1.180000E+03	
42	1.189000E+03	1.189000E+03	
43	1.197000E+03	1.197000E+03	
44	1.204000E+03	1.204000E+03	
45	1.210000E+03	1.210000E+03	
46	1.215000E+03	1.215000E+03	
47	1.219000E+03	1.219000E+03	
48	1.222000E+03	1.222000E+03	
49	1.224000E+03	1.224000E+03	
50	1.225000E+03	1.225000E+03	

49回目に収束していることに注意（未知数は49個）

\[
\phi = -\frac{1}{2} 49^2 + 49.5 \times 49 = -1200.5 + 9850.5 = 1225
\]
SOR法（Successive Over-Relaxation）
逐次加速緩和法

ヤコビ法

\[M = -D^{-1}(L + U), \quad N = D^{-1} \]
\[x^{(k+1)} = D^{-1}\left[b - (L + U)x^{(k)}\right] \]

ガウス・ザイデル法

\[M = -(D + L)^{-1}U, \quad N = (D + L)^{-1} \]
\[x^{(k+1)} = D^{-1}\left[b - Lx^{(k+1)} - Ux^{(k)}\right] \]

SOR法

\[M = (D + \omega L)^{-1}\left\{(1 - \omega)D - \omega U\right\}, \quad N = \omega(D + \omega L)^{-1} \]
\[x^{(k+1)} = x^{(k)} + \omega\left[\xi^{(k+1)} - x^{(k)}\right] \quad (0 < \omega < 2) \]
\[\xi^{(k+1)} = D^{-1}\left[b - Lx^{(k+1)} - Ux^{(k)}\right] \quad \text{ガウス・ザイデル法の解} \]

\(\omega = 1 \)の場合, ガウス・ザイデル法と一致
プログラム例（ガウス・ザイデル法）

\[
\begin{align*}
\text{PROGRAM} & \quad \text{Example Program (Gauss-Seidel Method)} \\
\text{do iter} & \text{ = 1, } N \times 100 \\
\text{do i} & \text{ = 1, } N \\
\text{RESID} & \text{= } B(i) \\
\text{do j} & \text{ = 1, } N \\
\text{if (j.ne.i) then} \\
\text{RESID} & \text{= RESID - } A(i,j) \times X(j) \\
\text{endif} \\
\text{enddo} \\
X(i) & \text{= RESID} / A(i,i) \\
\text{enddo} \\
\text{enddo}
\end{align*}
\]

\[
M = (D + L)^{-1} U, \quad N = (D + L)^{-1}
\]

\[
x^{(k+1)} = D^{-1} \left[b - Lx^{(k+1)} - Ux^{(k)} \right]
\]

\[
A(i,j): A_{ij} \text{ component} \\
B(i): b \text{ component} \\
X(i): x \text{ component}
\]
プログラマム例（SOR法）

プログラム例

```
do iter = 1, N*100
  do i = 1, N
    RESID = B(i)
    do j = 1, N
      if (j.ne.i) then
        RESID = RESID - A(i,j)*X(j)
      endif
    enddo
    X(i) = OMEGA*(RESID/A(i,i) - X(i)) + X(i)
  enddo
enddo
```

マトリックス

\begin{align*}
M &= (D + \omega L)^{-1}\{(1 - \omega)D - \omega U\} \\
N &= \omega(D + \omega L)^{-1} \\
x^{(k+1)} &= x^{(k)} + \omega\left[\xi^{(k+1)} - x^{(k)}\right] \\
\xi^{(k+1)} &= D^{-1}\left[b - Lx^{(k+1)} - Ux^{(k)}\right]
\end{align*}

A(i,j): Aの\(a_{ij}\)成分
B(i): bの各成分
X(i): xの各成分
一次元熱伝導方程式
解析解

\[\phi = -\frac{1}{2} BF x^2 + BF x_{\text{max}} x \]

\[\phi = 0 \]
\[X = 0 \]

\[\Delta x = 1.0 \times 10^{-1}, \text{メッシュ数} = 50, \text{とすると、} X_{\text{max}} = 49.5, \]

●の点のX座標は49.0となる。BF=1.0とすると●での温度は:

\[\phi = -\frac{1}{2} 49^2 + 49.5 \times 49 = -1200.5 + 9850.5 = 1225 \]
<table>
<thead>
<tr>
<th>Method</th>
<th>Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacobi</td>
<td>35,561</td>
</tr>
<tr>
<td>Gauss-Seidel</td>
<td>17,845</td>
</tr>
<tr>
<td>CG</td>
<td>49</td>
</tr>
<tr>
<td>SOR (ω=0.70)</td>
<td>33,131</td>
</tr>
<tr>
<td>SOR (ω=0.80)</td>
<td>26,762</td>
</tr>
<tr>
<td>SOR (ω=0.90)</td>
<td>21,808</td>
</tr>
<tr>
<td>SOR (ω=1.00)</td>
<td>17,845</td>
</tr>
<tr>
<td>SOR (ω=1.30)</td>
<td>9,614</td>
</tr>
<tr>
<td>SOR (ω=1.50)</td>
<td>5,955</td>
</tr>
<tr>
<td>SOR (ω=1.60)</td>
<td>4,469</td>
</tr>
<tr>
<td>SOR (ω=1.70)</td>
<td>3,155</td>
</tr>
<tr>
<td>SOR (ω=1.80)</td>
<td>1,980</td>
</tr>
<tr>
<td>SOR (ω=1.90)</td>
<td>886</td>
</tr>
<tr>
<td>SOR (ω=1.91)</td>
<td>773</td>
</tr>
<tr>
<td>SOR (ω=1.92)</td>
<td>653</td>
</tr>
<tr>
<td>SOR (ω=1.93)</td>
<td>520</td>
</tr>
<tr>
<td>SOR (ω=1.94)</td>
<td>342</td>
</tr>
<tr>
<td>SOR (ω=1.95)</td>
<td>392</td>
</tr>
<tr>
<td>SOR (ω=1.96)</td>
<td>497</td>
</tr>
<tr>
<td>SOR (ω=1.97)</td>
<td>682</td>
</tr>
<tr>
<td>SOR (ω=1.98)</td>
<td>1,020</td>
</tr>
<tr>
<td>SOR (ω=1.99)</td>
<td>2,028</td>
</tr>
<tr>
<td>SOR (ω=2.00)</td>
<td>NA</td>
</tr>
</tbody>
</table>
ωの範囲

$$M = -(D + \omega L)^{-1}\{(1 - \omega)D - \omega U\}, \quad N = \omega(D + \omega L)^{-1}$$

$$\det(M) = \prod_{i=1}^{N} \lambda_i \quad \lambda_i: Mの固有値 (i=1~N)$$

$$\det(M) = \det\left((D + \omega L)^{-1}\{(1 - \omega)D - \omega U\}\right)$$
$$= \det((D + \omega L)^{-1}) \cdot \det((1 - \omega)D - \omega U)$$
$$= \det(D^{-1}) \cdot \det((1 - \omega)D - \omega U)$$
$$= \det((1 - \omega)I - \omega D^{-1}U) = \det((1 - \omega)I) = (1 - \omega)^N$$

$$\rho(M) = \max_i |\lambda_i| \geq \sqrt[N]{(1 - \omega)^N} = |1 - \omega| \quad 再びスペクトル半径$$

|1 - \omega| < 1となるので, \(0 < \omega < 2, \) 通常は \(1 < \omega < 2\)
反復法（Iterative Method）

• 利点
 – 直接法と比較して, メモリ使用量, 計算量が少ない。
 – 並列計算には適している。

• 欠点
 – 収束性が, アプリケーション, 境界条件の影響を受けやすい。
 • 収束しない（答えが得られない）可能性がある
 – 前処理（preconditioning）が重要。
 • 条件数（condition number）の大きい問題
• Sparse Matrices
• **Iterative Linear Solvers**
 – Preconditioning
 – Parallel Iterative Linear Solvers
 – Multigrid Method
 – Recent Technical Issues
• Example of Parallel MGCG
共役勾配法のアルゴリズム

Compute \(r^{(0)} = b - [A]x^{(0)} \)

for \(i = 1, 2, \ldots \)

\[
\begin{align*}
 z^{(i-1)} &= r^{(i-1)} \\
 \rho_{i-1} &= r^{(i-1)} z^{(i-1)} \\
 \text{if} \ i = 1 \\
 p^{(1)} &= z^{(0)} \\
 \text{else} \\
 \beta_{i-1} &= \rho_{i-1} / \rho_{i-2} \\
 p^{(i)} &= z^{(i-1)} + \beta_{i-1} p^{(i-1)} \\
\end{align*}
\]

endif

\[
\begin{align*}
 q^{(i)} &= [A]p^{(i)} \\
 \alpha_i &= \rho_{i-1} / p^{(i)}q^{(i)} \\
 x^{(i)} &= x^{(i-1)} + \alpha_i p^{(i)} \\
 r^{(i)} &= r^{(i-1)} - \alpha_i q^{(i)} \\
 \text{check convergence} \ |r| \\
\end{align*}
\]
end
前処理（preconditioning）とは？

• 反復法の収束は係数行列の固有値分布に依存
 – 固有値分布が少なく，かつ1に近いほど収束が早い（単位行列）
 – 条件数（condition number）（対称正定）＝最大最小固有値比
 • 条件数が1に近いほど収束しやすい
• もとの係数行列[A]に良く似た前処理行列[M]を適用することによって固有値分布を改善する。
 – 前処理行列[M]によって元の方程式[A] \{x\}={b}を
 \[A’\] \{x’\}={b’} へと変換する。ここで \[A’\]=[M]^{-1}[A]，
 \{b’\}=[M]^{-1}{b} である。
 – \[A’\]=[M]^{-1}[A] が単位行列に近ければ良いということになる。
 – \[A’\]=[A][M]^{-1} のように右からかけることもある。
• 「前処理」は密行列，疎行列ともに使用するが，普通は疎行列を対象にすることが多い。
前処理付共役勾配法
Preconditioned Conjugate Gradient Method (PCG)

実際にやるべき計算は:

\[
\{z\} = [M]^{-1}\{r\}
\]

「近似逆行列」の計算が必要:

\[
[M]^{-1} \approx [A]^{-1}, \quad [M] \approx [A]
\]

究極の前処理: 本当の逆行列

\[
[M]^{-1} = [A]^{-1}, \quad [M] = [A]
\]

対角スケーリング: 簡単＝弱い

\[
[M]^{-1} = [D]^{-1}, \quad [M] = [D]
\]
対角スケーリング, 点ヤコビ前処理

• 前処理行列として、もとの行列の対角成分のみを取り出した行列を前処理行列 \([M]\) とする。

 – 対角スケーリング, 点ヤコビ (point-Jacobi) 前処理
 \[M = \begin{bmatrix}
 D_1 & 0 & \cdots & 0 & 0 \\
 0 & D_2 & \cdots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & D_{N-1} & 0 \\
 0 & 0 & \cdots & 0 & D_N
 \end{bmatrix} \]

• \textbf{solve} \ [M]z^{(i-1)} = r^{(i-1)} \) という場合に逆行列を簡単に求めることができる。

• 簡単な問題では収束する。
ILU(0), IC(0)

• 最もよく使用されている前処理（疎行列用）
 – 不完全LU分解
 • Incomplete LU Factorization
 – 不完全コレスキー分解
 • Incomplete Cholesky Factorization（対称行列）

• 不完全な直接法
 – もとの行列が疎でも、逆行列は疎とは限らない。
 – fill-in
 – もとの行列と同じ非ゼロパターン（fill-in無し）を持って
 いるのがILU(0), IC(0)
ファイル類 on PC FORTRANだけです

コピー, 展開
http://nkl.cc.u-tokyo.ac.jp/files/ilu.tar

>$ cd <$CUR>

>$ tar xvf ilu.tar
>$ cd ilu

>$ ls

lu1.f lu2.f
LU分解法：完全LU分解法

• 直接法の一種
 - 逆行列を直接求める手法
 - 「逆行列」に相当するものを保存しておくので、右辺が変わったときに計算時間を節約できる
 - 逆行列を求める際にFill-in（もとの行列では0であったところに値が入る）が生じる

• LU factorization
「不」完全LU分解法

• ILU factorization
 – Incomplete LU factorization

• Fill-inの発生を制限して、前処理に使う手法
 – 不完全な逆行列、少し弱い直接法
 – Fill-inを許さないとき: ILU(0)
LU分解による連立一次方程式の解法

Aがn×n行列のとき、Aを次式のように表すことを（あるいは、そのようなLとUそのものを）AのLU分解という。

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn}
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
l_{21} & 1 & 0 & \cdots & 0 \\
l_{31} & l_{32} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
l_{n1} & l_{n2} & l_{n3} & \cdots & 1
\end{pmatrix}
\begin{pmatrix}
u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\
u_{22} & u_{23} & \cdots & \cdots & u_{2n} \\
u_{33} & \cdots & \cdots & \cdots & u_{3n} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
u_{nn}
\end{pmatrix}
\]

\[A = LU\]

L : Lower triangular part of matrix A
U : Upper triangular part of matrix A
連立一次方程式の行列表現

n元の連立一次方程式の一般形

\[a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \]
\[a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \]
\[\vdots \]
\[a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \]

行列表現

\[
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
=
\begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{pmatrix}
\]

\[A \cdot X = b \]
LU分解を用いたAx=bの解法

1. $A = LU$ となるAのLU分解LとUを求める。

2. $Ly = b$ の解yを求める.（簡単！）

3. $Ux = y$ の解xを求める.（簡単！）

このxが $Ax = b$ の解となる

∴ $Ax = LUx = Ly = b$
Ly=bの解法：前進代入

\[\begin{align*}
Ly &= b \\
\begin{pmatrix}
1 & 0 & \cdots & 0 \\
l_{21} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
l_{n1} & l_{n2} & \cdots & 1
\end{pmatrix}
\begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{pmatrix}
&=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{pmatrix}
\end{align*} \]

- \(y_1 = b_1\)
- \(l_{21}y_1 + y_2 = b_2\)
- \(\vdots\)
- \(l_{n1}y_1 + l_{n2}y_2 + \cdots + y_n = b_n\)

\[\begin{align*}
y_1 &= b_1 \\
y_2 &= b_2 - l_{21}y_1 \\
\vdots \\
y_n &= b_n - l_{n1}y_1 - l_{n2}y_2 - \sum_{i=1}^{n-1} l_{ni}y_i
\end{align*}\]

芋づる式に (one after another) 解が求まる。
Ux= y の解法：後退代入

\[Ux = y \]

\[
\begin{pmatrix}
 u_{11} & u_{12} & \cdots & u_{1n} \\
 0 & u_{22} & \cdots & u_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & u_{nn}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
=
\begin{pmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n
\end{pmatrix}
\]

\[u_{nn}x_n = y_n \]
\[u_{n-1,n-1}x_{n-1} + u_{n-1,n}x_n = y_{n-1} \]
\[\vdots \]
\[u_{11}x_1 + u_{12}x_2 + \cdots + u_{1n}x_n = y_1 \]

\[x_n = y_n / u_{nn} \]
\[x_{n-1} = (y_{n-1} - u_{n-1,n}x_n) / u_{n-1,n-1} \]
\[\vdots \]
\[x_1 = \left(y_1 - \sum_{i=2}^{n} u_{1j}x_j \right) / u_{11} \]

芋づる式に (one after another) 解が求まる。
LU分解の求め方

1. \[
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
 a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
 a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn}
\end{pmatrix}
\]

= \[
\begin{pmatrix}
 1 & 0 & 0 & \cdots & 0 \\
 l_{21} & 1 & 0 & \cdots & 0 \\
 l_{31} & l_{32} & 1 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 l_{n1} & l_{n2} & l_{n3} & \cdots & 1
\end{pmatrix}
\begin{pmatrix}
 u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\
 0 & u_{22} & u_{23} & \cdots & u_{2n} \\
 0 & 0 & u_{33} & \cdots & u_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & u_{nn}
\end{pmatrix}
\]

2. \[a_{11} = u_{11}, a_{12} = u_{12}, \cdots, a_{1n} = u_{1n} \Rightarrow u_{11}, u_{12}, \cdots, u_{1n}\]

3. \[a_{21} = l_{21} u_{11}, a_{31} = l_{31} u_{11}, \cdots, a_{n1} = l_{n1} u_{11} \Rightarrow l_{21}, l_{31}, \cdots, l_{n1}\]

4. \[a_{22} = l_{21} u_{12} + u_{22}, \cdots, a_{2n} = l_{21} u_{1n} + u_{2n} \Rightarrow u_{22}, u_{23}, \cdots, u_{2n}\]

5. \[a_{32} = l_{31} u_{12} + l_{32} u_{22}, \cdots \Rightarrow l_{32}, l_{42}, \cdots, l_{n2}\]
数值例

\[
A = \begin{pmatrix}
 1 & 2 & 3 & 4 \\
 2 & 6 & 7 & 10 \\
 2 & 2 & 8 & 7 \\
 0 & -4 & 7 & 1 \\
\end{pmatrix}
= \begin{pmatrix}
 l_{21} & 1 & 0 & 0 \\
 l_{31} & l_{32} & 1 & 0 \\
 l_{41} & l_{42} & l_{43} & 1 \\
\end{pmatrix}
\begin{pmatrix}
 u_{11} & u_{12} & u_{13} & u_{14} \\
 0 & u_{22} & u_{23} & u_{24} \\
 0 & 0 & u_{33} & u_{34} \\
 0 & 0 & 0 & u_{44} \\
\end{pmatrix}
\]

第1行 \[1 = u_{11}, 2 = u_{12}, 3 = u_{13}, 4 = u_{14}\]

第1列 \[2 = l_{21} u_{11} \Rightarrow l_{21} = 2 / u_{11} = 2, \quad 2 = l_{31} u_{11} \Rightarrow l_{31} = 2 / u_{11} = 2\]
\[0 = l_{41} u_{11} \Rightarrow l_{41} = 0 / u_{11} = 0\]

第2行 \[6 = l_{21} u_{12} + u_{22} \Rightarrow u_{22} = 2, \quad 7 = l_{21} u_{13} + u_{23} \Rightarrow u_{23} = 1\]
\[10 = l_{21} u_{14} + u_{24} \Rightarrow u_{24} = 2\]

第2列 \[2 = l_{31} u_{12} + l_{32} u_{22} \Rightarrow l_{32} = -1, \quad -4 = l_{41} u_{12} + l_{42} u_{22} \Rightarrow l_{42} = -2\]
数値例(続き)

\[A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 6 & 7 & 10 \\ 2 & 2 & 8 & 7 \\ 0 & -4 & 7 & 1 \end{pmatrix} = \begin{pmatrix} l_{21} & 1 & 0 & 0 \\ l_{31} & l_{32} & 1 & 0 \\ l_{41} & l_{42} & l_{43} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{pmatrix} \]

第3行 \[8 = l_{31} u_{13} + l_{32} u_{23} + u_{33} \Rightarrow u_{33} = 3, \]
\[7 = l_{31} u_{14} + l_{32} u_{24} + u_{34} \Rightarrow u_{34} = 1 \]

第3列 \[7 = l_{41} u_{13} + l_{42} u_{23} + l_{43} u_{33} \Rightarrow u_{43} = 3 \]

第4行(第4列) \[1 = l_{41} u_{14} + l_{42} u_{24} + l_{43} u_{34} + u_{44} \Rightarrow u_{44} = 2 \]

1行、1列、2行、2列、・・・の順に求める式を作っていく.
数値例(続き)

結局

\[\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 6 & 7 & 10 \\ 2 & 2 & 8 & 7 \\ 0 & -4 & 7 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 2 & -1 & 1 & 0 \\ 0 & -2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix} \]

\[\begin{align*}
\mathbf{L} &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 2 & -1 & 1 & 0 \\ 0 & -2 & 3 & 1 \end{pmatrix} \\
\mathbf{U} &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}
\end{align*} \]
実例: 5点差分
実例: 5点差分
実例：係数マトリクス

\[
\begin{bmatrix}
6.00 & -1.00 & 0.00 & -1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
-1.00 & 6.00 & -1.00 & 0.00 & -1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & -1.00 & 6.00 & 0.00 & 0.00 & -1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
-1.00 & 0.00 & 0.00 & 6.00 & -1.00 & 0.00 & -1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & -1.00 & 0.00 & -1.00 & 6.00 & -1.00 & 0.00 & -1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & -1.00 & 0.00 & -1.00 & 6.00 & 0.00 & 0.00 & -1.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & -1.00 & 0.00 & 0.00 & 6.00 & -1.00 & 0.00 & -1.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & -1.00 & 0.00 & -1.00 & 6.00 & 0.00 & 0.00 & -1.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -1.00 & 0.00 & 0.00 & 6.00 & -1.00 & 0.00 & -1.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -1.00 & 0.00 & -1.00 & 6.00 & -1.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -1.00 & 0.00 & -1.00 & 6.00 & -1.00 \\
\end{bmatrix}
\times
\begin{bmatrix}
X_1 \\
X_2 \\
X_3 \\
X_4 \\
X_5 \\
X_6 \\
X_7 \\
X_8 \\
X_9 \\
X_{10} \\
X_{11} \\
X_{12} \\
\end{bmatrix}
=
\begin{bmatrix}
0.00 \\
3.00 \\
10.00 \\
11.00 \\
10.00 \\
19.00 \\
20.00 \\
28.00 \\
16.00 \\
42.00 \\
36.00 \\
52.00 \\
\end{bmatrix}
\]
実例: 解

\[
\begin{pmatrix}
6.00 & -1.00 & 0.00 & -1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
-1.00 & 6.00 & -1.00 & 0.00 & -1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & -1.00 & 6.00 & 0.00 & 0.00 & -1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
-1.00 & 0.00 & 0.00 & 6.00 & -1.00 & 0.00 & -1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & -1.00 & 0.00 & -1.00 & 6.00 & -1.00 & 0.00 & -1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & -1.00 & 0.00 & 6.00 & 0.00 & 0.00 & -1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & -1.00 & 0.00 & 6.00 & -1.00 & 0.00 & -1.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & -1.00 & 6.00 & -1.00 & 0.00 & -1.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -1.00 & 6.00 & -1.00 & 0.00 & -1.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -1.00 & 6.00 & -1.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -1.00 & 6.00 & -1.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -1.00 & 6.00 & -1.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -1.00 & 6.00 & -1.00 \\
\end{pmatrix}
\begin{pmatrix}
1.00 \\
2.00 \\
3.00 \\
4.00 \\
5.00 \\
6.00 \\
7.00 \\
8.00 \\
9.00 \\
10.00 \\
11.00 \\
12.00 \\
\end{pmatrix}
=
\begin{pmatrix}
0.00 \\
3.00 \\
10.00 \\
11.00 \\
10.00 \\
19.00 \\
20.00 \\
16.00 \\
28.00 \\
42.00 \\
36.00 \\
52.00 \\
\end{pmatrix}
完全LU分解したマトリクス

もとのマトリクス

LU分解したマトリクス

[L][U]同時に表示

[L]対角成分（=1）省略

（fill-inが生じている。もともと0だった成分が非ゼロになっている）
不完全LU分解したマトリクス（fill-in無し）

不完全LU分解したマトリクス（fill-in無し）

[L][U]同時に表示
[L]対角成分（=1）省略

<table>
<thead>
<tr>
<th></th>
<th>6.00</th>
<th>-1.00</th>
<th>0.00</th>
<th>-1.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>5.83</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>5.83</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
</tbody>
</table>

完全LU分解したマトリクス

[L][U]同時に表示
[L]対角成分（=1）省略
（fill-inが生じている。もともと0だった成分が非ゼロになっている）

<table>
<thead>
<tr>
<th></th>
<th>6.00</th>
<th>-1.00</th>
<th>0.00</th>
<th>-1.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.17</td>
<td>5.83</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>-0.17</td>
<td>5.83</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>-0.17</td>
<td>0.00</td>
<td>0.00</td>
<td>5.83</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>-0.17</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>5.83</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>-0.17</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>5.65</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
</tbody>
</table>
解の比較：ちょっと違う

不完全LU分解 lu2.f

<table>
<thead>
<tr>
<th></th>
<th>6.00</th>
<th>-1.00</th>
<th>0.00</th>
<th>-1.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.17</td>
<td>5.83</td>
<td>-1.00</td>
<td>0.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>-0.17</td>
<td>5.83</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>-0.17</td>
<td>0.00</td>
<td>0.00</td>
<td>5.83</td>
<td>-1.00</td>
<td>0.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>-0.17</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.17</td>
<td>5.66</td>
<td>-1.00</td>
<td>0.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>-0.17</td>
<td>0.00</td>
<td>-0.18</td>
<td>5.65</td>
<td>0.00</td>
<td>-0.18</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>5.83</td>
<td>-1.00</td>
<td>0.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.18</td>
<td>0.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.18</td>
<td>0.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.18</td>
<td>0.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.18</td>
<td>0.00</td>
<td>-1.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.18</td>
<td>0.00</td>
<td>-1.00</td>
</tr>
</tbody>
</table>

完全LU分解 lu1.f

<table>
<thead>
<tr>
<th></th>
<th>6.00</th>
<th>-1.00</th>
<th>0.00</th>
<th>-1.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.17</td>
<td>5.83</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>-0.17</td>
<td>5.83</td>
<td>-0.03</td>
<td>-1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>-0.17</td>
<td>0.00</td>
<td>0.00</td>
<td>5.83</td>
<td>-1.03</td>
<td>0.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>-0.17</td>
<td>0.00</td>
<td>-0.18</td>
<td>5.64</td>
<td>-1.03</td>
<td>-0.18</td>
<td>0.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>-0.17</td>
<td>0.00</td>
<td>-0.18</td>
<td>5.64</td>
<td>-0.03</td>
<td>-0.18</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.17</td>
<td>-0.03</td>
<td>-0.01</td>
<td>5.82</td>
<td>-1.03</td>
<td>-0.01</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.18</td>
<td>-0.03</td>
<td>-0.18</td>
<td>5.63</td>
<td>-1.03</td>
<td>-0.18</td>
<td>-1.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.18</td>
<td>-0.03</td>
<td>-0.18</td>
<td>5.63</td>
<td>-1.03</td>
<td>-0.18</td>
<td>-1.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.18</td>
<td>-0.03</td>
<td>-0.18</td>
<td>5.63</td>
<td>-1.03</td>
<td>-0.18</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.18</td>
<td>-0.03</td>
<td>-0.18</td>
<td>5.63</td>
<td>-1.03</td>
</tr>
</tbody>
</table>
ILU(0), IC(0) 前処理

• Fill-inを全く考慮しない「不完全な」分解
 – 記憶容量, 計算量削減

• これを解くと「不完全な」解が得られるが, 本来の解とそれほどずれていないわけではない
 – 問題に依存する
• Sparse Matrices
• Iterative Linear Solvers
 − Preconditioning
 − Parallel Iterative Linear Solvers
 − Multigrid Method
 − Recent Technical Issues
• Example of Parallel MGCG
Parallel Iterative Solvers

• Both of convergence (robustness) and efficiency (single/parallel) are important

• Global communications needed
 – Mat-Vec (P2P communications, MPI_Isend/Irecv/Waitall): Local Data Structure with HALO
 ➢ effect of latency
 – Dot-Products (MPI_Allreduce)
 – Preconditioning (up to algorithm)

• Remedy for Robust Parallel ILU Preconditioner
 – Additive Schwartz Domain Decomposition
 – HID (Hierarchical Interface Decomposition, based on global nested dissection) [Henon & Saad 2007], ext. HID [KN 2010]

• Parallel “Direct” Solvers (e.g. SuperLU, MUMPS etc.)
Local Data Structures for Parallel FEM/FDM using Krylov Iterative Solvers
Example: 2D FDM Mesh (5-point stencil)
Example: 2D FDM Mesh (5-point stencil)

4-regions/domains
Example: 2D FDM Mesh (5-point stencil)

4-regions/domains
Example: 2D FDM Mesh (5-point stencil)

Meshes at domain boundary need info. neighboring domains
Example: 2D FDM Mesh (5-point stencil)

Meshes at domain boundary need info. neighboring domains.
Example: 2D FDM Mesh (5-point stencil)

comm. using “HALO (overlapped meshes)”
Red Lacquered Gate in 64 PEs
40,624 elements, 54,659 nodes

k-METIS
Load Balance = 1.03
edgecut = 7,563

p-METIS
Load Balance = 1.00
edgecut = 7,738
Generalized Comm. Table: Send

• Neighbors
 – NeibPETot, NeibPE[neib]

• Message size for each neighbor
 – export_index[neib], neib= 0, NeibPETot-1

• ID of boundary points
 – export_item[k], k= 0, export_index[NeibPETot]-1

• Messages to each neighbor
 – SendBuf[k], k= 0, export_index[NeibPETot]-1
for (neib=0; neib<NeibPETot; neib++){
 for (k=export_index[neib]; k<export_index[neib+1]; k++){
 kk = export_item[k];
 SendBuf[k] = VAL[kk];
 }
}

for (neib=0; neib<NeibPETot; neib++){
 tag = 0;
 iS_e = export_index[neib];
 iE_e = export_index[neib+1];
 BUFlength_e = iE_e - iS_e
 ierr = MPI_Isend
 (&SendBuf[iS_e], BUFlength_e, MPI_DOUBLE, NeibPE[neib], 0,
 MPI_COMM_WORLD, &ReqSend[neib])
}

MPI_Waitall(NeibPETot, ReqSend, StatSend);
MPI_Isend

- Begins a non-blocking send
 - Send the contents of sending buffer (starting from sendbuf, number of messages: count) to dest with tag.
 - Contents of sending buffer cannot be modified before calling corresponding MPI_Waitall.

- **MPI_Isend**

 (sendbuf, count, datatype, dest, tag, comm, request)

 - sendbuf choice I starting address of sending buffer
 - count int I number of elements in sending buffer
 - datatype MPI_Datatype I datatype of each sending buffer element
 - dest int I rank of destination
 - tag int I message tag

 This integer can be used by the application to distinguish messages. Communication occurs if tag’s of MPI_Isend and MPI_Irecv are matched.

 Usually tag is set to be “0” (in this class),

 - comm MPI_Comm I communicator
 - request MPI_Request O communication request array used in MPI_Waitall
MPI_Waitall

- **MPI_Waitall** blocks until all comm’s, associated with request in the array, complete. It is used for synchronizing **MPI_Isend** and **MPI_Irecv** in this class.
- At sending phase, contents of sending buffer cannot be modified before calling corresponding **MPI_Waitall**. At receiving phase, contents of receiving buffer cannot be used before calling corresponding **MPI_Waitall**.
- **MPI_Isend** and **MPI_Irecv** can be synchronized simultaneously with a single **MPI_Waitall** if it is consistent.
 - Same request should be used in **MPI_Isend** and **MPI_Irecv**.
- Its operation is similar to that of **MPI_Barrier** but, **MPI_Waitall** can not be replaced by **MPI_Barrier**.
 - Possible troubles using **MPI_Barrier** instead of **MPI_Waitall**: Contents of request and status are not updated properly, very slow operations etc.

MPI_Waitall (count,request,status)

- **count** int I number of processes to be synchronized
- **request** MPI_Request I/O comm. request used in **MPI_Waitall** (array size: count)
- **status** MPI_Status O array of status objects

MPI_STATUS_SIZE: defined in ‘mpif.h’, ‘mpi.h’
Generalized Comm. Table: Receive

- Neighbors
 - NeibPETot, NeibPE[neib]
- Message size for each neighbor
 - import_index[neib], neib= 0, NeibPETot-1
- ID of external points
 - import_item[k], k= 0, import_index[NeibPETot]-1
- Messages from each neighbor
 - RecvBuf[k], k= 0, import_index[NeibPETot]-1
for (neib=0; neib<NeibPETot; neib++){
 tag = 0;
 iS_i = import_index[neib];
 iE_i = import_index[neib+1];
 BUFlength_i = iE_i - iS_i

 ierr = MPI_Irecv
 (&RecvBuf[iS_i], BUFlength_i, MPI_DOUBLE, NeibPE[neib], 0,
 MPI_COMM_WORLD, &ReqRecv[neib])
}

MPI_Waitall(NeibPETot, ReqRecv, StatRecv);

for (neib=0; neib<NeibPETot; neib++){
 for (k=import_index[neib]; k<import_index[neib+1]; k++){
 kk = import_item[k];
 VAL[kk] = RecvBuf[k];
 }
}

import_item (import_index[neib]:import_index[neib+1]-1) are received from neib-th neighbor
MPI_Irecv

- Begins a non-blocking receive
 - Receiving the contents of receiving buffer (starting from \texttt{recvbuf}, number of messages: \texttt{count}) from \texttt{source} with \texttt{tag}.
 - Contents of receiving buffer cannot be used before calling corresponding \texttt{MPI_Waitall}.

- \texttt{MPI_Irecv(recvbuf,count,datatype,source,tag,comm,request)}
 - \texttt{recvbuf} choice \texttt{I} starting address of receiving buffer
 - \texttt{count} int \texttt{I} number of elements in receiving buffer
 - \texttt{datatype} \texttt{MPI_Datatype} \texttt{I} datatype of each receiving buffer element
 - \texttt{source} int \texttt{I} rank of source
 - \texttt{tag} int \texttt{I} message tag
 This integer can be used by the application to distinguish messages. Communication occurs if \texttt{tag}’s of \texttt{MPI_Isend} and \texttt{MPI_Irecv} are matched.
 Usually tag is set to be “0” (in this class),
 - \texttt{comm} \texttt{MPI_Comm} \texttt{I} communicator
 - \texttt{request} \texttt{MPI_Request} \texttt{O} communication request array used in \texttt{MPI_Waitall}
References: Libraries (mainly for flat MPI)

• Talk by the Next Speaker (Tony Drummond)

• Trillinos
 – http://trilinos.sandia.gov/

• PETSc
 – http://www.mcs.anl.gov/petsc/

• GeoFEM
 – http://geofem.tokyo.rist.or.jp/

• ppOpen-HPC
 – http://ppopenhpc.cc.u-tokyo.ac.jp/
Preconditioning for Iterative Solvers

- A critical issue for both of robustness and efficiency
- Libraries (e.g. PETSc, Trillinos, ppOpen-HPC) cover only general ones (e.g. ILU(p))
- Selection of preconditioner strongly depends on:
 - numerical property of matrix
 - features of physics, PDE, boundary conditions, mat. property, size of FEM mesh etc.
 - sometimes, problem specific preconditioning needed
- “Parallel” preconditioning is really an exciting research area, important for practical computing.
- All of computational scientists, computer scientists, and mathematicians must work hard for that under intensive collaboration
• Sparse Matrices
• **Iterative Linear Solvers**
 – Preconditioning
 – Parallel Iterative Linear Solvers
 – **Multigrid Method**
 – Recent Technical Issues
• Example of Parallel MGCG
• ppOpen-HPC
Around the multigrid in a single slide

- Multigrid is a scalable method for solving linear equations.
- Relaxation methods (smoother/smoothing operator in MG world) such as Gauss-Seidel efficiently damp high-frequency error but do not eliminate low-frequency error.
- The multigrid approach was developed in recognition that this low-frequency error can be accurately and efficiently solved on a coarser grid.
- Multigrid method uniformly damps all frequencies of error components with a computational cost that depends only linearly on the problem size (=scalable).
 - Good for large-scale computations
- Multigrid is also a good preconditioning algorithm for Krylov iterative solvers.
Convergence of Gauss-Seidel & SOR

Rapid Convergence
(high-frequency error: short wave length)
Convergence of Gauss-Seidel & SOR

Slow Convergence (low-frequency error: long wave length)
Around the multigrid in a single slide

• Multigrid is a scalable method for solving linear equations.
• Relaxation methods (smoother/smoothing operator in MG world) such as Gauss-Seidel efficiently damp high-frequency error but do not eliminate low-frequency error.
• The multigrid approach was developed in recognition that this low-frequency error can be accurately and efficiently solved on a coarser grid.
• Multigrid method uniformly damps all frequencies of error components with a computational cost that depends only linearly on the problem size (=scalable).
 – Good for large-scale computations
• Multigrid is also a good preconditioning algorithm for Krylov iterative solvers.
Multigrid is scalable
Weak Scaling: Problem Size/Core Fixed
for 3D Poisson Eqn’s \((\Delta \phi = q)\)
MGCG = Conjugate Gradient with Multigrid Preconditioning
Multigrid is scalable

Weak Scaling: Problem Size/Core Fixed

Comp. time of MGCG for weak scaling is constant:

\Rightarrow scalable
Multigrid is a scalable method for solving linear equations. Relaxation methods such as Gauss-Seidel efficiently damp high-frequency error but do not eliminate low-frequency error. The multigrid approach was developed in recognition that this low-frequency error can be accurately and efficiently solved on a coarser grid. This concept is explained here in the following simple 2-level method. If we have obtained the following linear system on a fine grid:

\[
A_F \ u_F = f
\]

and \(A_C \) as the discrete form of the operator on the coarse grid, a simple coarse grid correction can be given by:

\[
u_F^{(i+1)} = u_F^{(i)} + R^T A_C^{-1} R \ (f - A_F \ u_F^{(i)})
\]

where \(R^T \) is the matrix representation of linear interpolation from the coarse grid to the fine grid (prolongation operator) and \(R \) is called the restriction operator. Thus, it is possible to calculate the residual on the fine grid, solve the coarse grid problem, and interpolate the coarse grid solution on the fine grid.
This process can be described as follows:

1. Relax the equations on the fine grid and obtain the result $u_F^{(i)} = S_F(A_F, f)$. This operator S_F (e.g., Gauss-Seidel) is called the smoothing operator (or).
2. Calculate the residual term on the fine grid by $r_F = f - A_F u_F^{(i)}$.
3. Restrict the residual term on to the coarse grid by $r_C = R r_F$.
4. Solve the equation $A_C u_C = r_C$ on the coarse grid; the accuracy of the solution on the coarse grid affects the convergence of the entire multigrid system.
5. Interpolate (or prolong) the coarse grid correction on the fine grid by $D u_C^{(i)} = R^T u_C$.
6. Update the solution on the fine grid by $u_F^{(i+1)} = u_F^{(i)} + D u_C^{(i)}$.

Procedure of Multigrid (2/3)
\[L^k W^k = F^k \quad \text{(Linear Equation: Fine Level)} \]

\[R^k = F^k - L^k w_1^k \]
\[v^k = W^k - w_1^k, \quad L^k v^k = R^k \]
\[R^{k-1} = I_{k-1}^k R^k \]
\[L^{k-1} v^{k-1} = R^{k-1} \quad \text{(Linear Equation: Coarse Level)} \]
\[v^k = I_{k-1}^k v^{k-1} \]
\[w_2^k = w_1^k + v^k \]

\(w_1^k \): Approx. Solution
\(v^k \): Correction
\(I_{k-1}^k \): Restriction Operator

\[L^k W^k = F^k \quad \text{(Linear Equation: Fine Level)} \]

\[R^k = F^k - L^k w_1^k \]
\[v^k = W^k - w_1^k, \quad L^k v^k = R^k \]
\[R^{k-1} = I_{k-1}^k R^k \]
\[L^{k-1} v^{k-1} = R^{k-1} \quad \text{(Linear Equation: Coarse Level)} \]
\[v^k = I_{k-1}^k v^{k-1} \]
\[w_2^k = w_1^k + v^k \]

\(I_{k-1}^k \): Prolongation Operator
\(w_2^k \): Approx. Solution by Multigrid
Procedure of Multigrid (3/3)

- Recursive application of this algorithm for 2-level procedure to consecutive systems of coarse-grid equations gives a multigrid V-cycle. If the components of the V-cycle are defined appropriately, the result is a method that uniformly damps all frequencies of error with a computational cost that depends only linearly on the problem size.
 - In other words, multigrid algorithms are scalable.

- In the V-cycle, starting with the finest grid, all subsequent coarser grids are visited only once.
 - In the down-cycle, smoothers damp oscillatory error components at different grid scales.
 - In the up-cycle, the smooth error components remaining on each grid level are corrected using the error approximations on the coarser grids.

- Alternatively, in a W-cycle, the coarser grids are solved more rigorously in order to reduce residuals as much as possible before going back to the more expensive finer grids.
(a) V-Cycle

(b) W-Cycle
Multigrid as a Preconditioner

• Multigrid algorithms tend to be problem-specific solutions and less robust than preconditioned Krylov iterative methods such as the IC/ILU methods.

• Fortunately, it is easy to combine the best features of multigrid and Krylov iterative methods into one algorithm – multigrid-preconditioned Krylov iterative methods.

• The resulting algorithm is robust, efficient and scalable.

• Multigrid solvers and Krylov iterative solvers preconditioned by multigrid are intrinsically suitable for parallel computing.
Geometric and Algebraic Multigrid

• One of the most important issues in multigrid is the construction of the coarse grids.
• There are 2 basic multigrid approaches
 – geometric and algebraic
• In geometric multigrid, the geometry of the problem is used to define the various multigrid components.
• In contrast, algebraic multigrid methods use only the information available in the linear system of equations, such as matrix connectivity.
• Algebraic multigrid method (AMG) is suitable for applications with unstructured grids.
• Many tools for both geometric and algebraic methods on unstructured grids have been developed.
“Dark Side” of Multigrid Method

• Its performance is excellent for well-conditioned simple problems, such as homogeneous Poisson equations.
• But convergence could be worse for ill-conditioned problems.
• Extension of applicability of multigrid method is an active research area.
References

• https://computation.llnl.gov/casc/
• Hypre (AMG Library)
• Sparse Matrices
• **Iterative Linear Solvers**
 – Preconditioning
 – Parallel Iterative Linear Solvers
 – Multigrid Method
 – Recent Technical Issues
• Example of Parallel MGCG
Key-Issues for AppI’s/Algorithms towards Post-Peta & Exa Computing
Jack Dongarra (ORNL/U. Tennessee) at ISC 2013

• Hybrid/Heterogeneous Architecture
 – Multicore + GPU/Manycores (Intel MIC/Xeon Phi)
 • Data Movement, Hierarchy of Memory
• Communication/Synchronization Reducing Algorithms
• Mixed Precision Computation
• Auto-Tuning/Self-Adapting
• Fault Resilient Algorithms
• Reproducibility of Results
Recent Technical Issues in Parallel Iterative Solvers

• Communication overhead becomes significant
• Communication-Computation Overlap
 – Not so effective for Mat-Vec operations
• Communication Avoiding/Reducing Algorithms

• OpenMP/MPI Hybrid Parallel Programming Model
 – (Next section)
Communication overhead becomes larger as node/core number increases.

Weak Scaling: MGCG on T2K Tokyo
Comm.-Comp. Overlapping

- Internal Meshes
- External (HALO) Meshes
Comm.-Comp. Overlapping

Mat-Vec operations
- Overlapping of computations of internal meshes, and importing external meshes.
- Then computation of international meshes on boundary’s
- Difficult for IC/ILU on Hybrid
Communication Avoiding/Reducing Algorithms for Sparse Linear Solvers

• Krylov Iterative Method without Preconditioning
 – Demmel, Hoemmen, Mohiyuddin etc. (UC Berkeley)

• s-step method
 – Just one P2P communication for each Mat-Vec during s iterations. Convergence becomes unstable for large s.
 – matrix powers kernel: $Ax, A^2x, A^3x \ldots$
 • additional computations needed

• Communication Avoiding ILU0 (CA-ILU0) [Moufawad & Grigori, 2013]
 – First attempt to CA preconditioning
 – Nested dissection reordering for limited geometries (2D FDM)
Avoiding Communication in Sparse Matrix Computations.
James Demmel, Mark Hoemmen, Marghoob Mohiyuddin, and Katherine Yelick. 2008 IPDPS
Required Information of Local Meshes for s-step CA computations (2D 5pt.)

s=1 (original) s=2 s=3
• Sparse Matrices
• Iterative Linear Solvers
 − Preconditioning
 − Parallel Iterative Linear Solvers
 − Multigrid Method
 − Recent Technical Issues
• Example of Parallel MGCG
Key-Issues for Appl’s/Algorithms towards Post-Peta & Exa Computing

Jack Dongarra (ORNL/U. Tennessee) at ISC 2013

• Hybrid/Heterogeneous Architecture
 – Multicore + GPU/Manycores (Intel MIC/Xeon Phi)
 • Data Movement, Hierarchy of Memory
• Communication/Synchronization Reducing Algorithms
• Mixed Precision Computation
• Auto-Tuning/Self-Adapting
• Fault Resilient Algorithms
• Reproducibility of Results
Background

• Large-scale 3D Groundwater Flow
 – Poisson equations
 – Heterogeneous porous media

• Parallel (Geometric) Multigrid Solvers for FVM-type appl. on Fujitsu PRIMEHPC FX10 at University of Tokyo (Oakleaf-FX)

• Flat MPI vs. Hybrid (OpenMP+MPI)

• Expectations for Hybrid Parallel Programming Model
 – Number of MPI processes (and sub-domains) to be reduced
 – $O(10^8-10^9)$-way MPI might not scale in Exascale Systems
 – Easily extended to Heterogeneous Architectures
 • CPU+GPU, CPU+Manycores (e.g. Intel MIC/Xeon Phi)
 • MPI+X: OpenMP, OpenACC, CUDA, OpenCL
Target Application: *pGW3D-FVM*

- 3D Groundwater Flow via. Heterogeneous Porous Media
 - Poisson’s equation
 - Randomly distributed water conductivity
 \[\nabla \cdot (\lambda(x, y, z) \nabla \phi) = q, \quad \phi = 0 \text{ at } z = z_{\text{max}} \]
 - Distribution of water conductivity is defined through methods in geostatistics [Deutsch & Journel, 1998]
- Finite-Volume Method on Cubic Voxel Mesh

- Distribution of Water Conductivity
 - 10^{-5}-10^{+5}, Condition Number $\sim 10^{+10}$
 - Average: 1.0
- Cyclic Distribution: 128^3
Target Application: \textit{pGW3D-FVM}

- 3D Groundwater Flow via. Heterogeneous Porous Media
 - Poisson’s equation
 - Randomly distributed water conductivity
 \[\nabla \cdot (\lambda(x, y, z) \nabla \phi) = q, \phi = 0 \text{ at } z = z_{\text{max}} \]
 - Distribution of water conductivity is defined through methods in geostatistics [Deutsch & Journel, 1998]

- Finite-Volume Method on Cubic Voxel Mesh

- Distribution of Water Conductivity
 - 10^{-5}-10^{+5}, Condition Number $\sim 10^{+10}$
 - Average: 1.0

- Cyclic Distribution: 128^3
Background

• Large-scale 3D Groundwater Flow
 – Poisson equations
 – Heterogeneous porous media

• Parallel (Geometric) Multigrid Solvers for FVM-type appl. on Fujitsu PRIMEHPC FX10 at University of Tokyo (Oakleaf-FX)

• Flat MPI vs. Hybrid (OpenMP+MPI)

• Expectations for Hybrid Parallel Programming Model
 – Number of MPI processes (and sub-domains) to be reduced
 – $O(10^8-10^9)$-way MPI might not scale in Exascale Systems
 – Easily extended to Heterogeneous Architectures
 • CPU+GPU, CPU+Manycores (e.g. Intel MIC/Xeon Phi)
 • MPI+X: OpenMP, OpenACC, CUDA, OpenCL
Keywords

• Parallel Geometric Multigrid
• OpenMP/MPI Hybrid Parallel Programming Model
• Localized Block Jacobi Preconditioning
 – Overlapped Additive Schwartz Domain Decomposition (ASDD)
• OpenMP Parallelization with Coloring
• Coarse Grid Aggregation (CGA), Hierarchical CGA
Flat MPI vs. Hybrid

Flat-MPI: Each Core -> Independent

Hybrid: Hierarchical Structure
Fujitsu PRIMEHPC FX10 (Oakleaf-FX) at the U. Tokyo

- SPARC64 Ixfx (4,800 nodes, 76,800 cores)
- Commercial version of K computer
- Peak: 1.13 PFLOPS (1.043 PF, 26th, 41th TOP 500 in 2013 June.)
- Memory BWTH 398 TB/sec.
Multigrid

• Scalable Multi-Level Method using Multilevel Grid for Solving Linear Eqn’s
 – Computation Time $\sim O(N)$ (N: # unknowns)
 – Good for large-scale problems

• Preconditioner for Krylov Iterative Linear Solvers
 – MGCG
Linear Solvers

• Preconditioned CG Method
 – Multigrid Preconditioning (MGCG)
 – IC(0) for Smoothing Operator (Smother): good for ill-conditioned problems

• Parallel Geometric Multigrid Method
 – 8 fine meshes (children) form 1 coarse mesh (parent) in isotropic manner (octree)
 – V-cycle
 – Domain-Decomposition-based: Localized Block-Jacobi, Overlapped Additive Schwartz Domain Decomposition (ASDD)
 – Operations using a single core at the coarsest level (redundant)
Overlapped Additive Schwartz Domain Decomposition Method

ASDD: Localized Block-Jacobi Precond. is stabilized

Global Operation

\[Mz = r \]

Local Operation

\[z_{\Omega_1} = M_{\Omega_1}^{-1} r_{\Omega_1}, \quad z_{\Omega_2} = M_{\Omega_2}^{-1} r_{\Omega_2} \]

Global Nesting Correction

\[z_{\Omega_1}^n = z_{\Omega_1}^{n-1} + M_{\Omega_1}^{-1} (r_{\Omega_1} - M_{\Omega_1} z_{\Omega_1}^{n-1} - M_{\Gamma_1} z_{\Gamma_1}^{n-1}) \]

\[z_{\Omega_2}^n = z_{\Omega_2}^{n-1} + M_{\Omega_2}^{-1} (r_{\Omega_2} - M_{\Omega_2} z_{\Omega_2}^{n-1} - M_{\Gamma_2} z_{\Gamma_2}^{n-1}) \]
Computations on Fujitsu FX10

- Fujitsu PRIMEHPC FX10 at U.Tokyo (Oakleaf-FX)
 - 16 cores/node, flat/uniform access to memory

- Up to 4,096 nodes (65,536 cores) (Large-Scale HPC Challenge)
 - Max 17,179,869,184 unknowns
 - Flat MPI, HB 4x4, HB 8x2, HB 16x1
 - HB MxN: M-threads x N-MPI-processes on each node

- Weak Scaling
 - 64^3 cells/core

- Strong Scaling
 - $128^3 \times 8 = 16,777,216$ unknowns, from 8 to 4,096 nodes

- Network Topology is not specified
 - 1D
Number of OpenMP threads per a single MPI process

Number of MPI process per a single node
Reordering for extracting parallelism in each domain (= MPI Process)

• Krylov Iterative Solvers
 – Dot Products
 – SMVP
 – DAXPY
 – Preconditioning

• IC/ILU Factorization, Forward/Backward Substitution
 – Global Data Dependency
 – Reordering needed for parallelism ([KN 2003] on the Earth Simulator, KN@CMCIM-2002)
 – Multicoloring, RCM, CM-RCM
Parallerization of ICCG

IC Factorization

do i = 1, N
 VAL = D(i)
 do k = indexL(i-1)+1, indexL(i)
 VAL = VAL - (AL(k)**2) * W(itemL(k), DD)
 enddo
 W(i, DD) = 1.d0/VAL
endo

Forward Substitution

do i = 1, N
 WVAL = W(i, Z)
 do k = indexL(i-1)+1, indexL(i)
 WVAL = WVAL - AL(k) * W(itemL(k), Z)
 enddo
 W(i, Z) = WVAL * W(i, DD)
endo
(Global) Data Dependency:
Writing/reading may occur simultaneously, hard to parallelize

IC Factorization

```
do i = 1, N
    VAL = D(i)
    do k = indexL(i-1)+1, indexL(i)
        VAL = VAL - (AL(k)**2) * W(itemL(k), DD)
    enddo
    W(i, DD) = 1.d0 / VAL
endo
```

Forward Substitution

```
do i = 1, N
    WVAL = W(i, Z)
    do k = indexL(i-1)+1, indexL(i)
        WVAL = WVAL - AL(k) * W(itemL(k), Z)
    enddo
    W(i, Z) = WVAL * W(i, DD)
endo
```
OpenMP for SpMV: Straightforward NO data dependency

```c
!$omp parallel do private(ip,i,VAL,k)
   do ip= 1, PEsmpTOT
      do i = INDEX(ip-1)+1, INDEX(ip)
         VAL= D(i)*W(i,P)
         do k= indexL(i-1)+1, indexL(i)
            VAL= VAL + AL(k)*W(itemL(k),P)
         enddo
         do k= indexU(i-1)+1, indexU(i)
            VAL= VAL + AU(k)*W(itemU(k),P)
         enddo
         W(i,Q)= VAL
      enddo
   enddo
```

Ordering Methods
Elements in “same color” are independent: to be parallelized

MC (Color#=4) Multicoloring
RCM Reverse Cuthill-McKee
CM-RCM (Color#=4) Cyclic MC + RCM
Ordering Methods

Elements in “same color” are independent: to be parallelized

MC (Color#=4) Multicoloring
RCM Reverse Cuthill-McKee
CM-RCM (Color#=4) Cyclic MC + RCM
Motivation

• Optimization of Parallel MGCG
 – Conjugate Gradient Solver with Multigrid Preconditioning
 – OpenMP/MPI Hybrid Parallel Programming Model
 – Efficiency & Convergence

• Communications are expensive
 – Serial Communications
 ➢ Data Transfer through Hierarchical Memory
 – Parallel Communications
 ➢ Message Passing through Network

• There are a lot of talks related to Multigrid and CA in SIAM PP14.
 – “Coarse Grid Solver” is important
 ➢ Efficiency & Convergence
Parallel MG Solvers: pGW3D-FVM

- **Storage format of coefficient matrices (Serial Comm.)**
 - CRS (Compressed Row Storage)
 - ELL (Ellpack-Itpack)

- **Comm./Sych. Reducing MG (Parallel Comm.)**
 - Coarse Grid Aggregation (CGA)
 - Hierarchical CGA: Communication Reducing CGA
ELL: Fixed Loop-length, Nice for Pre-fetching

\[
\begin{bmatrix}
1 & 3 & 0 & 0 & 0 \\
1 & 2 & 5 & 0 & 0 \\
4 & 1 & 3 & 0 & 0 \\
0 & 3 & 7 & 4 & 0 \\
1 & 0 & 0 & 0 & 5
\end{bmatrix}
\]

(a) CRS

(b) ELL
Special Treatment for “Boundary” Cells connected to “Halo”

• Distribution of Lower/Upper Non-Zero Off-Diagonal Components
 – L: ~3, U: ~3

• Pure Internal Cells
 – L: ~3, U: ~3

• Boundary Cells
 – L: ~3, U: ~6
Original ELL: Backward Subst.
Cache is not well-utilized: IAUnew(6,N), Aunew(6,N)

```fortran
do icol = NHYP(lev), 1, -1
  if (mod(icol, 2).eq.0) then
    !$omp parallel do private (ip, icel, j, SW)
      do ip = 1, PEsmpTOT
        do icel = SMPindex(icol-1, ip, lev)+1, SMPindex(icol, ip, lev)
          SW = 0.0d0
          do j = 1, 3
            SW = SW + AUnew(j, icel)*Rmg(IAUnew(j, icel))
          enddo
          Rmg(icel) = Rmg(icel) - SW*DDmg(icel)
        enddo
      enddo
    else
      !$omp parallel do private (ip, icel, j, SW)
        do ip = 1, PEsmpTOT
          do icel = SMPindex(icol-1, ip, lev)+1, SMPindex(icol, ip, lev)
            SW = 0.0d0
            do j = 1, 6
              SW = SW + AUnew(j, icel)*Rmg(IAUnew(j, icel))
            enddo
            Rmg(icel) = Rmg(icel) - SW*DDmg(icel)
          enddo
        enddo
    endif
  enddo
```

for Pure Internal Cells
IAUnew (6, N), Aunew (6, N)

for Boundary Cells
Improved ELL: Backward Subst.

Cache is well-utilized, separated: AUnew3/AUnew6

```plaintext
for Pure Internal Cells

do icol = NHYP(lev), 1, -1
   if (mod(icol,2).eq.0) then
     !$omp parallel do private (ip, icel, j, SW)
     do ip = 1, PEsmpTOT
       do icel = SMPindex(icol-1, ip, lev)+1, SMPindex(icol, ip, lev)
          SW = 0.0d0
          do j = 1, 3
             SW = SW + AUnew3(j, icel)*Rmg(IAUnew3(j, icel))
          enddo
          Rmg(icel) = Rmg(icel) - SW*DDmg(icel)
       enddo
     enddo
   else
     !$omp parallel do private (ip, icel, j, SW)
     do ip = 1, PEsmpTOT
       do icel = SMPindex(icol-1, ip, lev)+1, SMPindex(icol, ip, lev)
          SW = 0.0d0
          do j = 1, 6
             SW = SW + AUnew6(j, icel)*Rmg(IAUnew6(j, icel))
          enddo
          Rmg(icel) = Rmg(icel) - SW*DDmg(icel)
       enddo
     enddo
   endif
endo

for Boundary Cells
```

IAUnew3(3, N), AUnew3(3, N)
IAUnew6(6, N), AUnew6(6, N)
Analyses by Detailed Profiler of Fujitsu FX10, single node, Flat MPI, RCM (Multigrid Part), 64^3 cells/core, 1-node

<table>
<thead>
<tr>
<th></th>
<th>Instruction</th>
<th>L1D miss</th>
<th>L2 miss</th>
<th>SIMD Op. Ratio</th>
<th>GFLOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRS</td>
<td>1.53×10^9</td>
<td>2.32×10^7</td>
<td>1.67×10^7</td>
<td>30.14%</td>
<td>6.05</td>
</tr>
<tr>
<td>Original ELL</td>
<td>4.91×10^8</td>
<td>1.67×10^7</td>
<td>1.27×10^7</td>
<td>93.88%</td>
<td>6.99</td>
</tr>
<tr>
<td>Improved ELL</td>
<td>4.91×10^8</td>
<td>1.67×10^7</td>
<td>9.14×10^6</td>
<td>93.88%</td>
<td>8.56</td>
</tr>
</tbody>
</table>
Original Approach (restriction)

Coarse grid solver at a single core [KN 2010]

Level=1

Level=2

Level=m-3

Level=m-2

Level=m-1

Level=m

Mesh # for each MPI= 1

Coarse grid solver on a single core (further multigrid)
Coarse Grid Solver on a Single Core

PE#0

PE#1

PE#2

PE#3

lev=1 lev=2 lev=3 lev=4

Original Approach

Size of the Coarsest Grid = Number of MPI Processes
Redundant Process

In Flat-MPI, this size is larger
Original Approach (restriction)

Coarse grid solver at a single core [KN 2010]

Communication Overhead at Coarser Levels

Coarse grid solver on a single core (further multigrid)
Coarse Grid Aggregation (CGA)

Coarse Grid Solver is multithreaded [KN 2012]

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level=1</td>
<td>Coarse grid solver on a single MPI process (multi-threaded, further multigrid)</td>
</tr>
<tr>
<td>Level=2</td>
<td>• Communication overhead could be reduced</td>
</tr>
<tr>
<td>Level=m-3</td>
<td>• Coarse grid solver is more expensive than original approach.</td>
</tr>
<tr>
<td>Level=m-2</td>
<td>• If process number is larger, this effect might be significant</td>
</tr>
</tbody>
</table>

Coarse grid solver on a single MPI process (multi-threaded, further multigrid)
Results

<table>
<thead>
<tr>
<th>CASE</th>
<th>Matrix</th>
<th>Coarse Grid</th>
<th>Reordering</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>CRS</td>
<td>Single Core</td>
<td>CM-RCM</td>
</tr>
<tr>
<td>CX</td>
<td>ELL</td>
<td>Single Core</td>
<td>RCM</td>
</tr>
<tr>
<td>C1</td>
<td>CRS</td>
<td>CGA</td>
<td>CM-RCM</td>
</tr>
<tr>
<td>C2</td>
<td>ELL (original)</td>
<td>CGA</td>
<td>RCM</td>
</tr>
<tr>
<td>C3</td>
<td>ELL (new)</td>
<td>CGA</td>
<td>RCM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Size</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak Scaling</td>
<td>64^3 cells/core</td>
<td>262,144</td>
</tr>
<tr>
<td>Strong Scaling</td>
<td>256^3 cells</td>
<td>16,777,216</td>
</tr>
</tbody>
</table>
Results at 4,096 nodes (1.72x10^{10} \text{ DOF})
(Fujitsu FX10: Oakleaf-FX): HB 8x2

lev: switching level to “coarse grid solver”, Opt. Level= 7
Results at 4,096 nodes (1.72x10^{10} DOF)
(Fujitsu FX10: Oakleaf-FX): HB 8x2
lev: switching level to “coarse grid solver”, Opt. Level= 7

Parallel
Serial/Redundant

Fine
Coarse

Switching Level for Coarse Grid Solver
Rest
Coarse Grid Solver
MPI_Allgather
MPI_Isend/Irecv/Allreduce

Down is good

ELL-CGA, lev=6: 51
ELL-CGA, lev=7: 55
ELL-CGA, lev=8: 60
ELL: 65
CRS: 66
Weak Scaling at 4,096 nodes

C1 (CGA+CRS) -> C3 (CGA+ELL-new)

17,179,869,184 meshes (64^3 meshes/core)

best switching level (=7)

Down is good
Summary so far ...

- “Coarse Grid Aggregation (CGA)” is effective for stabilization of convergence at $O(10^4)$ cores for MGCG
 - Smaller number of parallel domains
 - HB 8x2 is the best at 4,096 nodes
 - Flat MPI, HB 4x4
 - Coarse grid solvers are more expensive, because their number of MPI processes are more than those of HB 8x2 and HB 16x1.

- ELL format is effective!
 - C1 (CRS) -> C2 (ELL-org.): +20-30%
 - C2 -> C3(ELL-new) : +20-30%

- Coarse Grid Solver
 - Very expensive for cases with more than $O(10^5)$ cores
 - Memory of a single node is not enough
 - Multiple nodes should be utilized for coarse grid solver
Hierarchical CGA: Comm. Reducing MG

Reduced number of MPI processes [KN 2013]

Level=1
Level=2
Level=m-3
Level=m-3
Level=m-2

Coarse grid solver at a single MPI process (multi-threaded, further multigrid)
Results: \(h\text{CGA} \)

<table>
<thead>
<tr>
<th>CASE</th>
<th>Matrix</th>
<th>Coarse Grid</th>
<th>Reordering</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>ELL (new)</td>
<td>CGA</td>
<td>RCM</td>
</tr>
<tr>
<td>C4</td>
<td>ELL (new)</td>
<td>hCGA</td>
<td>RCM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Size</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>(16^3) cells/core</td>
<td>4,096</td>
</tr>
<tr>
<td>Medium</td>
<td>(32^3) cells/core</td>
<td>32,768</td>
</tr>
<tr>
<td>Large</td>
<td>(64^3) cells/core</td>
<td>262,144</td>
</tr>
<tr>
<td>X-Large</td>
<td>(128^3) cells/core</td>
<td>2,097,152</td>
</tr>
</tbody>
</table>
Results at 4,096 nodes (1.72x10^{10} DOF)

lev: switching level to “coarse grid solver”

Opt. Level= 7, HB 8x8 is the best

”C2 (ELL org.)” is used, DOWN is GOOD

HB 8x2

- Switching Level for Coarse Grid Solver
- Results at 4,096 nodes (1.72x10^{10} DOF)

HB 16x1

- Switching Level for Coarse Grid Solver
- Results at 4,096 nodes (1.72x10^{10} DOF)

Opt. Level= 7, HB 8x8 is the best

”C2 (ELL org.)” is used, DOWN is GOOD

HB 8x2

- Switching Level for Coarse Grid Solver
- Results at 4,096 nodes (1.72x10^{10} DOF)

HB 16x1

- Switching Level for Coarse Grid Solver
- Results at 4,096 nodes (1.72x10^{10} DOF)

Opt. Level= 7, HB 8x8 is the best

”C2 (ELL org.)” is used, DOWN is GOOD

HB 8x2

- Switching Level for Coarse Grid Solver
- Results at 4,096 nodes (1.72x10^{10} DOF)

HB 16x1

- Switching Level for Coarse Grid Solver
- Results at 4,096 nodes (1.72x10^{10} DOF)
Summary

- *h*CGA is also effective, but not so significant.
 - Generally speaking, convergence becomes worse than CGA.
 - Effective for cases with
 - smaller problem size per core (Small or Large)
 - larger number of nodes (MPI processes) (64 nodes or 512 nodes)
 - larger number of MPI process per node (Flat MPI or HB 16x1)

- Future/On-Going Works and Open Problems
 - Algorithms
 - CA-Multigrid (for coarser levels), CA-SPAI
 - Strategy for Automatic Selection
 - switching level, number of processes for *h*CGA, optimum color #
 - More Flexible ELL for Unstructured Grids
 - Optimized MPI (co-design)
 - e.g. MPI on Fujitsu FX10 utilizing RDMA with persistent communications
 - MPI_Allreduce: 0.80 sec. of 2.50 sec (comm.) is spent for dot products @ 4,096 nodes
 - Xeon Phi Clusters
 - Hybrid 240(T)x1(P) is not the only choice
Reference:

Kengo Nakajima
“Large-scale Simulations of 3D Groundwater Flow using Parallel Geometric Multigrid Method”

Procedia Computer Science 18, 1265-1274, Proceedings of IHPCES 2013 (Third International Workshop on Advances in High-Performance Computational Earth Sciences: Applications and Frameworks) in conjunction with ICCS 2013, Barcelona, Spain