
User’s Manual
EigenExa
Version 2.11

i) EigenExa Development Group
Large-scale Parallel Numerical Computing Technology Research Team

ii) Numerical Library development Working Group
FS2020 Architecture Development Team (until FY2020)

RIKEN Center for Computational Science12

Released for v2.6: November 1, 2020
Revised for v2.6: Feburary 15, 2021

Revised for v2.7: April 1, 2021
Revised for v2.7: June 29, 2021

Revised for v2.8: August 20, 2021
Revised for v2.9: September 24, 2021
Revised for v2.10: October 17, 2021
Revised for v2.11: December 1, 2021

1Corresponding author: Toshiyuki Imamura (imamura.toshiyuki@riken.jp)
2Contact e-mail address: the EigenExa developer team (EigenExa@ml.riken.jp)

mailto:imamura.toshiyuki@riken.jp
mailto:{{{EigenExa}}}@ml.riken.jp


2



Contents

1 Introduction 7
1.1 EigenExa and the history of development . . . . . . . . . . . . . . . . . . . . 7
1.2 Current implementation of EigenExa . . . . . . . . . . . . . . . . . . . . . . 7
1.3 License of use and Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Getting started 13
2.1 Pre-requisite for EigenExa installation . . . . . . . . . . . . . . . . . . . . . 13
2.2 Obtaining EigenExa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Compile and install procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Quick tutorial 17
3.1 Standard call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Communicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Handling counter and index . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Corporate with ScaLAPACK . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Compiling issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 API’s 23
4.1 eigen_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 eigen_free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 eigen_get_blacs_context . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 eigen_sx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 eigen_s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.6 eigen_h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7 eigen_get_version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.8 eigen_show_version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.9 eigen_get_matdims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.10 eigen_memory_internal . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.11 eigen_get_comm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.12 eigen_get_procs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.13 eigen_get_id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.14 eigen_get_errinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.15 eigen_loop_start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3



4 CONTENTS

4.16 eigen_loop_end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.17 eigen_loop_info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.18 eigen_translate_l2g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.19 eigen_translate_g2l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.20 eigen_owner_node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.21 eigen_owner_index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.22 eigen_convert_ID_xy2w . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.23 eigen_convert_ID_w2xy . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.24 KMATH_EIGEN_GEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Other Considerations 41
5.1 Regarding upper/lower compatibilities . . . . . . . . . . . . . . . . . . . . . 41
5.2 Binding with other languages . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Behavior on error occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Shared library handling in versions 1.x . . . . . . . . . . . . . . . . . . . . . 42
5.5 Known bugs and the best workaround . . . . . . . . . . . . . . . . . . . . . 42

5.5.1 Numerical reproducibility in Intel compiler and Intel MPI . . . . . . . 42

Appendices

Appendix A Algorithm overview 47
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.2 Various approaches and related projects . . . . . . . . . . . . . . . . . . . . 47
A.3 eigen_s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.4 eigen_sx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.5 Differences between eigen_s and eigen_sx . . . . . . . . . . . . . . . . . . 51
A.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Appendix B Release notes 53
B.1 Version 2.11 (December 1, 2021) . . . . . . . . . . . . . . . . . . . . . . . . 53
B.2 Version 2.10 (Octorber 17, 2021) . . . . . . . . . . . . . . . . . . . . . . . . 53
B.3 Version 2.9 (September 24, 2021) . . . . . . . . . . . . . . . . . . . . . . . 54
B.4 Version 2.8 (August 20, 2021) . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.5 Version 2.7 (April 1, 2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.6 Version 2.6 (November 1, 2020) . . . . . . . . . . . . . . . . . . . . . . . . 54
B.7 Version 2.5 (August 1, 2019) . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.8 Version 2.4b (August 20, 2018) . . . . . . . . . . . . . . . . . . . . . . . . . 55
B.9 Version 2.3m (August 20, 2018) . . . . . . . . . . . . . . . . . . . . . . . . 55
B.10 Version 2.4p1 (May 25, 2017) . . . . . . . . . . . . . . . . . . . . . . . . . 55
B.11 Version 2.4 (April 18, 2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
B.12 Version 2.3k2 (April 12, 2017) . . . . . . . . . . . . . . . . . . . . . . . . . 55
B.13 Version 2.3d (July 07, 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . 55
B.14 Version 2.3c (April 23, 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.15 Version 2.3b (April 15, 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . 56



CONTENTS 5

B.16 Version 2.3a (April 14, 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.17 Version 2.3 (April 12, 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.18 Version 2.2d (March 20, 2015) . . . . . . . . . . . . . . . . . . . . . . . . . 57
B.19 Version 2.2c (March 10, 2015) . . . . . . . . . . . . . . . . . . . . . . . . . 57
B.20 Version 2.2b (October 30, 2014) . . . . . . . . . . . . . . . . . . . . . . . . 57
B.21 Version 2.2a (June 20, 2014) . . . . . . . . . . . . . . . . . . . . . . . . . . 57
B.22 Version 2.2 (April 10, 2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
B.23 Version 2.1a (Feb 23, 2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B.24 Version 2.1 (Feb 10, 2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B.25 Version 2.0 (Dec 13, 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B.26 Version 1.3a (Sep 21, 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B.27 Version 1.3 (Sep 20, 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B.28 Version 1.2 (Sep 17, 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.29 Version 1.1 (Aug 30, 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.30 Version 1.0 (Aug 1, 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Acknowledgements 61

References 63



6 CONTENTS



Chapter 1

Introduction

1.1 EigenExa and the history of development
EigenExa(/aigen-éks@/) is a high-performance parallel eigenvalue solver. The history of the
EigenExa family is beyond a decade and traceable back to EigenES (a code-name but not
the official name), which was developed on the world’s top-ranked supercomputer, Earth
Simulator [1]. The result of EigenES was appreciated in the challenging computational
material simulation field, and the authors group was nominated for a Gordon Bell Prize at
SC 2006 and it today continues to serve as an eigenvalue solver on large-scale PC clusters
[2]. This led to the initiation of EigenK [3, 4] development around 2008.

The EigenK library became the immediate predecessor of EigenExa, and in August 2013,
EigenK was renamed EigenExa and public release was begun, following the official launch
of the K computer [5, 6] available to the public. EigenExa development still continues, with
the underlying objective being to achieve an eigenvalue library scalable to operate on future
post-petascale (“exa” (= 1015) or “extreme”) computer systems.

In the Flagship 2020 project (known as the supercomputer “Fugaku” project) [7], which
was conducted by RIKEN Center for Computational Science (R-CCS) from FY2014 to
FY2020, EigenExa was thought to be a core part of the numerical calculation library as
the system software. RIKEN developed a partly new implementation of EigenExa, version
2.6, which was optimized for the A64FX processor and TofuD interconnect. The R&D
and maintenance of EigenExa have been carried out in the Large-scale Parallel Numerical
Technology team following the development activities by the FS2020 Project Architecture
Development team for the supercomputer “Fugaku”.

1.2 Current implementation of EigenExa
As the same as the previous and present releases (version 2.3c, 2.4b, and 2.6 to 2.11),
EigenExa provides the simplest function of computing all eigenpairs (eigenvalues paired with
their respective eigenvectors) for both standard and generalized eigenvalue problems. In
addition to the real symmetric matrices, we have started to provide the ‘long-awaited’ support
of Hermitian matrices in version 2.11. As reported elsewhere [2, 3, 4], EigenExa applies both
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8 CHAPTER 1. INTRODUCTION

classical and advanced algorithms in the same basic manner as EigenK, and thereby reduces
the required computational time for diagonalization. We analyzed that one of the challenges
in the development is the hardware imbalance due to the slowing down of the network
performance of the supercomputer after the K computer, while the processor performance has
improved accordingly. In fact, communication is the biggest bottleneck in the development
of highly parallelized computers, even for recent small-scale supercomputers. It has been
recognized even before the development of the Fugaku scale that it cannot be ignored.

In this release (the latest version 2.11 published for the public use on the supercomputer
Fugaku), we apply a communication avoidance technique to the householder tridiagonal-
ization together with [15], new process mapping for the ‘load balance’ of the divide and
conquer method. These techniques have made a significant contribution to performance
improvement in highly parallel environments.

Since its development has been initiated in early 2000’s, we have taken advantage of
various parallel programming languages and libraries, encompassing MPI, OpenMP, high-
performance BLAS, and SIMD vectorization with advanced Fortran/C/C++ compiler sup-
ports. On the K computer and its successor, Fugaku, EigenExa is expected to open a
promised way for high performance computing through the multiple simultaneous functions
characterized by the following.

1. Inter-node parallelism in distributed memory architecture, by MPI,

2. Parallelism in shared-memory parallel computers and multi-core processors, by OpenMP,

3. High parallelism utilizing BLAS highly optimized by vendors, and

4. SIMD or coarse-grained parallelism utilizing vendor-provided high-performance compil-
ers

The beneficial features of Fortran 90/95/2003 are also actively incorporated into EigenExa.
The API of EigenExa is more flexible than that of libraries implemented in Fortran77, and
it provides a user-friendly interface, based on modular interfaces and optional parameters.
Although data distribution is limited to two-dimensional cyclic decomposition, the processor
map can be specified in almost any arbitrary configuration. Compatibility and consistency
with the existing numerical computation libraries are guaranteed if the data redistribution
function provided by ScaLAPACK is used. Furthermore, EigenExa offers user specification
(or omission) for heightened performance, such as block parameters that strongly affect
execution performance.

In terms of the library itself’s parallel performance, it yields heightened performance by
reducing the communication overhead, and it has been shown that in most cases, EigenExa
outperforms EigenK, ScaLAPACK, and others of the state-of-the-arts class numerical libraries
[4].

Today, EigenExa works on many cutting-edge HPC platforms, including the K computer,
the supercomputer Fugaku, and the Fujitsu PRIMEHPC commercial server series, various
cluster computers using Intel x86 or AMD64 processors, IBM Blue/Gene Q systems, and
the NEC vector computer SX series systems, however, unfortunately, it is not supporting
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GPU cluster systems, at the moment. Several reports on EigenExa have been presented at
scientific conferences[8, 9, 10, 11, 12, 13, 14, 15, 16, 17], so if interested in the internal
implementation, algorithms, and preliminary performance benchmark, the authors hope that
the readers refer to them.

This user’s manual for EigenExa version 2.11 covers almost the whole spectrum of
EigenExa, from installation to actual use, with particular consideration given to installa-
tion and compiling, a quick tutorial, the API list, and compatibility with EigenExa 2.3c or
prior. It is written and provided with all EigenExa team developers’ hope that it will assist
many users in achieving efficient parallel simulations.
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1.3 License of use and Copyright

Permission to use EigenExa is granted on the basis of the BSD 2-Clause License (found in
LICENCE.txt in the library).

LICENCE.txt� �
Copyright (C) 2012- 2021 RIKEN.
Copyright (C) 2011- 2012 Toshiyuki Imamura
Graduate School of Informatics and Engineering,
The University of Electro-Communications.

Copyright (C) 2011- 2014 Japan Atomic Energy Agency.

------------------------------------------------------------------------
Copyright notice is from here

------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

------------------------------------------------------------------------� �

Note that some of the codes are derivative of LAPACK-3.4.2 and ScaLAPACK-2.0.2, it
is subject to their original software license.
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[LAPACK 3.4.2]� �
Copyright (c) 1992-2011 The University of Tennessee and The University

of Tennessee Research Foundation. All rights
reserved.

Copyright (c) 2000-2011 The University of California Berkeley. All
rights reserved.

Copyright (c) 2006-2012 The University of Colorado Denver. All rights
reserved.

$COPYRIGHT$

Additional copyrights may follow

$HEADER$

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer listed
in this license in the documentation and/or other materials
provided with the distribution.

- Neither the name of the copyright holders nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

The copyright holders provide no reassurances that the source code
provided does not infringe any patent, copyright, or any other
intellectual property rights of third parties. The copyright holders
disclaim any liability to any recipient for claims brought against
recipient by any third party for infringement of that parties
intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.� �
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[ScaLAPACK 2.0.2]� �
Copyright (c) 1992-2011 The University of Tennessee and The University

of Tennessee Research Foundation. All rights
reserved.

Copyright (c) 2000-2011 The University of California Berkeley. All
rights reserved.

Copyright (c) 2006-2011 The University of Colorado Denver. All rights
reserved.

$COPYRIGHT$

Additional copyrights may follow

$HEADER$

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer listed
in this license in the documentation and/or other materials
provided with the distribution.

- Neither the name of the copyright holders nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

The copyright holders provide no reassurances that the source code
provided does not infringe any patent, copyright, or any other
intellectual property rights of third parties. The copyright holders
disclaim any liability to any recipient for claims brought against
recipient by any third party for infringement of that parties
intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.� �



Chapter 2

Getting started

2.1 Pre-requisite for EigenExa installation
Users need the following software packages to compile the EigenExa library. BLAS, LAPACK,
ScaLAPACK. Additionally, MPI must be installed on the system prior to compiling EigenExa.
To present, it has been confirmed that EigenExa can be compiled with the following libraries.

• BLAS Intel MKL, GotoBLAS, OpenBLAS, ATLAS
Fujitsu SSL II, IBM ESSL, NEC MathKeisan

• LAPACK Version 3.4.0 or later
• ScaLAPACK Version 1.8.0 or later
• MPI MPICH2 version 1.5 or later, MPICH version 3.0.2 or later

OpenMPI version 1.6.4 or later,
vendor-provided MPI’s such as
Intel MPI, Fujitsu MPI, and NEC MPI/SX

• Compilers Fortran 2003 or 2008 (The features of Fortran 95 and some of
Fortran 2003 technical extensions are utilized. Until v2.6, Fortran
90/95 or later was recommended), and C/C++ compilers are
required.
GNU compiler 9.0 or later for x86,
Intel compiler 19, or openAPI compiler,
Fujitsu software Technical Computing Suite V4.0,
and other vendor-provided compilers

2.2 Obtaining EigenExa
All available information on EigenExa can be obtained at the following URL.

https://www.r-ccs.riken.jp/labs/lpnctrt/projects/eigenexa/

Tarball distribution (tgz or tar.gz) is also provided via this URL. Future planning is in
progress for provision of further information on EigenExa. This manual describes the work
after downloading the tarball of EigenExa-2.11.

13
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2.3 Compile and install procedure

Several steps are necessary to compile the EigenExa library. Proceed as described in the
following installation guideline.

Decompression and extraction First, unpack the tarball (tgz or tar.gz) on the working
directory and then move to the EigenExa-2.11 directory

% tar zxvf EigenExa-2.11.tar.gz
% cd EigenExa-2.11

Environment setting Next, run the bootstrap and then configure script to generate
Makefile or other settings automatically based on user’s system environment.

% ./bootstrap
% ./configure

BLAS, LAPACK, and ScaLAPACK are stored in several different directories on each system,
and you may have to choose the appropriate one from the several libraries. In that case,
you can set the following environment variables appropriately. The available options of the
configure script can be found in ./configure --help.

• FC fortran compiler for MPI (for example, mpif90)
• CC C compiler for MPI (for example, mpicc)
• LAPACK_PATH The directory path information for LAPACKs
• LAPACK_LIBS The library information for linking LAPACKs

The cross-compilation option is available by passing --host=hostname. If you would like to
build ARM64v8.2a binaries on the supercomputer Fugaku, please add --host=login (here,
‘hostname’ is an arbitrary string). If the configure script doesn’t work correctly, it may be
due to a difference in the software version used in the script. You should begin by executing
the cleanup script and the bootstrap script and then recreate the configure script as
follows.

% ./cleanup
% ./bootstrap

make Third, run make. As a result, the static library libEigenExa.a and the shared
library libEigenExa.so are created.

% make



2.3. COMPILE AND INSTALL PROCEDURE 15

install Finally, copy the library itself, libEigenExa.a (in the case of shared library, libEigenExa.so)
and several fortran modules (eigen_libs_mod.mod, eigen_libs0_mod.mod, eigen_blacs_mod.mod,
comm_mod.mod, and fs_libs_mod.mod) to the installation sub-directories (lib/, and include/).

% make prefix=(installation directory) install

To install manually, e.g. into /usr/local/lib, do the following (a backslash at the end of
the line (’\’) implies a continuation line and is not necessary for the actual input).

% cp libEigenExa.a libEigenExa.so eigen_libs_mod.mod \
eigen_libs0_mod.mod \
eigen_blacs_mod.mod comm_mod.mod fs_libs_mod.mod /usr/local/lib/

Generalized eigenvalue computation driver routine Until the version 2.4, the general-
ized eigenvalue driver routine KMATH_EIGEN_GEV had to be compiled separately, but since
version 2.6, it is imported into EigenExa. In short, once you make it, the driver mod-
ule KMATH_EIGEN_GEV.o for generalized eigenvalues is included in libEigenExa.a and
libEigenExa.so, which enables the generalized eigenvalue calculation at program link time.
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Chapter 3

Quick tutorial

3.1 Standard call

The standard benchmark code can be obtained by moving to the working directory and
executing ’make benchmark’. The source code components ’main2.F’ and ’Makefile’
should be useful for code creation. The kernel of main2.f is as follows.

main2.F� �
use MPI
use eigen_libs_mod
...
call MPI_Init_thread( MPI_THREAD_MULTIPLE, i, ierr )
call eigen_init( )

N=10000; mtype=0

call eigen_get_matdims( N, nm, ny )
allocate ( A(nm,ny), Z(nm,ny), w(N) )
call mat_set( N, a, nm, mtype )
call eigen_sx( N, N, a, nm, w, z, nm, m_forward=32, m_backward=128 )
deallocate ( A, Z, w )
...
call eigen_free( )
call MPI_Finalize( ierr )
end� �
The above code only shows a skeletal part and does not actually work, but it is essential to

see the typical flow from initialization, array allocation, eigenvalue calculation, to termination
procedure.
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3.2 Communicator
In the above example, the initialization function eigen_init() is invoked without an op-
tional parameter type call. The user can specify to eigen_init() the process group, of the
form comm=XXX, as a communicator to perform the eigenvalue calculation. For example, if
you execute eigenvalue calculation in parallel with multiple groups, you can simply pass the
communicator created by MPI_Comm_split() and so on. Note that eigen_init() includes
a collective operation and must be called simultaneously by all the processes belonging to
the communicator.

Since a different communicator can be specified for each process, a process not partici-
pating in the eigenvalue calculation can have MPI_COMM_NULL specified for eigen_init(),
thus having the call skipped for the eigenvalue driver eigen_sx() itself. In short, it is pos-
sible to perform simultaneous execution of various operations other than eigen_sx(), of
course, including eigen_sx().

MPI_Comm_split and MPI_COMM_NULL� �
color = 0; key = my_rank / 4
call MPI_Comm_split( MPI_COMM_WORLD, color, key, comm_new, ierr )
if ( my_rank < 16 ) then

comm = comm_new
else if ( my_rank < 32 ) then

comm = MPI_COMM_SELF
else

comm = MPI_COMM_NULL
endif
call eigen_init( comm )
if ( comm /= MPI_COMM_NULL ) then

call eigen_sx( .... )
else

... (other statements,
In the specification, exigen_sx returns immediatedly)

endif� �
In EigenExa, processes belonging to a communicator specified by eigen_init() are

deployed on a two-dimensional process grid. EigenExa is designed to reduce the amount of
communication possible by adopting a square-shaped process grid. EigenExa has been de-
veloped to enhance user convenience so that the two-dimensional Cartesian adopted by MPI
can be specified as comm. In principle, if the geometry of the Cartesian is two-dimensional,
EigenExa can be used to compute arbitrary process configurations by calling EigenExa, which
can be combined with several types of communicators to perform complex parallel process-
ing. In addition, because the Cartesian process grid is essentially Row-major, the Cartesian
process is prioritized in the event of a conflict with order=’C’ specification. Note that for
historical reasons, the default process grid of EigenExa is Column-Major.
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The generation of matrix data is performed in mat_set(), which is called just before
eigen_sx(). The matrix data are distributed on the specified two-dimensional process grid
in the two-dimensional cyclic division style and are stored in each process as a local array.
Because only some of the data are stored for each process, a rule for transformation between
global and local indices is required when matrix elements are accessed.

3.3 Handling counter and index

The following program is an excerpt from mat_set() and is presented to compare the
program for generation of a Frank matrix with a global counter loop structure and the same
but translated to local counter loops.

matset(before parallelization)� �
! Global loop program to compute a Frank matrix
do i = 1, n

do j = 1, n
a(j, i) = DBLE(n+1-Max(n+1-i,n+1-j))

end do
end do� �

↓ ↓ ↓ ↓ ↓ ↓

matset (after parallelization)� �
! Translated local loop program to compute a Frank matrix
use MPI
use eigen_libs_mod

call eigen_loop_info( j_2, j_3, 1, n, ’X’ )
call eigen_loop_info( i_2, i_3, 1, n, ’Y’ )

do i_1 = i_2, i_3
i = eigen_translate_l2g( i_1, ’Y’ )
do j_1 = j_2, j_3

j = eigen_translate_l2g( j_1, ’X’ )
a(j_1, i_1) = DBLE(n+1-Max(n+1-i,n+1-j))

end do
end do� �
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matset (after parallelization using 2.4 or prior)� �
! Translated local loop program to compute a Frank matrix
use MPI
use eigen_libs_mod

call eigen_get_procs( nnod, x_nnod, y_nnod )
call eigen_get_id ( inod, x_inod, y_inod )

j_2 = eigen_loop_start( 1, x_nnod, x_inod )
j_3 = eigen_loop_end ( n, x_nnod, x_inod )
i_2 = eigen_loop_start( 1, y_nnod, y_inod )
i_3 = eigen_loop_end ( n, y_nnod, y_inod )

do i_1 = i_2, i_3
i = eigen_translate_l2g( i_1, y_nnod, y_inod )
do j_1 = j_2, j_3

j = eigen_translate_l2g( j_1, x_nnod, x_inod )
a(j_1, i_1) = DBLE(n+1-Max(n+1-i,n+1-j))

end do
end do� �
The eigen_loop_start() and eigen_loop_end() are called to transform the loop

range from global to local. The third and fourth parameters specify the global counter
values, which present the initial and final values of the loop iteration; besides, the fifth
parameter indicates a character that represents the direction of distribution (In the case
of 2.4 prior, the second and third parameters specify the process number and process ID
derived from the communicator, which shows the direction of distribution). In this manual,
the correspondence is always [row] → “x” and [column] → “y”(in the case of the overall
communicator for all the participating processes, the “x” and “y” portions are characterless).
It is important to note that in EigenExa process IDs are managed as integers, starting with
1. The process ID obtained by the query function eigen_get_id(), therefore, differs from
the MPI rank by 1, and the ID must be reduced by 1 in cases where the MPI rank is required.

In the above program, the local loop counter value is translated to the correspond-
ing global counter value to be used, with eigen_translate_l2g() used for this trans-
lation. The second and third parameters should be specified like eigen_loop_start(),
for example. Conversely, to convert the global counter value to the local counter value,
eigen_translate_g2l() is used, with the proviso that if the global counter value is viewed
as a loop value, then eigen_translate_g2l() returns the corresponding local counter
value on the process that becomes the owner process (the process where the local counter
value corresponding with the global counter value must be included in the loop), on which
returns the same value regardless of whether the process calling the function is the owner
process or not.

In knowing the owner process of a given global loop counter, a user can retrieve informa-
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tion by calling eigen_owner_node() or eigen_owner_index(). The following programs
illustrate their use, where the information is used for referring to or broadcasting particular
matrix elements, for example, A(j, i).

Broadcast� �
! Broadcast a(j,i)
i_1=eigen_owner_index( i, ’Y’ )
j_1=eigen_owner_index( j, ’X’ )
if ( i_1 > 0 .and . j_1 > 0 ) then

v = a(j_1, i_1)
endif
i_0=eigen_owner_node( i, ’Y’ )
j_0=eigen_owner_node( j, ’X’ )
root=eigen_convert_ID_xy2w( j_0, i_0 )
call MPI_Bcast( v, 1, MPI_DOUBLE_PRECISION, root, TRD_COMM_WORLD, ierr )� �

3.4 Corporate with ScaLAPACK
Furthermore, when progressing to computation together with ScaLAPACK for personnel at
advanced levels, the process grid context working as a proxy object between ScaLAPACK
and EigenExa should be obtained via the auxiliary function eigen_get_blacs_context(),
referring to the mtype=2 portion of the mat_set() function (the following shows the kernel
of the PDTRAN() call that stores the matrix AS transpose in matrix A).

pdtran� �
! Cooperation with ScaLAPACK
NPROW = x_nnod; NPCOL = y_nnod

ICTXT = eigen_get_blacs_context( )
CALL DESCINIT( DESCA, n, n, 1, 1, 0, 0, ICTXT, nm, INFO )

! A <- AS^T
CALL PDTRAN( n, n, 1D0, as, 1, 1, DESCA, 1D0, a, 1, 1, DESCA )� �

3.5 Compiling issues
When compiling and the use of mpif90, it is necessary to set the path (in most cases, the
-I option) because of the need to access eigen_libs_mod.mod and other modules. To link
the EigenExa library, it is also necessary to simultaneously link MPI, OpenMP, ScaLAPACK
(if version 1.8 or earlier, then also BLACS), and so forth. In the GNU-compiler and OSS-
based MPI case, the procedure is as follows (note that the library path and names around
ScaLAPACK and BLAS vary with the environment).
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% mpif90 -c a.f -fopenmp -I/usr/local/include -I/usr/local/lib
% mpif90 -o exe a.o -fopenmp -L/usr/local/lib -lEigenExa \

-lscalapack -llapack -lblas
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API’s

This section lists the functions in ‘eigen_libs_mod.mod’ that have been assigned a public
attribute. The first three routines are the main drivers, and the others are utility functions.
When the user specifies the required modules (basically, eigen_libs_mod.mod) by a USE
statement, generic naming rules and parameters having optional attributes attached (written
in italics) are available. The parameters attached with an optional attribute can be omitted
and can also be specified by TERM=‘variable’ or ‘constant value’ in the Fortran format form.

Floating point number variables use real(8) (complex numbers as well) to distinguish
between double-precision and single-precision format, while integers are in principle 32-bit
format, in short, integer=integer(4) is supposed except the explicit indication of integer(8).

EigenExa is not a thread-safe implementation. Therefore, the following functions without
a note against multi-threading must only be used outside covering the OpenMP, in short,
out of the ‘OMP region’s’.

4.1 eigen_init

Initializes the functions of EigenExa. Process grid mapping can be specified via the ’comm’
and ’order’ arguments. Because of this procedure’s collective behavior, all processes partici-
pating in the EigenExa calculation must call this function simultaneously. Since this function
creates up to five sub-communicators, it may consume a lot of internal memory and pro-
cessing time in massively parallel execution. In addition, we note that the sampling of the
communication performance of the sub-communicators requires considerable overhead.

Once invoked the function, you must not call eigen_init() before calling the exit proce-
dure with eigen_free() (described in the next section). For example, if you want to change
the base communicator comm, you must call eigen_free() and then use eigen_init() to
change the communicator.

comm can specify a different value for each process group, and when different process
groups simultaneously call driver functions (eigen_sx() or eigen_s()), parallel operations
are performed in driver function units. If comm is equivalent to MPI_COMM_NULL, calling the
handlers eigen_sx() and eigen_s() results in an immediate return without any internal
actions. An inter-communicator cannot be used for comm.

23
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EigenExa internally runs a multi-threaded OpenMP process, but the number of threads
must be the same along all the processes. When calling the function, the program will
abort if processes with a different number of threads are detected (invoking MPI_Abort()).
In addition, thread parallelism with the default number of threads, when eigen_init is
invoked, is only secured, and dynamical changes by omp_set_num_threads() in middle
stream may result in negative impact on EigenExa internal.

subroutine eigen_init( comm, order )
1. integer, optional, intent(IN) :: comm = MPI_COMM_WORLD

Base communicator
When comm is a two-dimensional cartesian, the process map is available.
Note: default is MPI_COMM_WORLD.

2. character(*), optional, intent(IN) :: order = ’C’
’R’ (Row) or ’C’ (Column)
Note: default is ‘C’. If the grid-major and the cartesian comm has
a conflict on their specification, an appropriate major is taken into account.

4.2 eigen_free

Finalizes the funciton of EigenExa.

subsroutine eigen_free( flag )
1. integer, optional, intent(IN) :: flag = 0

The special flag for a timer printer, which is developper-purposed,
so it should be omitted in normal case. Default is 0.

4.3 eigen_get_blacs_context

Returns the context of ScaLAPACK (BLACS) corresponding to the process grid informa-
tion specified in EigenExa. This is necessary when exchanging data between EigenExa and
ScaLAPACK.

integer function eigen_get_blacs_context( )
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4.4 eigen_sx

Is the main driver routine of EigenExa to compute the standard real symmetric eigenvalue
problem. It computes the eigenpairs via a transformation to a quintuple diagonal matrix.
This driver is a collective operation, and all processes belonging to the calling process group
must participate in the call.

subroutine eigen_sx( n, nvec, a, lda, w, z, ldz, \
m_forward, m_backward, mode )

1. integer, intent(IN) :: n
Dimensions of the matrix and vector to be diagonalized.

2. integer, intent(IN) :: nvec
The number of eigenvectors (eigen-modes) to be computed.
If positive, eigen modes are computed from the smallest.
If zero, all eigenvalues without eigenvectors are computed from the smallest.
(if negative, they are computed from the largest, but not supported currently.)

3. real(8), intent(INOUT) :: a(1:lda,*)
A symmetric matrix to be diagonalized (upper triangular part is available), whose size
must be equal or larger than the values obtained by calling eigen_get_matdims.
Array content is destroyed upon the subroutine termination, but
a(1, 1) returns the flops count on exit.

4. integer, intent(IN) :: lda
The leading dimension of array a, which must be equal or larger than
the value obtained by calling eigen_get_matdims.

5. real(8), intent(OUT) :: w(1:n)
The eigenvalues of matrix a stored in the ascending/descending order according to nvec.

6. real(8), intent(OUT) :: z(1:ldz,*)
The eigenvectors of matrix a. The size of array must be equal or larger than
the values obtained by calling eigen_get_matdims.

7. integer, intent(IN) :: ldz
The leading dimension of array z, which must be equal or larger than
the value obtained by calling eigen_get_matdims.

8. integer, optional, intent(IN) :: m_forward = 48
The block factor of the forward Householder transformation (must be even).
Default is 48.

9. integer, optional, intent(IN) :: m_backward = 128
The backward block factor in the Householder transformation. Default is 128.

10. character(*), optional, intent(IN) :: mode = ’A’
‘A’ : all eigenvalues and corresponding eigenvectors (default)
‘N’ : eigenvalues only
‘X’ : add to mode ’A’ to improve accuracy.
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4.5 eigen_s

Another driver routine of EigenExa to compute the standard real symmetric eigenvalue prob-
lem.

subroutine eigen_s( n, nvec, a, lda, w, z, ldz, \
m_forward, m_backward, mode )

1. integer, intent(IN) :: n
Dimensions of the matrix and vector to be diagonalized.

2. integer, intent(IN) :: nvec
The number of eigenvectors (eigen-modes) to be computed.
If positive, eigen modes are computed from the smallest.
If zero, all eigenvalues without eigenvectors are computed from the smallest.
(if negative, they are computed from the largest, but not supported currently.)

3. real(8), intent(INOUT) :: a(1:lda,*)
A symmetric matrix to be diagonalized (upper triangular part is available), whose size
must be equal or larger than the values obtained by calling eigen_get_matdims.
Array content is destroyed upon the subroutine termination, but
a(1, 1) returns the flops count on exit.

4. integer, intent(IN) :: lda
The leading dimension of array a, which must be equal or larger than
the value obtained by calling eigen_get_matdims.

5. real(8), intent(OUT) :: w(1:n)
The eigenvalues of matrix a stored in the ascending/descending order according to nvec.

6. real(8), intent(OUT) :: z(1:ldz,*)
The eigenvectors of matrix a. The size of array must be equal or larger than
the values obtained by calling eigen_get_matdims.

7. integer, intent(IN) :: ldz
The leading dimension of array z, which must be equal or larger than
the value obtained by calling eigen_get_matdims.

8. integer, optional, intent(IN) :: m_forward = 48
The block factor of the forward Householder transformation (must be even).
Default is 48.

9. integer, optional, intent(IN) :: m_backward = 128
The backward block factor in the Householder transformation. Default is 128.

10. character(*), optional, intent(IN) :: mode = ’A’
‘A’ : all eigenvalues and corresponding eigenvectors (default)
‘N’ : eigenvalues only
‘X’ : add to mode ’A’ to improve accuracy.
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4.6 eigen_h

Is the driver routine to compute the standard Hermite eigenvalue problem. This driver is a
collective operation, and all processes belonging to the calling process group must participate
in the call. Note that this driver routine is newly supported from version 2.11.

subroutine eigen_h( n, nvec, a, lda, w, z, ldz, \
m_forward, m_backward, mode )

1. integer, intent(IN) :: n
Dimensions of the matrix and vector to be diagonalized.

2. integer, intent(IN) :: nvec
The number of eigenvectors (eigen-modes) to be computed.
If positive, eigen modes are computed from the smallest.
If zero, all eigenvalues without eigenvectors are computed from the smallest.
(if negative, they are computed from the largest, but not supported currently.)

3. complex(8), intent(INOUT) :: a(1:lda,*)
A Hermite matrix to be diagonalized (upper triangular part is available), whose size
must be equal or larger than the values obtained by calling eigen_get_matdims.
Array content is destroyed upon the subroutine termination, but
DBLE(a(1, 1)) returns the flops count on exit.

4. integer, intent(IN) :: lda
The leading dimension of array a, which must be equal or larger than
the value obtained by calling eigen_get_matdims.

5. real(8), intent(OUT) :: w(1:n)
The eigenvalues of matrix a stored in the ascending/descending order according to nvec.

6. complex(8), intent(OUT) :: z(1:ldz,*)
The eigenvectors of matrix a. The size of array must be equal or larger than
the values obtained by calling eigen_get_matdims.

7. integer, intent(IN) :: ldz
The leading dimension of array z, which must be equal or larger than
the value obtained by calling eigen_get_matdims.

8. integer, optional, intent(IN) :: m_forward = 48
The block factor of the forward Householder transformation (must be even).
Default is 48.

9. integer, optional, intent(IN) :: m_backward = 128
The backward block factor in the Householder transformation. Default is 128.

10. character(*), optional, intent(IN) :: mode = ’A’
‘A’ : all eigenvalues and corresponding eigenvectors (default)
‘N’ : eigenvalues only
‘X’ : add to mode ’A’ to improve accuracy.
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4.7 eigen_get_version

Returns the version information of EigenExa to the arguments. The format of the argument
version has been revised since version 2.11: from the one-digit reference to the two-digit
representation.

This function is a local operation. Although this function is not thread-safe (because the
arguments are specified in a Fortran pointer fashion), it can be called during multi-threading
if proper exclusive control of the arguments is provided.

subroutine eigen_get_version( version, data, vcode )
1. integer, intent(OUT) :: version

The version number represented in a six-digit format,
in which each two-digit refer to major version, minor version, and
patch level from the upper to lower digits.

2. character(*), optional, intent(OUT) :: date
The release date.

3. character(*), optional, intent(OUT) :: vcode
The code name corresponding to the release version.

4.8 eigen_show_version

Displays the version information of EigenExa on stdout (standard output).

subroutine eigen_show_version( )

4.9 eigen_get_matdims

Returns the recommended array size in EigenExa. The user should dynamically allocate the
local array using the array dimensions obtained from this function (nx,ny) or larger. The
entire matrix is distributed in a 2D-cyclic fashion, in short (CYCLIC,CYCLIC) distribution.
The "mode" option allows the users to specify the memory usage and the efficient alignment
of the array shape in the order of Minimal<LineAligned<Optimal. The option is available
from version 2.6 later.

This function is a local operation. Although this function is not thread-safe (because the
arguments are specified in a Fortran pointer fashion), it can be called during multi-threading
if proper exclusive control of the arguments is provided.
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subroutine eigen_get_matdims( n, nx, ny, mode )
1. integer, intent(IN) :: n

A dimension of the matrix to be diagonalized.
2. integer, intent(OUT) :: nx

The lower bound or recommended value of the leading dimension of a 2D-array
such as a(:,:), b(:,:), and z(:,:).

3. integer, intent(OUT) :: ny
The lower bound value of the second index of a 2D-array such as
a(:,:), b(:,:), and z(:,:).

4. character(*), optional, intent(IN) :: mode = ’O’
Option to the memory usage to specify the matrix dimensions.
‘M’ : Minimal, returns minimal dimensions,
‘L’ : LineAligned, returns the dimension aligned foe cache line access, and
‘O’ : Optimal, returns the dimension to avoid cache thrashing (default).

4.10 eigen_memory_internal

This subroutine returns the size of memory that is dynamically allocated internally during
EigenExa is called. Users should know the return value of this function and should avoid
running out of memory. In version 2.3c, a specification was changed to return an 8-byte
integer (integer(8)). If the return value is negative (−1 is returned in most cases), the
matrix size is too large to represent within the 32bit integer value (integer(4)) in the
EigenExa library. It alerts the users in advance of the possible risk of overflowing when
calculating indices.

This function is a local operation. Although this function is not thread-safe (because the
arguments are specified in a Fortran pointer fashion), it can be called during multi-threading
if proper exclusive control of the arguments is provided.

integer(8) function eigen_memory_internal( n, lda, ldz, m_f, m_b )
1. integer, intent(IN) :: n

A dimension of the matrix to be diagonalized.
2. integer, intent(IN) :: lda

The leading dimension of array a.
3. integer, intent(IN) :: ldz

The leading dimension of array z.
4. integer, intent(IN) :: m_f

Householder forward transformation blocksize (must be even)
5. integer, intent(IN) :: m_b

Householder backward transformation blocksize
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4.11 eigen_get_comm

Returns the MPI communicators that are generated by the call of eigen_init().
This function is a local operation. Although this function is not thread-safe (because the

arguments are specified in a Fortran pointer fashion), it can be called during multi-threading
if proper exclusive control of the arguments is provided.

subroutine eigen_get_comm( comm, x_comm, y_comm )
1. integer, intent(OUT) :: comm

Base communicator.
2. integer, intent(OUT) :: x_comm

Row communicator, attribute of all processes with matching row id.
3. integer, intent(OUT) :: y_comm

Column communicator, attribute of all processes with matching column id.

4.12 eigen_get_procs

Returns the process information that corresponds to the processes generated by the call of
eigen_init().

This function is a local operation. Although this function is not thread-safe (because the
arguments are specified in a Fortran pointer fashion), it can be called during multi-threading
if proper exclusive control of the arguments is provided.

subroutine eigen_get_procs( procs, x_procs, y_procs )
1. integer, intent(OUT) :: procs

The number of processes in comm.
2. integer, intent(OUT) :: x_procs

The number of processes in x_comm.
3. integer, intent(OUT) :: y_procs

The number of processes in y_comm.

4.13 eigen_get_id

Returns the process ID information that corresponds to the processes generated by the call
of eigen_init(). Here, the process IDs are managed as integers, starting with 1, and ’the
MPI rank’ = ’obtained process ID − 1’ is satisfied.
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This function is a local operation. Although this function is not thread-safe (because the
arguments are specified in a Fortran pointer fashion), it can be called during multi-threading
if proper exclusive control of the arguments is provided.

subroutine eigen_get_id( id, x_id, y_id )
1. integer, intent(OUT) :: id

The process ID defined in comm.
2. integer, intent(OUT) :: x_id

The process ID defined in x_comm.
3. integer, intent(OUT) :: y_id

The process ID defined in y_comm.

4.14 eigen_get_errinfo

Returns the internal error status information. If info is zero, no error occurred. If non-zero
value, some errors happened, and the internal error status has been inherited from eigenvalue
solver routines, for example, the DC solvers called internally. The function is just available
on version 2.11 or later. Thus, the API is provisional, and the semantics of arguments and
the specific meaning of returned value may be revised in future versions.

This function is a local operation. Although this function is not thread-safe (because the
arguments are specified in a Fortran pointer fashion), it can be called during multi-threading
if proper exclusive control of the arguments is provided.

subroutine eigen_get_errinfo( info )
1. integer, intent(OUT) :: info

The error status information
Curretly (version 2.11), it just reflects the info code from the internal DC routine
compatible to PDSTEDC in ScaLAPACK.

4.15 eigen_loop_start

Returns the initial loop value in a sense of the local loop structure correspoding to the
specified initial value of the global loop. Note that the global loop start value must be greater
than or equal to 1. The number of processes in the communicator must be 1 ≤ inod ≤ nnod
(or the number of participant processes in the communicator if pdir is specified). If pdir
is not properly specified, 0 is returned.

This function has a generic name interface, and appropriate subfunctions are called
according to the arguments.
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This function is a local operation. Although this function is not thread-safe (because the
arguments are specified in a Fortran pointer fashion), it can be called during multi-threading
if proper exclusive control of the arguments is provided.

integer function eigen_loop_start( istart, nnod, inod )
1. integer, intent(IN) :: istart

The initial value of the global loop.
2. integer, intent(IN) :: nnod

The number of processes.
3. integer, intent(IN) :: inod

The process ID.

integer function eigen_loop_start( istart, pdir, inod )
1. integer, intent(IN) :: istart

The initial value of the global loop.
2. character(*), intent(IN) :: pdir

A symbol to specify the communicator; base, row or column.
’W’ or ’T’ : comm
’X’ or ’R’ : x_comm
’Y’ or ’C’ : y_comm

3. integer, intent(IN), optional :: inod
The process ID. Default is the corresponding rank-ID specified by pdir.

For example, if you parallelize the following sequential loop organized in the communi-
cator x_comm, you may get the local loop range with eigen_loop_start, as well as
eigen_loop_end. The called function eigen_translate_l2g in the transformed loop
returns a global index value corresponding to the local index value indicated by the local
loop counter.

do i=J,K
....

enddo

↓ ↓ ↓ ↓ ↓ ↓

i_start=eigen_loop_start(J, ’X’)
i_end =eigen_loop_end (K, ’X’)
do i_local=i_start, i_end

i=eigen_translate_l2g(i_local, ’X’)
....

enddo
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4.16 eigen_loop_end

Returns the teminal value in a sense of the local loop structure correspoding to the specified
terminal value of the global loop. Note that the global loop start value must be greater than
or equal to 1. The number of processes in the communicator must be 1 ≤ inod ≤ nnod(or
the number of participant processes in the communicator if pdir is specied). If pdir is not
properly specified, -1 is returned. This function has a generic name interface, and appropriate
subfunctions are called according to the arguments.

This function is a local operation. Although this function is not thread-safe (because the
arguments are specified in a Fortran pointer fashion), it can be called during multi-threading
if proper exclusive control of the arguments is provided.

integer function eigen_loop_end( iend, nnod, inod )
1. integer, intent(IN) :: iend

The terminal value of the global loop.
2. integer, intent(IN) :: nnod

The number of processes.
3. integer, intent(IN) :: inod

The process ID.

integer function eigen_loop_end( iend, pdir, inod )
1. integer, intent(IN) :: iend

The terminal value of the global loop.
2. character(*), intent(IN) :: pdir

A symbol to specify the communicator; base, row or column.
’W’ or ’T’ : comm
’X’ or ’R’ : x_comm
’Y’ or ’C’ : y_comm

3. integer, intent(IN), optional :: inod
The process ID. Default is the corresponding rank-ID specified by pdir.

4.17 eigen_loop_info

is a combined procedure with eigen_loop_start and eigen_loop_end, which returns both
the initial value and terminal value at the same time. Also, other specific behaviors follow
the same as the two functions.

subroutine eigen_loop_info( istart, iend, lstart, lend, nnod, inod )
1. integer, intent(IN) :: istart

The initial value of the global loop.
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2. integer, intent(IN) :: iend
The terminal value of the global loop.

3. integer, intent(OUT) :: lstart
The initial value of the local loop.

4. integer, intent(OUT) :: lend
The terminal value of the local loop.

5. integer, intent(IN) :: nnod
The number of processes.

6. integer, intent(IN) :: inod
The process ID.

subroutine eigen_loop_info( istart, iend, lstart, lend, pdir, inod )
1. integer, intent(IN) :: istart

The initial value of the global loop.
2. integer, intent(IN) :: iend

The terminal value of the global loop.
3. integer, intent(OUT) :: lstart

The initial value of the local loop.
4. integer, intent(OUT) :: lend

The terminal value of the local loop.
5. character(*), intent(IN) :: pdir

A symbol to specify the communicator; base, row or column.
’W’ or ’T’ : comm
’X’ or ’R’ : x_comm
’Y’ or ’C’ : y_comm

6. integer, intent(IN), optional :: inod
The process ID. Default is the corresponding rank-ID specified by pdir.

4.18 eigen_translate_l2g

Returns the global index corresponding to the local index value (1 or greater) indicated by
the local counter. The number of processes in the communicator must be 1 ≤inod≤nnod(or
the number of participant processes in the communicator if pdir is specified). If pdir is not
properly specified, -1 is returned. This function has a generic name interface, and appropriate
subfunctions are called according to the arguments.

This function is a local operation. Although this function is not thread-safe (because the
arguments are specified in a Fortran pointer fashion), it can be called during multi-threading
if proper exclusive control of the arguments is provided.
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integer function eigen_translate_l2g( ictr, nnod, inod )
1. integer, intent(IN) :: ictr

Local counter.
2. integer, intent(IN) :: nnod

The number of processes.
3. integer, intent(IN):: inod

The process ID.

integer function eigen_translate_l2g( ictr, pdir, inod )
1. integer, intent(IN) :: ictr

Local counter.
2. character(*), intent(IN) :: pdir

A symbol to specify the communicator; base, row or column.
’W’ or ’T’ : comm
’X’ or ’R’ : x_comm
’Y’ or ’C’ : y_comm

3. integer, intent(IN), optional :: inod
The process ID. Default is the corresponding rank-ID specified by pdir.

4.19 eigen_translate_g2l

Returns the local index corresponding to the global index value (1 or greater) indicated by
the local counter, whereas it is not certain that the caller process is the owner process. The
number of processes in the communicator must be 1 ≤inod≤nnod(or the number of partic-
ipant processes in the communicator if pdir is specified). If pdir is not properly specified,
-1 is returned. This function has a generic name interface, and appropriate subfunctions are
called according to the arguments.

This function is a local operation. Although this function is not thread-safe (because the
arguments are specified in a Fortran pointer fashion), it can be called during multi-threading
if proper exclusive control of the arguments is provided.

integer function eigen_translate_g2l( ictr, nnod, inod )
1. integer, intent(IN) :: ictr

Global counter.
2. integer, intent(IN) :: nnod

The number of processes.
3. integer, intent(IN) :: inod

The process ID.
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integer function eigen_translate_g2l( ictr, pdir, inod )
1. integer, intent(IN) :: ictr

Global counter.
2. character(*), intent(IN) :: pdir

A symbol to specify the communicator; base, row or column.
’W’ or ’T’ : comm
’X’ or ’R’ : x_comm
’Y’ or ’C’ : y_comm

3. integer, intent(IN), optional :: inod
The process ID. Default is the corresponding rank-ID specified by pdir.

4.20 eigen_owner_node

Returns the owner ID corresponding to the specified global index value (1 or greater). The
number of processes in the communicator must be 1 ≤inod≤nnod(or the number of partic-
ipant processes in the communicator if pdir is specified). If pdir is not properly specified,
-1 is returned. This function has a generic name interface, and appropriate subfunctions are
called according to the arguments.

This function is a local operation. Although this function is not thread-safe (because the
arguments are specified in a Fortran pointer fashion), it can be called during multi-threading
if proper exclusive control of the arguments is provided.

integer function eigen_owner_node( ictr, nnod, inod )
1. integer, intent(IN) :: ictr

Global counter.
2. integer, intent(IN) :: nnod

The number of processes.
3. integer, intent(IN) :: inod

The process ID.

integer function eigen_owner_node( ictr, pdir, inod )
1. integer, intent(IN) :: ictr

Global counter.
2. character(*), intent(IN) :: pdir

A symbol to specify the communicator; base, row or column.
’W’ or ’T’ : comm
’X’ or ’R’ : x_comm
’Y’ or ’C’ : y_comm

3. integer, intent(IN), optional :: inod
The process ID. Default is the corresponding rank-ID specified by pdir.
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4.21 eigen_owner_index

Returns the corresponding local index if the caller process is the owner of the specified
global index value (1 or greater). The number of processes in the communicator must
be 1 ≤inod≤nnod(or the number of participant processes in the communicator if pdir is
specified). If pdir is not properly specified, -1 is returned. This function has a generic name
interface, and appropriate subfunctions are called according to the arguments.

This function is a local operation. Although this function is not thread-safe (because the
arguments are specified in a Fortran pointer fashion), it can be called during multi-threading
if proper exclusive control of the arguments is provided.

integer function eigen_index_node( ictr, nnod, inod )
1. integer, intent(IN) :: ictr

Global counter.
2. integer, intent(IN) :: nnod

The number of processes.
3. integer, intent(IN) :: inod

The process ID.

integer function eigen_index_node( ictr, pdir, inod )
1. integer, intent(IN) :: ictr

Global counter.
2. character(*), intent(IN) :: pdir

A symbol to specify the communicator; base, row or column.
’W’ or ’T’ : comm
’X’ or ’R’ : x_comm
’Y’ or ’C’ : y_comm

3. integer, intent(IN), optional :: inod
The process ID. Default is the corresponding rank-ID specified by pdir.

4.22 eigen_convert_ID_xy2w

Converts the 2D process ID to the process ID on the base communicator according to the
grid major. It does not check whether the input and return values of the process IDs are
within the correct range.

This function is a local operation. Although this function is not thread-safe (because the
arguments are specified in a Fortran pointer fashion), it can be called during multi-threading
if proper exclusive control of the arguments is provided.
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integer function eigen_convert_ID_xy2w( xinod, yinod )
1. integer, intent(IN) :: xinod

The process ID in x_comm
2. integer, intent(IN) :: yinod

The process ID in y_comm.

4.23 eigen_convert_ID_w2xy

Converts the process ID on the base communicator to the 2D process ID according to the
grid major. It does not check whether the input and return values of the process IDs are
within the correct range.

This subroutine is a local operation. Although this subroutine is not thread-safe (because
the arguments are specified in a Fortran pointer fashion), it can be called during multi-
threading if proper exclusive control of the arguments is provided.

subroutine eigen_convert_ID_w2xy( inod, xinod, yinod )
1. integer, intent(IN) :: inod

Process ID in the Base communicator.
2. integer, intent(OUT) :: xinod

The process ID in x_comm.
3. integer, intent(OUT) :: yinod

The process ID in y_comm.

4.24 KMATH_EIGEN_GEV

Is a generalized eigenvalue computing driver routine that uses EigenExa as the internal
eigenvalue computing engine. Since version 2.6, this function is officially bundled in the
EigenExa library. A user has to make a separate package in a case prior to 2.4. In this driver,
eigen_sx is called to compute the eigenpairs via transformation to a pentadiagonal matrix
as Cy = λy, where B = XBΛBX

T
B ⇒ YB = XBΛ1/2

B ⇒ C = Y −1
B AY −T

B , y = Y T
B x. The

constraints on the driver are similar to those on eigen_sx.

subroutine kmath_eigen_gev( n, nvec, a, lda, b, ldb, w, z, ldz )
1. integer, intent(IN) :: n

Dimensions of the matrix and vector to be solved.
2. integer, intent(IN) :: nvec

The number of eigenvectors (eigenmodes) to be computed.
If positive, eigenmodes are computed from the smallest.
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If zero, all eigenvalues without eigenvectors are computed from the smallest.
(if negative, they are computed from the largest, but not supported currently.)

3. real(8), intent(INOUT) :: a(1:lda,*)
A target matrix pencil (A− λB);
matrix A is real symmetric (upper triangular part is available), whose size
must be equal or larger than the values obtained by calling eigen_get_matdims.
Array content is destroyed upon the subroutine termination.

4. integer, intent(IN) :: lda
The leading dimension of array a, which must be equal or larger than
the value obtained by calling eigen_get_matdims.

5. real(8), intent(INOUT) :: b(1:ldb,*)
A target matrix pencil (A− λB);
matrix B is real symmetric (upper triangular part is available), whose size
must be equal or larger than the values obtained by calling eigen_get_matdims.
The matrix for transformation to the standard eigenvalue problem is stored
upon subroutine termination.

6. integer, intent(IN) :: ldb
The leading dimension of array b, which must be equal or larger than
the value obtained by calling eigen_get_matdims.

7. real(8), intent(OUT) :: w(1:n)
The eigenvalues of the matrix pencil (A− λB) stored in the ascending/descending
order according to nvec .

8. real(8), intent(OUT) :: z(1:ldz,*)
The eigenvectors of the generalized eigenproblem with B-orthogonal.
The size of array must be equal or larger than the values obtained by calling
eigen_get_matdims.

9. integer, intent(IN) :: ldz
The leading dimension of array z, which must be equal or larger than
the value obtained by calling eigen_get_matdims.
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Chapter 5

Other Considerations

5.1 Regarding upper/lower compatibilities

As the successor to EigenK, EigenExa has inherited many of its functions. However, complete
compatibility between the two libraries is not guaranteed since their internal implementations
differ in specific details. These are mainly differences in function and variable naming rules
and in common domain management methods. For the same reason, the simultaneous linking
of EigenExa and EigenK is not recommended.

Updating EigenExa from version 2.3 to 2.4, module management and naming rules have
been changed. Therefore, users using versions 2.3 or earlier should be careful when updating
to higher versions.

5.2 Binding with other languages

The method for calling EigenExa from a language other than Fortran90 is highly dependent on
the user’s environment. For further information, refer to “Language bindings” and “Method
of linking to multiple programming languages” in the compiler manual. Information of
reference may also be found in the “Python binding of EigenExa” project [18], which enabled
calling from the Python language.

5.3 Behavior on error occurrence

During initialization, EigenExa checks that it is being executed under appropriate conditions,
but error detection is not performed during execution. In some cases, forced library termina-
tion may occur if several conditions are met; for example, a linked subordinate library such
as BLAS or LAPACK produces an error, or memory allocation in EigenExa got failed. In
short, these error occurrence do not resume the main caller routine but terminate the main
program.

Information on bug discoveries is essential for the improvement of library quality. On
the discovery of any bug, please be sure to report it to the developers (email address is
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EigenExa@ml.riken.jp).

5.4 Shared library handling in versions 1.x
In former versions (1.x), Shared libraries were not supported, because at the time of their de-
velopment it was not possible to guarantee complete and collision-free resolution of function
names when shared libraries are being used (with specific versions of gcc, abnormal shutdown
occurred without resolution of function names at execution). When version 1.x is to be used
as a shared library, this must be performed solely at the user’s responsibility.

EigenExa versions 2.x and later are both static- and shared-library capable, a develop-
ment achieved with the technical cooperation of former Team Leader Toshiyuki Maeda and
other members of the HPC Usability Research Team at the RIKEN Advanced Institute for
Computational Science in 2015. Eventually, from version 2.4 both libraries are built in the
make phase in default. When executing, always remember to make the appropriate settings
for the environment variables (such as LD_LIBRARY_PATH).

5.5 Known bugs and the best workaround

5.5.1 Numerical reproducibility in Intel compiler and Intel MPI

Some MPI implementations adopt non-reproducible algorithms for collective communica-
tion, especially for reduction operations, including arithmetic operations, in order to improve
communication performance. The Intel MPI [19] clearly states that bit-level reproducibility
of real number reduction operations (e.g., MPI_SUM) is not ensured due to the adoption of
network topology-aware algorithms. EigenExa includes several groups of processes that per-
form redundant calculations. Since the bit-level consistency between these process groups
is required, the operation of EigenExa may become abnormal if numerical reproducibility
fails. Therefore, we try to avoid such a situation in our internal implementation as much as
possible. However, the current implementation of the algorithm does not solve the essential
part of the problem.

In order to solve such reproducibility problems, we recommend two options. First for the
runtime options, Intel MPI provides the environment variable I_MPI_CBWR. EigenExa handles
the additional runtime attributes to the communicator to achieve the same functionality as
if the environment variable were specified internally. Nevertheless, this feature may not work
correctly if the user specifies the communication algorithm explicitly. Therefore, when using
Intel MPI, it is recommended that the environment variable I_MPI_CBWR be set to 2.1

% export I_MPI_CBWR=2 (Bash)
% setenv I_MPI_CBWR 2 (C shell)

Besides, the second option for the compilation step is recommended. The user has to
specify no options to the environment variables (CFLAGS and FFLAGS) of the configure

1However, the countermeasure does not guarantee perfect bitwise numerical reproducibility, even on other
numerical libraries or user’s source segments.
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script that may affect accuracy, for example, weaker options than -fp-model=strict, to
avoid compiler-level numerical optimization problems. Note that the configure script au-
tomatically adds the option -fp-model=strict if the Intel compiler is detected.
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Appendix A

Algorithm overview

A.1 Introduction
Appendix A provides an overview of the eigenvalue computation algorithms used in EigenExa,
with the main focus on outlines of algorithms that two driver routines (eigen_s and eigen_sx)
use and differences between them. Both routines are designed to meet the underlying
EigenExa objective of computing all eigenvalues and eigenvectors of real symmetric dense
matrices. For general details about eigenvalue computation algorithms for dense matrices,
refer to sources such as [20, 21, 22, 23, 24, 25, 26, 27, 28].

A.2 Various approaches and related projects

eigenpairs

of A

real symmetric (A) tridiagonal (T)

banded (B)

eigenpairs

of B

eigenpairs

of T

ScaLAPACK, EigenExa（eigen_s）

DPLASMA, ELPA

EigenExa（eigen_sx）

Figure A.1: Various approaches to eigenvalue computation for real symmetric dense matrices.

Let us begin with a brief introduction to the essential aspects of the eigenvalue computing
procedures that is usually applied to real symmetric dense matrices. Textbooks on general
matrix computation describe an approach based on tridiagonalization of the input matrix
(the green path in Fig. A.1), which is used in ScaLAPACK [29] (and LAPACK). In the first
step of this approach (tridiagonalization), however, the performance is limited by memory
bandwidth, and therefore is expected to be not sufficiently high on recent computer systems.
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This problem led to two development projects, ELPA [30] and DPLASMA [31], which
employ an approach based on two-stage tridiagonalization via a banded matrix (the blue path
in Fig. A.1). In this tridiagonalization, the dominant cost arises during the first stage, in
the transformation from dense to band. The byte/flop ratio required in this transformation
is smaller than that in a direct tridiagonalization, which means the improvement of effec-
tive performance. But the eigenvector back-transformation process also requires two stages
(basically doubling the cost). Since high-performance implementation in the first stage of
the back-transformation (from T to B) is currently difficult, its cost becomes enormous in
obtaining a large number of eigenvectors.

These situations led to the development and provision of two routines for EigenExa. One
(eigen_s) applies an approach based on the conventional (one-stage) tridiagonalization (the
green path in Fig. A.1). The other (eigen_sx) applies an approach in which the eigenvalues
and eigenvectors of a banded matrix are computed directly (the red path in Fig. A.1). The
following sections describe these two approaches in a little more detail.

A.3 eigen_s

As noted above, the eigen_s routine in EigenExa applies an approach based on the con-
ventional (one-stage) tridiagonalization, which is used in ScaLAPACK and other libraries.
More specifically, it obtains solutions to the eigenvalue problem Axi = λixi (i = 1, . . . , N)
through the following three steps:

1. Tridiagonalization of the input matrix by Householder transformations: Q>AQ→ T

2. Computation of the eigenvalues and eigenvectors of a tridiagonal matrix by the divide-
and-conquer method: Tyi = λiyi

3. Back transformation of the eigenvectors: Qyi → xi

In step 1, the Householder transformations act from both sides

H>N−2 · · ·H>1 AH1 · · ·HN−2 → T, Hi = I − uiβiu
>
i (A.1)

with each column (row) of the input matrix transformed in turn to a tridiagonal matrix
(Fig. A.2(a)). Here, we chose the position of the variable beta in the equations for its
correspondence with the description further below. The computation of the transform by
each Householder transformation is usually performed by using the symmetry of A, as

(I − uβu>)>A(I − uβu>) = A− uv> − vu>, v = (w − 1
2uβ>(w>u))β, w = Au.

(A.2)
Furthermore, the Dongarra’s method makes it possible to apply a number of transforma-

tions to the matrix in the form of matrix-matrix multiplications at a time:

(I−uKβKuK
>)> · · · (I−u1β1u1

>)>A(I−u1β1u1
>) · · · (I−uKβKuK

>) = A−UV >−V U>.
(A.3)
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However, matrix-vector multiplications, whose performance is limited by the memory band-
width, remain (for obtaining the matrix V ) and is, therefore, a significant bottleneck for
high-performance computing.

In the second step, the divide-and-conquer method proposed by Cuppen [32] is applied to
compute the eigenvalues and eigenvectors of the tridiagonal matrix. As shown in Fig. A.2(b),
a tridiagonal matrix can be decomposed into a block diagonal matrix and a rank one per-
turbation. The underlying idea of the method is computing the eigenvalue decomposition of
the tridiagonal matrix efficiently by using the eigenvalue decomposition of the block diagonal
matrix (and recursively apply this idea to the block diagonal matrix).

In the third step, back transformation of the eigenvectors is performed by applying the
Householder transformations obtained in the first step to the eigenvectors of the tridiag-
onal matrix in the reverse order. Since a number of Householder transformations can be
aggregated into a convenient form (compact-WY representation):

H1 · · ·HK = (I − u1β1u>1 ) · · · (I − uKβKu>K)→ I − USU>, U = [u1 · · ·uK ] (A.4)

at low cost (only for computing a small matrix S), the back transformation is usually com-
puted via matrix-matrix multiplications (Level-3 BLAS):

H1 · · ·HN−2Y = (I − U1S1U
>
1 ) · · · (I − UMSMU>M )Y → X, (A.5)

where
Y = [y1 · · ·yN ], X = [x1 · · ·xN ]. (A.6)

For this reason, this step is expected to achieve high performance.

・・・

(a) Tridiagonalization

= +

(b) The divide-and-conquer
method

Figure A.2: Schematic of eigenvalue computation by eigen_s.

In eigen_s, the first and third steps are newly implemented from scratch with appropriate
thread parallelization, whereas the second step is almost ported from the ScaLAPACK code.

A.4 eigen_sx

The other driver routine provided in EigenExa, namely eigen_sx, is based on an approach
that employs direct computation of the eigenvalues and eigenvectors of a banded matrix. At
present, for the reason mentioned in the last section, a pentadiagonal matrix is selected as
the banded matrix. More specifically, the eigenvalue problem is solved in the following three
steps.
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1. Pentadiagonalization of the input matrix by block version of Householder transforma-
tions: Q̃>AQ̃→ B

2. Computation of the eigenvalues and eigenvectors of a pentadiagonal matrix by the
divide-and-conquer method: Byi = λiyi

3. Back transformation of the eigenvectors: Q̃yi → xi

In the first step, the block version of Householder transformations are applied to the
input matrix from both sides:

H̃>N/2−1 · · · H̃
>
1 AH̃1 · · · H̃N/2−1 → P, H̃i = I − ũiβ̃iũ

>
i (A.7)

to transform every two columns (two rows) of the input matrix into a pentadiagonal matrix
(Fig. A.3(a)), where

ũi = [u(i)
1 u

(i)
1 ], β̃i =

(
β

(i)
11 β

(i)
12

β
(i)
21 β

(i)
22

)
. (A.8)

There is no difference excepting the form of H̃ between Eqs. (A.1) and (A.7), so that the
procedure of the pentadiagonalization is the same as the tridiagonalization; the Dongarra’s
method can similarly be applied. The performance bottleneck thus resides in the part of
computing Aũ.

In the second step, as shown in Fig. A.3(b), the pentadiagonal matrix is decomposed into
a block diagonal matrix and a rank two perturbation. By treating the rank two perturbation
as two rank-one perturbations, we apply the principle of the divide-and-conquer method for a
tridiagonal matrix twice and compute the eigenvalues and eigenvectors of the pentadiagonal
matrix [33].

In the third step, the block version of Householder transformations obtained in the first
step are applied to the eigenvectors of the pentadiagonal matrix in the reverse order, which
is essentially the same as in the case of tridiagonalization. The block version of Householder
transformations can also be aggregated in a form with matrices as in Eq. A.4, and matrix-
matrix multiplication can therefore be used in this step, which promises that this step easily
achieves high performance.

・・・

(a) Pentadiagonalization

= +

(b) The divide-and-conquer
method

Figure A.3: Schematic of eigenvalue computation by eigen_sx.

In eigen_s, as in eigen_s, steps 1 and 3 are newly implemented with appropriate thread
parallelization, whereas step 2 is a simple extended implementation of the ScaLAPACK code
for a pentadiagonal matrix.



A.5. DIFFERENCES BETWEEN EIGEN_S AND EIGEN_SX 51

A.5 Differences between eigen_s and eigen_sx

As described in A.3 and A.4, eigen_s and eigen_sx comprise three similar steps and are
nearly the same in computation procedures. Particularly in the step of the back transforma-
tion of the eigenvectors, there is no essential difference between them. In this section, we
mention the main differences in the first and second steps between them.

Tri-/Penta-diagonalization

The essential difference between eigen_s and eigen_sx in this step is that eigen_s pro-
cesses a single vector, whereas eigen_sx processes two vectors together, e.g.

w = Au (in eigen_s) → [w1 w2] = A[u1 u2] (in eigen_sx). (A.9)

In the overall step, the total number of floating-point operations is about the same (at least
for the highest term) for the two routines; the amount per operation required in eigen_sx
in about twice that in eigen_s, but the number of operations in eigen_sx is about half
that in eigen_s because the former deals with two columns at an operation. For similar
reasons, the amount of data transferred among distributed processes is almost the same for
the two.

The first difference that becomes evident between the two is in the effective performance
of the floating-point operations (in particular, in matrix-vector multiplications). The data of
matrix A can be reused when computing A[u1 u2], whereas it cannot work when computing
Au. This means that the required byte/flop ratio in the former is lower than that in the latter.
As a result, the effect of limitation by memory bandwidth is smaller in the former than in
the latter (theoretically by about half), which indicates the increasing effective performance
in eigen_sx.

The second difference that becomes evident is in the communication latency, arising from
the difference in communication frequencies. Although the data amount per communication
is more considerable in eigen_sx than in eigen_s, the frequency of communications is lower
(by about half). The feature of lower communication frequency (Communication-Avoidance)
is a very substantial difference, especially in cases of massively parallel computing, due to
the fact that communication latency has become a significant problem in recent systems.

In short, eigen_sx exhibits clear advantages over eigen_s in terms of both the per-
formance of floating-point operations and the latency cost of communication. In cases
where the problem size relative to the number of processes is sufficiently large (with the
time for floating-point operations thus dominant), the advantage in effective performance is
significant. On the other hand, in cases where the number of processes is large (with com-
munication time thus dominant), the advantage in the latency cost is therefore significant.
In total, eigen_sx is expected to achieve higher performance than eigen_s.

The divide-and-conquer method

It is clear that eigen_sx requires more cost (both for floating-point operations and com-
munications) than eigen_s because the former deals with a rank-two perturbation, whereas
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the latter deals with a rank one perturbation. In eigen_sx, a rank two perturbation is dealt
with two rank-one perturbations. The computational cost for the first rank one perturbation
can be reduced by exploiting the structure of the matrix (i.e. block diagonal), however such
benefit did not exist in the computation for the second rank one perturbation; the latter cost
is about twice that of the former cost. The resulting cost required in eigen_sx increases by
a factor of about three.

In the divide-and-conquer method, one can reduce the cost substantially by the tech-
nique known as “deflation”. The number of opportunities in which deflation can be applied
varies with the problem. In addition, it is different even for the same input matrix between
routines via tridiagonalization and pentadiagonalization. Therefore, it is not easy to derive
a theoretical estimation of the difference between the costs of the two routines.

A.6 Conclusion
In this chapter, we gave an overview of the algorithms employed in the two routines, eigen_s
and eigen_sx, provided in EigenExa, and explained their main differences. Increasing the
bandwidth of the banded matrix generally involves the trade-off; it is advantageous in the
first step (the transformation step), but disadvantageous in the second step (the divide-
and-conquer method). Taking this trade-off into account, we deem that the pentadiagonal
matrix is appropriate in today’s systems. With increasing performance of future systems
and improved implementation of the divide-and-conquer method (our ScaLAPACK-based
implementation seems to be rarely suitable for current systems), banded matrix with larger
band width (e.g. heptadiagonal) may prove promising. By contrast, the use of conventional
tridiagonalization (eigen_s) might in some circumstances, be the best choice. We hope that
an understanding of the information in this appendix will help users to select the routine that
is most appropriate to their application.



Appendix B

Release notes

The release history of EigenExa is listed in ReleaseNotes.txt.

B.1 Version 2.11 (December 1, 2021)
• [Upgrade] Experimental support for Hermite solver, namely, eigen_h.

• [Serious] Fix the numerical error happened to be included in v2.10, where the tall-
skinny QR coded in eigen_prd_t4x.F of eigen_sx was too sensitive to treat tiny
values and forced-double truncation. But, it might depend on the compiler version
and the code generator.

• Modify pointer attribution to ‘allocatable’ to avoid automatic deallocation on the exit
of callee routines.

• Some code modifications are applied to pass strong debugging tools with respect to
Fortran 95 and some of Fortran 2003 extensions.

• Fix some bugs, for exmaple, missing private attribution to some variables for OpenMP.

B.2 Version 2.10 (Octorber 17, 2021)
• [Serious] Bug fix for violation of the result of allreduce in DC. It happened very rarely

when data to be transferred was shorter than the number of processes participating.

• [Serious] Bug fix for inconsistent API interpretation of DLAED4, when K is less than
or equal to 2. This bug happened when a lot of deflations are carried out, and sub-
matrices are shrunk tiny as 1 or 2. So, it is infrequent to see.

• [Serious] Bug fix for non-deterministic behavior of the DC branch, which happened
if an uninitialized variable referred in the brach condition, and is affected by the side-
effects of other modules, etc. It was fixed when 2.9 was released but noted in the
release.
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• Reduce the internal data capacity in the TRD and DC routines.

• Fix the installation of Fortran modules.

B.3 Version 2.9 (September 24, 2021)
• Modify the flops count precise in DC kernels.

• Modify trbak not to multiply D−1 and TRSM.

• Add enable/disable-switch for building the shared library.

• Modify to detect the memory allocation fault.

B.4 Version 2.8 (August 20, 2021)
• [Minor] Modify the DC kernel to reduce intermediate buffer storage.

• Bug fix on a t1 loop structure

• Updated the error check routine

• Fixed on Makefile to add the missing fortran module.

B.5 Version 2.7 (April 1, 2021)
• [Minor] Modify the compilation rules corresponding to static/shared libraries defined

in src/Makefile.am.

• Performance tweak with a modification of the compilation options not to use -fPIC
when build a static library.

• License document is packed as an independent file (the license notice was stated in
User’s manual for version 2.6).

B.6 Version 2.6 (November 1, 2020)
• [Upgrade] This version applies a communication avoidance technique to the house-

holder tridiagonalization together with, new process mapping for the load balance of
the divide and conquer method.

B.7 Version 2.5 (August 1, 2019)
• [Internal] Refine the data distribution in the divide and conquer algorithm routine.

• This version is only internal management version and not published.
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B.8 Version 2.4b (August 20, 2018)

• [Serious] Bug fix for incorrect data redistribution, which might violate allocated
memory. The bug might have happened in the case that the number of processes,
P = Px ∗ Py, is large, and Px and Py are not equal but nearly equal.

• This version is for only bug fix for the serious one.

B.9 Version 2.3m (August 20, 2018)

• [Serious] Bug fix for incorrect data redistribution, which might violate allocated
memory. The bug might have happened in the case that the number of processes,
P = Px ∗ Py, is large, and Px and Py are not equal but nearly equal.

• This version is for only bug fix for the serious one.

B.10 Version 2.4p1 (May 25, 2017)

• [Serious] Bug fix for incorrect data redistribution in eigen_s.

• Major change with Autoconf -and- Automake framework.

B.11 Version 2.4 (April 18, 2017)

• [Upgrade] Major change with Autoconf -and- Automake framework

B.12 Version 2.3k2 (April 12, 2017)

• Communication Avoiding algorithms to the eigen_s driver.

• The optional argument nvec is available, which specifies the number of eigenvectors
to be computed from the smallest. This version does not employ the special algorithm
to reduce the computational cost. It only drops off the unnecessary eigenmodes in the
backtransformation.

B.13 Version 2.3d (July 07, 2015)

• Tuned up the parameters according to target architectures.

• Introduce a sort routine in bisect.F and bisect2.F for eigenvalues.

• Modify the algorithm to create reflector vectors in eigen_prd_t4x.F
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• Modify the matrix setting routine to load the mtx (Matrix Market) format file via both
’A.mtx’ and ’B.mtx’.

• Re-format the source code by the fortran-mode of emacs and extra rules.

B.14 Version 2.3c (April 23, 2015)

• Fix bug on flops count of eigen_s which returned incorrect value due to missing
initialization in dc2.F.

• This bug is found in version 2.3a and version 2.3b.

• Minor change on timer routines.

• Minor change on broadcast algorithm in comm.F.

B.15 Version 2.3b (April 15, 2015)

• Minor change to manage the real constants.

• Minor change to use Level 1 and 2 BLAS routines.

• Minor change to preserve invalid or oversized matrices.

• Minor change of Makefile to allow ’-j’ option.

B.16 Version 2.3a (April 14, 2015)

• Minor change on thread parallelization of eigen_s.

• Minor change of the API’s for timer routines.

• Fix the unexpected optimization of rounding errors in eigen_dcx().

B.17 Version 2.3 (April 12, 2015)

• Bug fix on the benchmark program.

• Refine the race condition in the backtransformation routine.

• Introduce Communication Avoiding algorithms to the eigen_s driver.
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B.18 Version 2.2d (March 20, 2015)

• Bug fix on the timer print part in trbakwy4.F not to do zero division.

• Modify the synchronization point in eigen_s.

• Modify thread parallelization in eigen_dc2() and eigen_dcx().

B.19 Version 2.2c (March 10, 2015)

• Bug fix on the benchmark program.

• Add the make_inc file for an NEC SX platform.

B.20 Version 2.2b (October 30, 2014)

• Introduce new API to query the current version.

• Introduce the constant eigen_NB=64, which refers to the block size for cooperative
work with the ScaLAPACK routines.

• Correct the requred array size in eigen_mat_dims().

• Improve the performance of test matrix generator routine mat_set().

• Add the listing option of test matrices in eigenexa_benchmark/.

B.21 Version 2.2a (June 20, 2014)

• Fix minor bug of Makefile, miscC.c and etc for BG/Q.

• Modify the initialization process not to use invalid communicators.

• Comment out the calling BLACS_EXIT() in eigen_free().

B.22 Version 2.2 (April 10, 2014)

• Arrange the structure of source directory.

• Reversion of the DC routines back to version 1.3a to avoid bug.

• Hack miscC.c to be called from IBM BG/Q.

• Fix bug on the benchmark program for exceptional case of MPI_COMM_NULL.

• Fix bug on eigen_s with splitted communicator.
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• Update machine depended configuration files.

• Experimental support of building a shared library

B.23 Version 2.1a (Feb 23, 2014)

• Fix bug on the benchmark program.

B.24 Version 2.1 (Feb 10, 2014)

• Fix bug on eigen_sx: it gave wrong results when N=3.

• Modify the bisect2 by a pivoting algorithm.

• Update the test program ’eigenexa_benchmark’ in order to check accuracy with
several test matrices and computing modes.

• Tune performance for K computer and Fujitsu FX10 platforms.

• Add make_inc file for a BlueGeneQ platform, but it is not official support, just an
experimental.

B.25 Version 2.0 (Dec 13, 2013)

• [Upgrade] Add eigen_s, which adopts the conventional 1-stage algorithm.

• Add optional modes to compute only eigenvalues and to improve the accuracy of
eigenvalues.

• Modify to support a thread mode with any number of threads.

• Tune performance for K computer and Fujitsu FX10 platforms.

B.26 Version 1.3a (Sep 21, 2013)

• Fix bug on synchronization mechanism of eigen_trbakwyx().

B.27 Version 1.3 (Sep 20, 2013)

• Fix bug on eigen_init() in initialization with MPI_Cart’s or MPI_COMM_NULL’s.

• Add test programs to check several process patterns.
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B.28 Version 1.2 (Sep 17, 2013)
• Fix bug on benchmark code in making a random seed.

• Modify to support upto 64-thread running.

B.29 Version 1.1 (Aug 30, 2013)
• Fix bug on data-redistribution row vector to column vector when P = p ∗ q and p and
q have common divisor except themselves.

• Optimize data redistribution algorithm in dc_redist[12].F.

B.30 Version 1.0 (Aug 1, 2013)
• [Release] This is the first release

• Standard eigenvalue problem for a dense symmetric matrix by a novel one-stage algo-
rithm
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