Hierarchical and modular approach for reproducible

and accurate linear algebra algorithms

Roman lakymchuk!-?
joint work with
Maria Barreda?®, José |. Aliaga Estellés?, Enrique S. Quintana-Orti*, and
Stef Graillat?

1 Sorbonne University, France
2Fraunhofer ITWM, Germany
3Univesitat Jaime |, Spain
“Universitat Politécnica de Valéncia, Spain
roman.iakymchuk@sorbonne-universite.fr

Workshop on Large-scale Parallel Numerical Computing Technology —
HPC and Computer Arithmetics toward Minimal-Precision Computing
R-CCS, Kobe, Japan
Jan 29th-30th, 2020 Q

™ SORBONNE
UNIVERSITE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 1/42

Linear Algebra Libraries

| LAPACK | | FLAME | | NAG |

Basic Linear Algebra Subprograms (BLAS)

|Refer BLAS| |MKL CuBLAS| | OpenBLAS | | ATLAS |

BLAS-1 [1979]:

y:i=y+ax a€R;z,y e R” 2/3
a :oz—i—xTy

BLAS-2[1988]: A:=A+ay?! AcR™ ™z yecR® 2
y:=A"lz

BLAS-3[1990]: C:=C+ AB A,B,C e R**" n/2
C:=A"'B

Jan 29th-30th, 2020 2/42

Roman lakymchuk (Sorbonne and Fraunhofer ITWM)

Research goals

@ Compute BLAS operations with floating-point numbers fast
and precise, ensuring their numerical reproducibility, on a
wide range of architectures

@ Reproducibility — ability to obtain bit-wise identical and
accurate results from run-to-run on the same input data on
the same or different architectures

ExBLAS — Exact BLAS

o ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...
o ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

o ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

@ Construct reproducible higher-level operations like matrix
factorizations and iterative solvers using ExBLAS

SORBONNE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 3/42

0 Background: Computer Arithmetic
e ExBLAS and Matrix Factorizations
e Reproducible Preconditioned Conjugate Gradient

e Feltor and its Algorithmic, Programming, and Compilation Solu-
tions

e Conclusion

") SORBONNE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 4/42

0 Background: Computer Arithmetic

) SORBONNE
St

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 5/42

Background: Computer arithmetic

Computer arithmetic

Approximate real numbers by numbers that have a finite
representation

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 6/42

Background: Computer arithmetic

Computer arithmetic

Approximate real numbers by numbers that have a finite
representation

Problems
@ Floating-point arithmetic suffers from rounding errors

| A

@ Floating-point operations (+,x) are commutative but
non-associative

(—14+1)+275 £ -1+ (1+27°) in double precision

) SORBONNE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 6/42

Background: Computer arithmetic

Computer arithmetic

Approximate real numbers by numbers that have a finite
representation

Problems
@ Floating-point arithmetic suffers from rounding errors

| A

@ Floating-point operations (+,x) are commutative but
non-associative

279 240 in double precision

) SORBONNE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 6/42

Background: Computer arithmetic

Computer arithmetic

Approximate real numbers by numbers that have a finite
representation

Problems
@ Floating-point arithmetic suffers from rounding errors

| A

@ Floating-point operations (+,x) are commutative but
non-associative

(—14+1)+275 £ -1+ (1+27°) in double precision

@ Consequence: results of floating-point computations
depend on the order of computation

@ Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each

run returns a different result) @:omous
b Sereraasens reres

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 6/42

Background: Reproducibility

Sources of Non-Reproducibility

@ Changing Data Layouts:
e Data partitioning
o Data alignment

@ Changing Hardware Resources
@ Number of threads
o Fused Multiply-Add support: a - b+ ¢
o Intermediate precision (64 bits, 80 bits, 128 bits, etc)
Data path (SSE, AVX, GPU warp, etc)
Number of processors
Network topology

SORBONNE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 7/42

e ExBLAS and Matrix Factorizations

i) SORBONNE
S i

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 8/42

Existing Solutions

@ Fix the Order of Computations

@ Sequential mode: intolerably costly at large-scale systems

o Fixed reduction trees: substantial communication overhead
— Example: Intel Conditional Numerical Reproducibility in MKL

(~ 2z for datum, no accuracy guarantees)

Roman lakymchuk (Sorbonne and Fraunhofer ITWM)

Jan 29th-30th, 2020

SORBONNE
UNIVERSITE

9/42

Existing Solutions

@ Fix the Order of Computations
@ Sequential mode: intolerably costly at large-scale systems

o Fixed reduction trees: substantial communication overhead

— Example: Intel Conditional Numerical Reproducibility in MKL
(~ 2z for datum, no accuracy guarantees)

@ Eliminate/Reduce the Rounding Errors
o Fixed-point arithmetic: limited range of values
o Fixed FP expansions with Error-Free Transformations (EFT)
— Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)
@ ‘“Infinite” precision: reproducible independently from the inputs
— Example: Kulisch accumulator (considered inefficient)

SORBONNE
UNIVERSITE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 9/42

Existing Solutions

@ Fix the Order of Computations
e Sequential mode: intolerably costly at large-scale systems

o Fixed reduction trees: substantial communication overhead

— Example: Intel Conditional Numerical Reproducibility in MKL
(~ 2z for datum, no accuracy guarantees)

@ Eliminate/Reduce the Rounding Errors
o Fixed-point arithmetic: limited range of values

o Fixed FP expansions with Error-Free Transformations (EFT)
— Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)
e “Infinite” precision: reproducible independently from the inputs
— Example: Kulisch accumulator (considered inefficient)

@ Libraries

o ExBLAS: Exact BLAS (lakymchuk et al.)

ReproBLAS: Reproducible BLAS (Demmel et al.)

o RARE-BLAS: Repr. Acc. Rounded and Eff. BLAS (Chohra et al.)
o OzBLAS: Ozaki-scheme BLAS (Mukunoki et al.)

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020

SORBONNE
UNIVERSITE

9/42

Exact Multi-Level Parallel Reduction

Preliminaries
@ Fixed FP expansions (FPE) with Error-Free Transformations
— Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)

Algorithm 1 (Dekker and Knuth) Algorithm 2 (|a| > |b])

Function[r, s] = twosum(a, b) Function[r, s] = twosum(a, b)
1:r<a+b 1:r<a+b
2.z 1r—a 2.z 1r—a

s (a—(r—z)+(b-2) 3 s+b—2z

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 10/42

Exact Multi-Level Parallel Reduction

Preliminaries
@ Fixed FP expansions (FPE) with Error-Free Transformations
— Example: double-double or quad-double (Briggs, Bailey, Hida, Li)
(work well on a set of relatively close numbers)

Algorithm 1 (Dekker and Knuth) Algorithm 2 (|a| > |b])

Function[r, s] = twosum(a, b) Function[r, s] = twosum(a, b)
1:r<a+b 1:r<a+b
2.z« 1—a 2.z 1r—a
s (a—(r—z)+(b-2) 3 s+b—2z

@ “Infinite” precision: reproducible independently from the inputs
— Example: Kulisch accumulator (=16 FLOPS)

significand 1

significand 2

A
emax 0 emin
2
integral part fractional part

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 10/42

Exact Multi-Level Parallel Reduction

Highlights of the Algorithm

@ Parallel algorithm with
5-levels

@ Suitable for today’s parallel
architectures

@ Based on FPE with EFT and
Kulisch accumulator

@ Guarantees “inf” precision
— bit-wise reproducibility

Level 5 (Rounding)
") SORBONNE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 11/42

ExSUM: Results
Performance Scaling on NVIDIA Tesla K20c

18 ‘ ‘
Parallel FP Sum -
16 + Demmel fast --- 7
Superacc —
14 - FPE2 + Superacc - : i
1L FPE3 + Superacc ‘ i
FPE4 + Superacc
<2 10 | FPEB+ Superacc LA/ —— ,
§ FPESEE + Superacc -
o 8 i 1
6 r ,
4t _
2 L d
0 s e Ll I I I
1000 10000 100000 1e+06 1e+07 1e+08 1le+09
Ay § s

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 12/42

ExSUM: Results
Data-Dependent Performance on NVIDIA Tesla K20c

18
Parallel FP Sum -
16 === Demmel fast
Superacc —
14 : FPE2 + Superacc -~ -]
12 F FPE3 + Superacc
1 FPE4 + Superacc
% 10 ", FPE8 + SuperaCC |
g o FPESEE + superaCC
&) 8 : |
6
4
2 I]
0

SORBONNE
UNIVERSITE

Ie+20 Ie+40]e+60 Ie+80 1e+1001e+12016+140 Qi
Dynamic range

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 13/42

ExBLAS-1 Highlights (1/2)

BLAS-1 routines

@ Some are virtually built upon exsum
— For instance, exdot = twoprod + exsum
— twoprod(a,b) (= 3 FLOPs):

1: res < a - b,
2: err < fma(a, b, —res)

@ The others are trivial: exaxpy = fma(c, z[i], y[i])

") SORBONNE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 14 /42

ExBLAS-1 Highlights (1/2)

BLAS-1 routines

@ Some are virtually built upon exsum
— For instance, exdot = twoprod + exsum
— twoprod(a,b) (= 3 FLOPSs):
1: res < a - b,
2: err < fma(a, b, —res)

@ The others are trivial: exaxpy = fma(«, z[i], y[i])

v

exscal
@ z := « -z — correctly rounded and reproducible
@ Within LU: z := 1/a - — not correctly rounded
@ exinvscal: z := z/a — correctly rounded and reproducible

v

) SORBONNE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 14/42

ExBLAS-1 Highlights (1/2)

BLAS-1 routines

@ Some are virtually built upon exsum
— For instance, exdot = twoprod + exsum
— twoprod(a,b) (= 3 FLOPSs):
1: res < a - b,
2: err < fma(a, b, —res)

@ The others are trivial: exaxpy = fma(c, z[i], y[i])

v

exscal
@ z := « -z — correctly rounded and reproducible
@ Within LU: z := 1/a - — not correctly rounded

@ exinvscal: z := z/a — correctly rounded and reproducible

v

exger

@ Generalcase: A:=a-z-yL +A
@ Within LU (o = 1.0): A:= 2 -yT + A.
Using fma — correctly rounded and reproducible

v

Roman lakymchuk (Sorbonne and Fraunhofer ITWM)

Jan 29th-30th, 2020

™ SORBONNE
3 UNIVERSITE

14/42

ExBLAS-1 Highlights (2/2)

Programming and compilation solutions

- fma(a, $[Z]a y[l])

— correctly rounded and reproducible

v

axpy-like

Qy=a-z+p-y

@ Warning: C++ compilers can change the execution order
— instruct compiler to use fma, eg std: : fma with C++11

— prevent the use of value changing optimization techniques,
eg -fp-model precise for icc

) SORBONNE
b UNIVERSITE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 15/42

An unblocked LU Factorization
Variant 5

LU Factorization i Ao |ao1| Aga

1 := PivIndex (Ll) (max)
o 1 a{o a1 a{Q
() o= pr) () (swa)
a21 a21
a1 = a21/a11 (scal) p Asg a21 Agy
A22 = A22 — aglaﬂ (ger)

3 x 3 partitioning of A

@ max is reproducible once the choice among equal elements is
deterministic

) SORBONNE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 16/42

An unblocked LU Factorization

Performance Scaling on NVIDIA Pascal P100

A=LU
5 T T
UnblLU ——
45 | rllExLU —— //
. /
3.5
73 // variant 5 of LU
g 2.5 / max ()
i 2
e / swap ()
1.5 ,j ao1 = (121/0111 scal
1 . _ T
/ A22 : A22 a21079 ger
0.5
__/

0 1000 2000 3000 4000 5000 6000

Matrix size [m = n]

") SORBONNE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 17 /42

ExBLAS-2 Highlights

Matrix-Vector Product

gemv: y := aAx + By ‘

P A zr Y

@ Based on exdot

I b I @ twoprod(a,b)
m : — 1:r4a-b

2: s < fma(a,b,—r)

@ fma(a,b,c) =axb+c

") SORBONNE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 18/42

Matrix-Vector Product

Performance Scaling on NVIDIA Pascal P100

’gemv: y:=Azx+vy

0.018 : ‘ :
Parallel DGEMV ——

0.016 Superacc —— 1
0014 | ExGEMV
0.012
0.01
0.008 r
0.006
0.004 -
0.002 -

@ Blocked exgemv

Time [secs]

1 @ Based on exdot

0 1000 2000 3000 4000 5000 6000

Matrix size [m = n]
A\ SORBONNE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 19/42

Matrix-Vector Product

Accuracy

10° FDGEMV + - A
, [EXGEMV o 4+
10 -3
(= 4+
g 10* *
= 6 # :
T 10 @ Preserve every bit of
E 1078 & information
2 10" - @ Correctly-rounded
E -12 + Al
s 10 . @ cond(A,z) = H|”A\.|;HIH
-14 ++
10 :
£
10 e (3 v cou};e 1) O, \(.,1)eeo
10° 10° 10" 10" 10* 10® 10*° 10¥ 10%
Condition number e

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 20/42

e Reproducible Preconditioned Conjugate Gradient

Roman lakymchuk (Sorbonne and Fraunhofer ITWM)

Preconditioned Conjugate Gradient

Background

We consider the efficient solution of linear system
Ax = b,

where
@ A € R™" is a large and sparse symmetric positive definite (SPD)

coefficient matrix
@ x € R™*" is a sought-after solution
@ b € R™*" is a give right-hand side vector

v

We propose to address Az = b iteratively using
@ Preconditioned Conjugate Gradient (PCG) method

@ Among the most often used iterative approaches to solve SPD linear
systems
e Jacobi preconditioner is good enough for many problems

@ On clusters of multicore processors with Message Passing Interface |

ONNE
ERSITE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 22/42

Preconditioned Conjugate Gradient

Algorithm

Compute preconditioner for A — M
Set starting guess z(”
Initialize 2%, d'?, ;3(0).7'(0).1 := 0 (iteration count)

) i=b— Az(©
— ,() 0
whlle (7 > Tmax)
Step Operation Kernel
S1: | w® = Adl SPMV
S2:|p =4 ”/< dP w® > DOT product
53: | 2D = z® +p(”d() AXPY
S4: | D = 0 -p (D qpy® AXPY
S5 | 2D = J\[(1) Apply precond.
S6: | gt = z““)‘ p(HD > DOT product
S7: | dtY = (.f3‘1+1)/J-3(’))d(’) + 2D | axpy-like
S8 | 7Y = D) D) DOT product
l =14+1
end while

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 23/42

Preconditioned Conjugate Gradient

Communication

Compute preconditioner for A — M
Set starting guess x
Initialize z,d, 3, 7,1 := 0
ri=>b— Ax, T:=<nr,r >
while (7 > Timax)
Step Operation Communication
B =5 -
S1:
S11:|d —e Allgatherv
51.2: | w = Ae -
52: p = f/<d,w> | Allreduce
53: T =zx+pd -
54 : roi=T1— pw -
S5 z =M r -
56 : B oi=<z,r> Allreduce
58 : T =<rr> Allreduce
S7: d = 3/8Nd+z |-
I =1+1
end while

) SORBONNE
b UNIVERSITE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 24/42

Reproducible Conjugate Gradient

Overview of reproducibility strategies

@ |dentify sources of non-reproducibility: dot (parallel
reduction), axpy, and spmv

@ Combine sequential executions, reorganization of

operations, and arithmetic solutions
— aiming for lighter or lightweight approaches

@ axpy is made reproducible thanks to fma

@ spmv computes blocks of rows in parallel, but with
axb+/—cxd

— ensure deterministic execution with explicit fma

@ dot —> apply the ExBLAS- and FPE-based approaches

Roman lakymchuk (Sorbonne and Fraunhofer ITWM)

Jan 29th-30th, 2020

) SORBONNE

UNIVERSITE
D) citimperimas

25/42

Reproducible Conjugate Gradient

Reproducible dot product

Distributed Dot Product with ExBLAS

@ Exploit the ExBLAS parallel reduction with the twoprod EFT

@ Drawbacks:

@ The required memory storage
@ The number of required operations

) SORBONNE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 26/42

Reproducible Conjugate Gradient

Reproducible dot product

Distributed Dot Product with ExBLAS

@ Exploit the ExBLAS parallel reduction with the twoprod EFT
@ Drawbacks:

@ The required memory storage
@ The number of required operations

v

Distributed Dot Product with FPEs

@ The PCG method can accommodate accurate and reproducible
computations using few floating point numbers (FPEs)

@ FPES8 is capable to represent 8x53 bits of significant. FPES is
frequently enough

@ Combined with the early-exit technique
@ Improves algorithm’s performance and enhance its accuracy

S

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 26/42

Reproducible Conjugate Gradient

Reproducible dot product and allreduce with ExXBLAS

Dot product

@ Extended ExSUM to ExDOT using twoprod EFT

@ This is combined with reduction among all processes

v

Allreduce

@ Allreduce is split into Reduce and Bcast

@ This facilitates implementation but also delivers better
performance for some cases

.

Listing 1: Reproducible Allreduce with ExBLAS.

| std::vector<int64_t> h_superacc(BIN_COUNT);
2 exblas::exdot (..., &h_superacc[0]);
3 exblas::Normalize (&h,superacc[oj);
4 MPI_Reduce (&h,superacc[oj ,,,,, BIN_COUNT,
MPI_LONG, MPI_SUM);
5 if (myId == 0) {
6 beta = exblas::Round (&h_superacc[0]);
7}
8 MPI_Bcast (&beta, 1, MPI_DOUBLE, ...); LR SRIVersiTE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 27/42

Reproducible Conjugate Gradient

Reproducible dot product with FPEs

Algorithm 3: Distributed por product of vectors a
and b with FPEs.

Function dot (N, a,b, fpe, fperr)

local por product with subvectors of size Ny

fori=0— Ny—-1do
res = twoprod(alil, b[il, err)
ExpansionAccumulate(f pe, res);
ExpansionAccumulate(f perr, err);

end

Merge FPEs with ExpansionAccumulate(a, x)

MPI reduction of FPEs

Rounding to the target format

Algorithm 4: Adding a floating-point number x to a
floating-point expansion a of size p.

Function ExpansionAccumulate(a, x)
Input: x is a floating-point number.
Output: a is a FPE containing the result.
fori=0— p-1do

| (alil, x) := twosum(al[i], x)
end

Roman lakymchuk (Sorbonne and Fraunhofer ITWM)

) SORBONNE
b TE

28/42

Reproducible Conjugate Gradient

Reproducible allreduce with FPEs

Listing 2: Reproducible Allreduce with FPEs only.

std::vector<double> fpe(N);

1

2 dot (..., &fpe[0]);

3 renormalize (&fpe [0]); // optional

4 MPI _Op Op; // user-defined reduction operation
s MPI_Op_create (fpesum, 1, &0p);

6 MPI_Reduce (&fpe[0]l, ..., N, MPI_DOUBLE, 0Op);

7 if (myId == 0) {

8 beta = Round (&fpe[0]); // Add3

9 }

10 MPI_Bcast (%beta, 1, MPI_DOUBLE, ...);

Algorithm 5: Aggregation of two FPEs of size
p-
Function fpesum(a, b)
Input: b is a FPE.
Output: ¢ is a FPE containing the result.
fori=0—- p—1do
| ExpansionAccumulate(a,b[i])
end

) SORBONNE
b SITE

29/42

Roman lakymchuk (Sorbonne and Fraunhofer ITWM)

Reproducible Conjugate Gradient

Rounding FPEs
Listing 3: Rounding a FPE to double using the Add3 algorithm.

1 inline static T Round(const T xfpe) {

2 union {

3 T d;

4 int64_t 1;

s } thdb;

6 T tl1;

7 T th = twosum(fpe[1], fpel[2], tl);
8 if (t1 '= 0.0) {

9 thdb.d = th;

10 // if the mantissa of th is odd, we are done
1 if (! (thdb.1l & 1)) {

12 // choose the rounding direction
13 // depending of the signs of th and tl
14 if ((tl > 0.0) ~ (th < 0.0))

15 thdb.1l++;

16 else

17 thdb.1--;

18 th = thdb.d;

19 }

20 }

21 // final addition rounded to nearest

22 return fpe[0] + th;

23}

For FPEs of size eight, we rely upon NearSum?

aS. M. Rump, T. Ogita, S. Qishi, Accurate floating-point summation part ii: Sign, S ONVERSITE
k-fold faithful and rounding to nearest, SIAM J. Sci. Comput. 31 (2008) 1269-1302.

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th:

2020 30/42

Reproducible Conjugate Gradient
Experimental results

@ Sparse positive definite coefficient matrix
@ 3D Poison’s equation with 27 stencil points

@ Transform it into a matrix band — The size of the band depends
on the number of nodes (100 x #nodes)

@ N = 4,000,000 rows/columns, but increase its bandwidth
proportionally to the hardware resources

) SORBONNE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 31/42

Reproducible Conjugate Gradient

Evaluation

@ Two versions of reproducible PCG: ExBLAS- and FPE-based (Opt)
@ Two different clusters: Tintorrum and Marenostrum4
@ Reproducibility results of residual and direct error

@ Strong and weak scaling

e Strong scaling: Fix the matrix size to N = 16,000,000 and band_size
=100 and increase the number of cores

o Weak scaling: Fix the matrix size to N = 4,000,000 and increase
band_size from 100 to 100 x max_nodes

") SORBONNE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 32/42

Reproducible Conjugate Gradient

Accuracy and reproducibility results

Tteration |

Residual

| MPFR

| Original 1 proc

| Original 48 procs

| Exblas & Opt

0x1.19f179eb7f032p+49
0x1.f86089ece9f75p+38
0x1.fc59a29d329ftp+28

0x1.74f5ccc211471p+22

0x1.7031058eb2e3ep-19
0x1.4828f76bd68afp-23
0x1.8646260a70678p-26
0x1.13fa97e2419¢7p-33

0x1.19f179eb7f033p+49
0x1.f86089f08810dp+38
0x1.fc59a29d1b6ap+28

0x1.74f5ccb8203adp+22

0x1.703105aea0e8ap-19
0x1.4828f6fabbf2ap-23
0x1.86462601300d2p-26
0x1.13fa98038c44ep-33

0x1.19f179eb7f033p+49
0x1.f86089¢d07a76p+38
0x1.fc59a29d2e989p+28
0x1.74f5ccclfafefp+22

0x1.7031058e8fFSap-19
0x1.4828f76bb9038p-23
0x1.8646260a71301p-26
0x1.13fa97e54e¢903p-33

0x1.19f179eb7f032p+49
0x1.f86089ece9f75p+38
0x1.fc59a29d329ftp+28

0x1.74f5ccc211471p+22

0x1.7031058eb2e3ep-19
0x1.4828f76bd68afp-23
0x1.8646260a70678p-26
0x1.13fa97e2419c7p-33

Table 3: Accuracy and reproducibility comparison on the intermediate and final residual against MPFR for a matrix with condition
number of 10'2. The matrix is generated following the procedure from Secﬁonﬂwith n=4,019,679 (159%).

Roman lakymchuk (Sorbonne and Fraunhofer ITWM)

) SORBONNE
b ITE

33/42

Reproducible Conjugate Gradient

Strong scaling results on Tintorrum
3D Poisson’s equation with 27 stencil points and tol = 10~8

Strong Scalability on Tintorrum
3.40 T

3.20 | : Exblas —— |
i Opt —x%—
3.00 i

2.80
2.60
2.40
2.20
2.00
1.80
1.60
1.40
1.20
1.00

Normalized Time w.r.t Regular

Number of cores

Tintorrum nodes have two 8-core Intel Xeon(R) E5-2630 (Haswell-EP)
CPUs @2.4 GHz and 64 GBs of DDR3 S

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 34/42

Reproducible Conjugate Gradient

Strong scaling results on MareNostrum4

3D Poisson’s equation with 27 stencil points and tol = 1078

Strong Scalability on MareNostrum 4
3.40 T
3.20]
3.00
2.80
2.60
2.40
2.20
2.00
1.80
1.60
1.40
1.20
1.00

Exblas ——
Opt —x<—

Normalized Time w.r.t Regular

48 96 192 384 768
Number of cores

MN4 (BSC) nodes have two 24-core Intel Xeon Platinum 8160 CPUs
@2.1 GHz, 96 GBs of DDRS3, and connected with Intel Omni-Path S

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 35/42

e Feltor and its Algorithmic, Programming, and Compilation Solu-
tions

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) 36/42

Full-F ELectromagnetic code in TORoidal geometry

@ Both a numerical library and a scientific software package
@ 2D and 3D drift- and gyrofluid simulations

@ Discontinuous Galerkin methods on structured grids to
spatially discretize model equations

@ Platform independent code from laptop CPUs to hybrid
CPU+GPU distributed memory systems

.4 SORBONNE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 37/42

Feltor: Accuracy and reproducibility issue

The dimensionless modified full-F Hasegawa-Wakatani model

10
10’ @ Oin+ {p,n} =afp—In(n)}
107 AN + {6~ (V4)*/2, N} =0
10 V- (NV¢)=n—-N
5
F 106 n — electron density
107 N —ion gyro-center density
10 ¢ — electric potential
1%)910
10 Q¢ _ [|n1—n2l2
0 4000 8000 12000 rel mll2

t

Accuracy and reproducibility issue

@ Preconditioned Conjugate Gradient (PCG) to invert elliptic
equation

@ The issue lies in the underlying kernels: dot(a,b), dot(a,b,c),
axpby, and spmv —

{IVERSITE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 38/42

Feltor: reproducibility and accuracy

The radial zonal flow structure

0.15

naive #1 - I repro #1
0.10 naive #2 -- rep:o #2 i
O
N [L) i i
0.05¢ i U A T .
A~ P LA ,' ‘n : 1 i1 n‘|
-3, ; t i voi ! [LY
$ 000 v v v e by
~ PR ARI S T A S R A N
£ \F v - T A
v v ' i i PPt
—-0.05 i [Voo it
. v ‘i i ii i
v v 11 L Y
1y 7
—-0.10t ¥
0. 15t= 12000

0 20 40 60 80 100 120

X

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 39/42

Outline

e Conclusion

) SORBONNE
TE

Roman lakymchuk (Sorbonne and Fraunhofer ITWM)

Conclusion and Future Work

Conclusion

@ ExBLAS leverages long accumulator and FPEs and often
provides correctly-rounded results independently from

e Data permutation, data assignment, partitioning/blocking
o Thread scheduling
@ Reduction trees

@ Ensured reproducibility of PCG using combined algorithmic and
programming strategies

@ ExBLAS-based approach is generic and, hence, robust, but
slow on few nodes. FPE-only approach is faster but less generic

@ Both approaches show overhead below 30 % at large scale

V.

Future Work
@ Detailed error analysis of the FPE-based solution

@ Modified FPE-based solution with AccSum
@ Different preconditioners and pipelined PCGs

IBONNE
VERSITE

v
Jan 29th-30th, 2020 41/42

Roman lakymchuk (Sorbonne and Fraunhofer ITWM)

Thank you for your attention!

@ EXBLAS: https://github.com/riakymch/exblas

@ Articles: Computer Physics Communications and JCAM
SCAN 2018 special issue

@ Preprints: https://arxiv.org/pdf/1807.01971.pdf
https://hal.archives-ouvertes.fr/hal-02391618v1

@ Codes: https://github.com/feltor-dev/feltor
https://github.com/riakymch/ReproCG

") SORBONNE

guwmm

Roman lakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 42/ 42

https://github.com/riakymch/exblas
https://arxiv.org/pdf/1807.01971.pdf
https://hal.archives-ouvertes.fr/hal-02391618v1
https://github.com/feltor-dev/feltor
https://github.com/riakymch/ReproCG

	Background: Computer Arithmetic
	ExBLAS and Matrix Factorizations
	Reproducible Preconditioned Conjugate Gradient
	Feltor and its Algorithmic, Programming, and Compilation Solutions
	Conclusion

