Hierarchical and modular approach for reproducible and accurate linear algebra algorithms

Roman lakymchuk^{1,2}

joint work with Maria Barreda³, José I. Aliaga Estellés², Enrique S. Quintana-Ortí⁴, and Stef Graillat¹

> ¹ Sorbonne University, France ² Fraunhofer ITWM, Germany ³ Univesitat Jaime I, Spain ⁴ Universitat Politècnica de València, Spain roman.iakymchuk@sorbonne-universite.fr

Workshop on Large-scale Parallel Numerical Computing Technology – HPC and Computer Arithmetics toward Minimal-Precision Computing R-CCS, Kobe, Japan Jan 29th-30th, 2020

Linear Algebra Libraries

Roman lakymchuk (Sorbonne and Fraunhofer ITWM)

@

Research goals

• Construct reproducible higher-level operations like matrix factorizations and **iterative solvers** using ExBLAS

Outline

2

- ExBLAS and Matrix Factorizations
- Reproducible Preconditioned Conjugate Gradient
- Feltor and its Algorithmic, Programming, and Compilation Solutions

Outline

Background: Computer Arithmetic

- ExBLAS and Matrix Factorizations
- 3 Reproducible Preconditioned Conjugate Gradient
- Feltor and its Algorithmic, Programming, and Compilation Solutions
- 5 Conclusion

Computer arithmetic

Approximate real numbers by numbers that have a finite representation

Roman lakymchuk (Sorbonne and Fraunhofer ITWM)

Background: Computer arithmetic

Computer arithmetic

Approximate real numbers by numbers that have a finite representation

Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations (+,×) are commutative but non-associative

 $(-1+1)+2^{-53}\neq -1+(1+2^{-53}) \quad \text{in double precision}$

Background: Computer arithmetic

Computer arithmetic

Approximate real numbers by numbers that have a finite representation

Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations (+,×) are commutative but non-associative

 $2^{-53} \neq 0$ in double precision

Background: Computer arithmetic

Computer arithmetic

Approximate real numbers by numbers that have a finite representation

Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations (+,×) are commutative but non-associative

 $(-1+1) + 2^{-53} \neq -1 + (1+2^{-53})$ in double precision

- Consequence: results of floating-point computations depend on the order of computation
- Results computed by performance-optimized parallel floating-point libraries may be often inconsistent: each run returns a different result

Sources of Non-Reproducibility

- Changing Data Layouts:
 - Data partitioning
 - Data alignment

• Changing Hardware Resources

- Number of threads
- Fused Multiply-Add support: $a \cdot b + c$
- Intermediate precision (64 bits, 80 bits, 128 bits, etc)
- Data path (SSE, AVX, GPU warp, etc)
- Number of processors
- Network topology

2

Background: Computer Arithmetic

- ExBLAS and Matrix Factorizations
- B) Reproducible Preconditioned Conjugate Gradient
- Feltor and its Algorithmic, Programming, and Compilation Solutions
- 5 Conclusion

Existing Solutions

• Fix the Order of Computations

- Sequential mode: intolerably costly at large-scale systems
- Fixed reduction trees: substantial communication overhead
- \rightarrow Example: Intel Conditional Numerical Reproducibility in MKL ($\sim 2x$ for datum, no accuracy guarantees)

Existing Solutions

• Fix the Order of Computations

- Sequential mode: intolerably costly at large-scale systems
- Fixed reduction trees: substantial communication overhead
- → Example: Intel Conditional Numerical Reproducibility in MKL ($\sim 2x$ for datum, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors

- Fixed-point arithmetic: limited range of values
- Fixed FP expansions with Error-Free Transformations (EFT)
- $\rightarrow\,$ Example: double-double or quad-double (Briggs, Bailey, Hida, Li) (work well on a set of relatively close numbers)
 - "Infinite" precision: reproducible independently from the inputs
- → Example: Kulisch accumulator (considered inefficient)

SORBONNE UNIVERSITÉ

Existing Solutions

• Fix the Order of Computations

- Sequential mode: intolerably costly at large-scale systems
- Fixed reduction trees: substantial communication overhead
- → Example: Intel Conditional Numerical Reproducibility in MKL ($\sim 2x$ for datum, no accuracy guarantees)

• Eliminate/Reduce the Rounding Errors

- Fixed-point arithmetic: limited range of values
- Fixed FP expansions with Error-Free Transformations (EFT)
- $\rightarrow\,$ Example: double-double or quad-double (Briggs, Bailey, Hida, Li) (work well on a set of relatively close numbers)
 - "Infinite" precision: reproducible independently from the inputs
- → Example: Kulisch accumulator (considered inefficient)

Libraries

- ExBLAS: Exact BLAS (lakymchuk et al.)
- ReproBLAS: Reproducible BLAS (Demmel et al.)
- RARE-BLAS: Repr. Acc. Rounded and Eff. BLAS (Chohra et al.)
- OzBLAS: Ozaki-scheme BLAS (Mukunoki et al.)

Exact Multi-Level Parallel Reduction

Preliminaries

- Fixed FP expansions (FPE) with Error-Free Transformations
- $\rightarrow\,$ Example: double-double or quad-double (Briggs, Bailey, Hida, Li) (work well on a set of relatively close numbers)

Algorithm 1 (Dekker and Knuth)	Algorithm 2 ($ a \ge b $)
Function[r, s] = twosum(a, b)	$\overline{Function[r,s]} = \texttt{twosum}(a,b)$
1: $r \leftarrow a + b$	1: $r \leftarrow a + b$
2: $z \leftarrow r - a$	2: $z \leftarrow r - a$
3: $s \leftarrow (a - (r - z)) + (b - z)$	3: $s \leftarrow b - z$

Exact Multi-Level Parallel Reduction

Preliminaries

- Fixed FP expansions (FPE) with Error-Free Transformations
- $\rightarrow\,$ Example: double-double or quad-double (Briggs, Bailey, Hida, Li) (work well on a set of relatively close numbers)

Algorithm 1 (Dekker and Knuth)	Algorithm 2 ($ a \ge b $)
Function[r, s] = twosum(a, b)	$\overline{Function[r,s]} = \texttt{twosum}(a,b)$
1: $r \leftarrow a + b$	1: $r \leftarrow a + b$
2: $z \leftarrow r - a$	2: $z \leftarrow r - a$
3: $s \leftarrow (a - (r - z)) + (b - z)$	3: $s \leftarrow b - z$

- "Infinite" precision: reproducible independently from the inputs
- → Example: Kulisch accumulator (=16 FLOPs)

NNE SITÉ

Exact Multi-Level Parallel Reduction

Highlights of the Algorithm

- Parallel algorithm with 5-levels
- Suitable for today's parallel architectures
- Based on FPE with EFT and Kulisch accumulator
- Guarantees "inf" precision
- \rightarrow bit-wise reproducibility

ExSUM: Results

Performance Scaling on NVIDIA Tesla K20c

Roman lakymchuk (Sorbonne and Fraunhofer ITWM)

ExSUM: Results

Data-Dependent Performance on NVIDIA Tesla K20c

ExBLAS-1 Highlights (1/2)

BLAS-1 routines

- Some are virtually built upon exsum
- \rightarrow For instance, exdot = twoprod + exsum
- \rightarrow twoprod(a,b) (= 3 FLOPs):

```
1: res \leftarrow a \cdot b,
```

```
2: err \leftarrow \texttt{fma}(a, b, -res)
```

• The others are trivial: example $fma(\alpha, x[i], y[i])$

ExBLAS-1 Highlights (1/2)

BLAS-1 routines

- Some are virtually built upon exsum
- \rightarrow For instance, exdot = twoprod + exsum
- \rightarrow twoprod(a,b) (= 3 FLOPs):

```
1: res \leftarrow a \cdot b,
```

2: $err \leftarrow \texttt{fma}(a, b, -res)$

• The others are trivial: example $fma(\alpha, x[i], y[i])$

exscal

- $x := \alpha \cdot x \rightarrow \text{correctly rounded and reproducible}$
- Within LU: $x := 1/\alpha \cdot x \rightarrow \text{not}$ correctly rounded
- exinvscal: $x := x/\alpha \rightarrow \text{correctly rounded and reproducible}$

ExBLAS-1 Highlights (1/2)

BLAS-1 routines

- Some are virtually built upon exsum
- \rightarrow For instance, exdot = twoprod + exsum
- \rightarrow twoprod(a,b) (= 3 FLOPs):

```
1: res \leftarrow a \cdot b,
```

2: $err \leftarrow \texttt{fma}(a, b, -res)$

• The others are trivial: example $fma(\alpha, x[i], y[i])$

exscal

- $x := \alpha \cdot x \rightarrow \text{correctly rounded and reproducible}$
- Within LU: $x := 1/\alpha \cdot x \rightarrow \text{not}$ correctly rounded
- exinvscal: $x := x/\alpha \rightarrow \text{correctly rounded and reproducible}$

exger

- General case: $A := \alpha \cdot x \cdot y^T + A$
- Within LU ($\alpha = 1.0$): $A := x \cdot y^T + A$. Using fma \rightarrow correctly rounded and reproducible

ExBLAS-1 Highlights (2/2)

Programming and compilation solutions

axpy

- $y := \alpha \cdot x + y$
- $\rightarrow \texttt{fma}(\alpha, x[i], y[i])$
- $\rightarrow\,$ correctly rounded and reproducible

axpy-like

- $y := \alpha \cdot x + \beta \cdot y$
- Warning: C++ compilers can change the execution order
- \rightarrow instruct compiler to use fma, eg std::fma with C++11
- $\rightarrow\,$ prevent the use of value changing optimization techniques, eg -fp-model precise for icc

An unblocked LU Factorization

Variant 5

LU Factorization	
$\pi_1 := PivIndex\left(\frac{\alpha_{11}}{a_{21}}\right)$	(\mathbf{max})
$\left(\frac{\alpha_{11}}{a_{21}}\right) := P(\pi_1) \left(\frac{\alpha_{11}}{a_{21}}\right)$	(\mathbf{swap})
$a_{21} := a_{21} / \alpha_{11}$	(scal)
$A_{22} := A_{22} - a_{21}a_{12}^T$	(ger)

	i	1	p
	A_{00}	<i>a</i> ₀₁	A_{02}
-	a_{10}^{T}	α_{11}	a_{12}^T
>	A_{20}	a_{21}	A_{22}

 3×3 partitioning of A

• **max** is reproducible once the choice among equal elements is deterministic

An unblocked LU Factorization

Performance Scaling on NVIDIA Pascal P100

ExBLAS-2 Highlights

Matrix-Vector Product

Matrix-Vector Product

Performance Scaling on NVIDIA Pascal P100

Matrix-Vector Product

Accuracy

- Preserve every bit of information
- Correctly-rounded

• cond(A, x) =
$$\frac{\||A| \cdot |x|\|}{\|A \cdot x\|}$$

Outline

- **ExBLAS and Matrix Factorizations**
- Reproducible Preconditioned Conjugate Gradient
 - Feltor and its Algorithmic, Programming, and Compilation Solutions

Preconditioned Conjugate Gradient

Background

Problem

We consider the efficient solution of linear system

Ax = b,

where

- $A \in \mathbb{R}^{n \times n}$ is a **large** and **sparse** symmetric positive definite (SPD) coefficient matrix
- $x \in \mathbb{R}^{n \times n}$ is a sought-after solution
- $b \in \mathbb{R}^{n \times n}$ is a give right-hand side vector

Solution

We propose to address Ax = b iteratively using

- Preconditioned Conjugate Gradient (PCG) method
 - Among the most often used iterative approaches to solve SPD linear systems
 - Jacobi preconditioner is good enough for many problems
- On clusters of multicore processors with Message Passing Interface

Preconditioned Conjugate Gradient

Algorithm

Compute preconditioner for $A \to M$ Set starting guess $x^{(0)}$ Initialize $z^{(0)}, d^{(0)}, \beta^{(0)}, \tau^{(0)}, l := 0$ (iteration count) $r^{(0)} := b - A x^{(0)}$ $\tau^0 := \langle r^{(0)}, r^{(0)} \rangle$ while $(\tau^{(l)} > \tau_{\max})$ Step Operation Kernel $S1: \quad w^{(l)} \quad := Ad^{(l)}$ SPMV $\begin{array}{c|c} S2: & \rho^{(l)} & := \beta^{(l)} / < d^{(l)}, w^{(l)} > \\ S3: & x^{(l+1)} & := x^{(l)} + \rho^{(l)} d^{(l)} \end{array}$ DOT product AXPY $S4: | r^{(l+1)} := r^{(l)} - \rho^{(l)} w^{(l)}$ AXPY $S5: \mid z^{(l+1)} := M^{-1}r^{(l+1)}$ Apply precond. $S6: \mid \beta^{(l+1)} := \langle z^{(l+1)}, r^{(l+1)} \rangle$ DOT product S7: $d^{(l+1)} := (\beta^{(l+1)} / \beta^{(l)}) d^{(l)} + z^{(l+1)}$ AXPY-like $S8: | \tau^{(l+1)} := \langle r^{(l+1)}, r^{(l+1)} \rangle$ DOT product := l + 1end while

Preconditioned Conjugate Gradient

Communication

Compute preconditioner for $A \to M$				
Set sta	Set starting guess x			
Initial	ize z, d, β	$, \tau, l := 0$		
r := l	$b - Ax, \tau$:= < r, r >		
while	$(\tau > \tau_{\rm ma})$	x)		
	Step	Operation	Communication	
-		$\beta' := \beta$	-	
-	S1:			
	S1.1:	$d \rightarrow e$	Allgatherv	
	S1.2:	w := Ae	-	
	S2:	$\rho \ := \beta / < d, w >$	Allreduce	
-	S3:	$x := x + \rho d$	-	
	S4:	$r := r - \rho w$	-	
	S5:	$z := M^{-1}r$	-	
-	S6:	$\beta := \langle z, r \rangle$	Allreduce	
	S8:	$\tau \ := < r, r >$	Allreduce	
-	S7:	$d := (\beta/\beta')d + z$	-	
		l := l + 1		
end while				

Overview of reproducibility strategies

Sources

• Identify sources of non-reproducibility: dot (parallel reduction), axpy, and spmv

Solutions

- Combine sequential executions, reorganization of operations, and arithmetic solutions
- \rightarrow aiming for lighter or lightweight approaches
 - axpy is made reproducible thanks to fma
 - spmv computes blocks of rows in parallel, but with a * b + / c * d
- ightarrow ensure deterministic execution with explicit fma
 - dot -> apply the ExBLAS- and FPE-based approaches

Reproducible dot product

Distributed Dot Product with ExBLAS

• Exploit the ExBLAS parallel reduction with the twoprod EFT

• Drawbacks:

- The required memory storage
- The number of required operations

Reproducible dot product

Distributed Dot Product with ExBLAS

• Exploit the ExBLAS parallel reduction with the twoprod EFT

• Drawbacks:

- The required memory storage
- The number of required operations

Distributed Dot Product with FPEs

- The PCG method can accommodate accurate and reproducible computations using few floating point numbers (FPEs)
- FPE8 is capable to represent 8x53 bits of significant. FPE3 is frequently enough
- Combined with the early-exit technique
- Improves algorithm's performance and enhance its accuracy

Reproducible dot product and allreduce with ExBLAS

Dot product

- Extended ExSUM to ExDOT using twoprod EFT
- This is combined with reduction among all processes

Allreduce

- Allreduce is split into Reduce and Bcast
- This facilitates implementation but also delivers better performance for some cases

Listing 1: Reproducible Allreduce with ExBLAS.

```
1 std::vector<int64_t> h_superacc(BIN_COUNT);
2 exblas::exdot (..., &h_superacc[0]);
3 exblas::Normalize (&h_superacc[0]);
4 MPI_Reduce (&h_superacc[0],..., BIN_COUNT,
MPI_LONG, MPI_SUM);
5 if (myId == 0) {
6 beta = exblas::Round (&h_superacc[0]);
7 }
8 MPI_Bcast (&beta, 1, MPI_DOUBLE, ...);
```


Reproducible dot product with FPEs

Algorithm 3: Distributed DOT product of vectors a and b with FPEs.	Algorithm 4: Adding a floating-point number <i>x</i> to a floating-point expansion <i>a</i> of size <i>p</i> .
Function $dot(N, a, b, fpe, fperr)$ local DOT product with subvectors of size N_k for $i = 0 \rightarrow N_k - 1$ do res = twoprod(a[i], b[i], err) ExpansionAccumulate(fpe, res); ExpansionAccumulate($fperr, err$);	Function ExpansionAccumulate(a, x)Input: x is a floating-point number.Output: a is a FPE containing the result.for $i = 0 \rightarrow p - 1$ do $\mid (a[i], x) := twosum(a[i], x)$ end
Merge FPEs with ExpansionAccumulate (a, x) MPI reduction of FPEs Rounding to the target format	

Reproducible allreduce with FPEs

Listing 2: Reproducible Allreduce with FPEs only.

```
1 std::vector<double> fpe(N);
2 dot (..., &fpe[O]);
3 renormalize(&fpe[O]); // optional
4 MPI_Op Op; // user-defined reduction operation
5 MPI_Op_create (fpesum, 1, &Op);
6 MPI_Reduce (&fpe[O], ..., N, MPI_DOUBLE, Op);
7 if (myId == 0) {
8 beta = Round (&fpe[O]); // Add3
9 }
10 MPI_Bcast (&beta, 1, MPI_DOUBLE, ...);
```

Algorithm 5: Aggregation of two FPEs of size *p*.

```
Function fpesum(a, b)Input: b is a FPE.Output: a is a FPE containing the result.for i = 0 \rightarrow p - 1 do| ExpansionAccumulate(a,b[i])end
```


Rounding FPEs

Listing 3: Rounding a FPE to double using the Add3 algorithm.

```
inline static T Round( const T *fpe ) {
       union {
           T d:
3
           int64 t 1:
4
      } thdb;
5
6
      T tl:
      T th = twosum(fpe[1], fpe[2], tl);
7
      if (tl != 0.0) {
8
           thdb.d = th:
9
           // if the mantissa of th is odd, we are done
10
           if (!(thdb.l & 1)) {
               // choose the rounding direction
               // depending of the signs of th and tl
13
               if ((t1 > 0.0) ^ (th < 0.0))
14
                    thdb.1++;
15
               else
16
                    thdb.l--;
               th = thdb.d;
18
           }
19
       3
20
          final addition rounded to nearest
21
22
      return fpe[0] + th;
23
  }
```

For FPEs of size eight, we rely upon NearSum^a

^aS. M. Rump, T. Ogita, S. Oishi, Accurate floating-point summation part ii: Sign, k-fold faithful and rounding to nearest, SIAM J. Sci. Comput. 31 (2008) 1269-1302.

Experimental results

Test matrices

- Sparse positive definite coefficient matrix
- 3D Poison's equation with 27 stencil points
- Transform it into a matrix band \rightarrow The size of the band depends on the number of nodes (100 x #nodes)
- N = 4,000,000 rows/columns, but increase its bandwidth proportionally to the hardware resources

Evaluation

Set-up

- Two versions of reproducible PCG: ExBLAS- and FPE-based (Opt)
- Two different clusters: Tintorrum and Marenostrum4
- Reproducibility results of residual and direct error
- Strong and weak scaling
 - Strong scaling: Fix the matrix size to N = 16,000,000 and band_size
 = 100 and increase the number of cores
 - Weak scaling: Fix the matrix size to N = 4,000,000 and increase band_size from 100 to 100 x max_nodes

Accuracy and reproducibility results

Iteration	Residual			
	MPFR	Original 1 proc	Original 48 procs	Exblas & Opt
0	0x1.19f179eb7f032p+49	0x1.19f179eb7f033p+49	0x1.19f179eb7f033p+49	0x1.19f179eb7f032p+49
2	0x1.f86089ece9f75p+38	0x1.f86089 f08810d p+38	0x1.f86089e d07a76 p+38	0x1.f86089ece9f75p+38
9	0x1.fc59a29d329ffp+28	0x1.fc59a29d1b6ap+28	0x1.fc59a29d2e989p+28	0x1.fc59a29d329ffp+28
10	0x1.74f5ccc211471p+22	0x1.74f5ccb8203adp+22	0x1.74f5ccc1fafefp+22	0x1.74f5ccc211471p+22
40	0x1.7031058eb2e3ep-19	0x1.703105aea0e8ap-19	0x1.7031058e8ff5ap-19	0x1.7031058eb2e3ep-19
42	0x1.4828f76bd68afp-23	0x1.4828f6fabbf2ap-23	0x1.4828f76b b9038 p-23	0x1.4828f76bd68afp-23
45	0x1.8646260a70678p-26	0x1.86462601300d2p-26	0x1.8646260a71301p-26	0x1.8646260a70678p-26
47	0x1.13fa97e2419c7p-33	0x1.13fa98038c44ep-33	0x1.13fa97e54e903p-33	0x1.13fa97e2419c7p-33

Table 3: Accuracy and reproducibility comparison on the intermediate and final residual against MPFR for a matrix with condition number of 10^{12} . The matrix is generated following the procedure from Section 5.1 with n=4,019,679 (159³).

Strong scaling results on Tintorrum

3D Poisson's equation with 27 stencil points and $tol = 10^{-8}$ Strong Scalability on Tintorrum 3.40 Exblas 3.20 Normalized Time w.r.t Regular 3.00 2.80 2.60 2.40 2.20 2.00 1.80 1.60 1.40 1.20 1.00 16 32 64 128 Number of cores

Tintorrum nodes have two 8-core Intel Xeon(R) E5-2630 (Haswell-EP) CPUs @2.4 GHz and 64 GBs of DDR3

Strong scaling results on MareNostrum4

3D Poisson's equation with 27 stencil points and $tol = 10^{-8}$

MN4 (BSC) nodes have two 24-core Intel Xeon Platinum 8160 CPUs @2.1 GHz, 96 GBs of DDR3, and connected with Intel Omni-Path

Outline

- Background: Computer Arithmetic
- 2) ExBLAS and Matrix Factorizations
- 3 Reproducible Preconditioned Conjugate Gradient
- Feltor and its Algorithmic, Programming, and Compilation Solutions
- 5 Conclusion

Full-F ELectromagnetic code in TORoidal geometry

- Both a numerical library and a scientific software package
- 2D and 3D drift- and gyrofluid simulations
- Discontinuous Galerkin methods on structured grids to spatially discretize model equations
- Platform independent code from laptop CPUs to hybrid CPU+GPU distributed memory systems

Feltor: Accuracy and reproducibility issue

The dimensionless modified full-F Hasegawa-Wakatani model

Accuracy and reproducibility issue

- Preconditioned Conjugate Gradient (PCG) to invert elliptic equation
- The issue lies in the underlying kernels: dot(a,b), dot(a,b,c), axpby, and spmv

RBONN

Feltor: reproducibility and accuracy

The radial zonal flow structure

Outline

- Background: Computer Arithmetic
- 2) ExBLAS and Matrix Factorizations
- 3 Reproducible Preconditioned Conjugate Gradient
- Feltor and its Algorithmic, Programming, and Compilation Solutions

Conclusion and Future Work

Conclusion

- **ExBLAS** leverages long accumulator and FPEs and often provides correctly-rounded results independently from
 - Data permutation, data assignment, partitioning/blocking
 - Thread scheduling
 - Reduction trees
- Ensured reproducibility of PCG using combined algorithmic and programming strategies
- ExBLAS-based approach is generic and, hence, robust, but slow on few nodes. FPE-only approach is faster but less generic
- Both approaches show overhead below 30 % at large scale

Future Work

- Detailed error analysis of the FPE-based solution
- Modified FPE-based solution with AccSum
- Different preconditioners and pipelined PCGs

Thank you for your attention!

- ExBLAS: https://github.com/riakymch/exblas
- Articles: Computer Physics Communications and JCAM SCAN 2018 special issue
- Preprints: https://arxiv.org/pdf/1807.01971.pdf https://hal.archives-ouvertes.fr/hal-02391618v1
- Codes: https://github.com/feltor-dev/feltor https://github.com/riakymch/ReproCG

