
Hierarchical and modular approach for reproducible
and accurate linear algebra algorithms

Roman Iakymchuk1,2

joint work with
Maria Barreda3, José I. Aliaga Estellés2, Enrique S. Quintana-Ortí4, and

Stef Graillat1

1Sorbonne University, France
2Fraunhofer ITWM, Germany

3Univesitat Jaime I, Spain
4Universitat Politècnica de València, Spain

roman.iakymchuk@sorbonne-universite.fr

Workshop on Large-scale Parallel Numerical Computing Technology –
HPC and Computer Arithmetics toward Minimal-Precision Computing

R-CCS, Kobe, Japan
Jan 29th-30th, 2020

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 1 / 42

Linear Algebra Libraries

Basic Linear Algebra Subprograms (BLAS)

Refer. BLAS MKL, cuBLAS OpenBLAS ATLAS

LAPACK FLAME NAG

⇓

BLAS-1 [1979]: y := y + αx α ∈ R;x, y ∈ Rn 2/3
α := α+ xT y

BLAS-2 [1988]: A := A+ xyT A ∈ Rn×n;x, y ∈ Rn 2
y := A−1x

BLAS-3 [1990]: C := C +AB A,B,C ∈ Rn×n n/2
C := A−1B

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 2 / 42

Research goals

Compute BLAS operations with floating-point numbers fast
and precise, ensuring their numerical reproducibility, on a
wide range of architectures
Reproducibility – ability to obtain bit-wise identical and
accurate results from run-to-run on the same input data on
the same or different architectures

ExBLAS – Exact BLAS
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

Construct reproducible higher-level operations like matrix
factorizations and iterative solvers using ExBLAS

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 3 / 42

Outline

1 Background: Computer Arithmetic

2 ExBLAS and Matrix Factorizations

3 Reproducible Preconditioned Conjugate Gradient

4 Feltor and its Algorithmic, Programming, and Compilation Solu-
tions

5 Conclusion

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 4 / 42

Outline

1 Background: Computer Arithmetic

2 ExBLAS and Matrix Factorizations

3 Reproducible Preconditioned Conjugate Gradient

4 Feltor and its Algorithmic, Programming, and Compilation Solu-
tions

5 Conclusion

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 5 / 42

Background: Computer arithmetic

Computer arithmetic
Approximate real numbers by numbers that have a finite
representation

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 6 / 42

Background: Computer arithmetic

Computer arithmetic
Approximate real numbers by numbers that have a finite
representation

Problems
Floating-point arithmetic suffers from rounding errors

Floating-point operations (+,×) are commutative but
non-associative

(−1 + 1) + 2−53 6= −1 + (1 + 2−53) in double precision

Consequence: results of floating-point computations
depend on the order of computation

Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 6 / 42

Background: Computer arithmetic

Computer arithmetic
Approximate real numbers by numbers that have a finite
representation

Problems
Floating-point arithmetic suffers from rounding errors

Floating-point operations (+,×) are commutative but
non-associative

2−53 6= 0 in double precision

Consequence: results of floating-point computations
depend on the order of computation

Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 6 / 42

Background: Computer arithmetic

Computer arithmetic
Approximate real numbers by numbers that have a finite
representation

Problems
Floating-point arithmetic suffers from rounding errors

Floating-point operations (+,×) are commutative but
non-associative

(−1 + 1) + 2−53 6= −1 + (1 + 2−53) in double precision

Consequence: results of floating-point computations
depend on the order of computation

Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 6 / 42

Background: Reproducibility

Sources of Non-Reproducibility
Changing Data Layouts:

Data partitioning
Data alignment

Changing Hardware Resources
Number of threads
Fused Multiply-Add support: a · b+ c

Intermediate precision (64 bits, 80 bits, 128 bits, etc)
Data path (SSE, AVX, GPU warp, etc)
Number of processors
Network topology

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 7 / 42

Outline

1 Background: Computer Arithmetic

2 ExBLAS and Matrix Factorizations

3 Reproducible Preconditioned Conjugate Gradient

4 Feltor and its Algorithmic, Programming, and Compilation Solu-
tions

5 Conclusion

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 8 / 42

Existing Solutions
Fix the Order of Computations

Sequential mode: intolerably costly at large-scale systems

Fixed reduction trees: substantial communication overhead
→ Example: Intel Conditional Numerical Reproducibility in MKL

(∼ 2x for datum, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors
Fixed-point arithmetic: limited range of values

Fixed FP expansions with Error-Free Transformations (EFT)
→ Example: double-double or quad-double (Briggs, Bailey, Hida, Li)

(work well on a set of relatively close numbers)

“Infinite” precision: reproducible independently from the inputs
→ Example: Kulisch accumulator (considered inefficient)

Libraries
ExBLAS: Exact BLAS (Iakymchuk et al.)
ReproBLAS: Reproducible BLAS (Demmel et al.)
RARE-BLAS: Repr. Acc. Rounded and Eff. BLAS (Chohra et al.)
OzBLAS: Ozaki-scheme BLAS (Mukunoki et al.)

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 9 / 42

Existing Solutions
Fix the Order of Computations

Sequential mode: intolerably costly at large-scale systems

Fixed reduction trees: substantial communication overhead
→ Example: Intel Conditional Numerical Reproducibility in MKL

(∼ 2x for datum, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors
Fixed-point arithmetic: limited range of values

Fixed FP expansions with Error-Free Transformations (EFT)
→ Example: double-double or quad-double (Briggs, Bailey, Hida, Li)

(work well on a set of relatively close numbers)

“Infinite” precision: reproducible independently from the inputs
→ Example: Kulisch accumulator (considered inefficient)

Libraries
ExBLAS: Exact BLAS (Iakymchuk et al.)
ReproBLAS: Reproducible BLAS (Demmel et al.)
RARE-BLAS: Repr. Acc. Rounded and Eff. BLAS (Chohra et al.)
OzBLAS: Ozaki-scheme BLAS (Mukunoki et al.)

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 9 / 42

Existing Solutions
Fix the Order of Computations

Sequential mode: intolerably costly at large-scale systems

Fixed reduction trees: substantial communication overhead
→ Example: Intel Conditional Numerical Reproducibility in MKL

(∼ 2x for datum, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors
Fixed-point arithmetic: limited range of values

Fixed FP expansions with Error-Free Transformations (EFT)
→ Example: double-double or quad-double (Briggs, Bailey, Hida, Li)

(work well on a set of relatively close numbers)

“Infinite” precision: reproducible independently from the inputs
→ Example: Kulisch accumulator (considered inefficient)

Libraries
ExBLAS: Exact BLAS (Iakymchuk et al.)
ReproBLAS: Reproducible BLAS (Demmel et al.)
RARE-BLAS: Repr. Acc. Rounded and Eff. BLAS (Chohra et al.)
OzBLAS: Ozaki-scheme BLAS (Mukunoki et al.)

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 9 / 42

Exact Multi-Level Parallel Reduction
Preliminaries

Fixed FP expansions (FPE) with Error-Free Transformations
→ Example: double-double or quad-double (Briggs, Bailey, Hida, Li)

(work well on a set of relatively close numbers)

Algorithm 1 (Dekker and Knuth)
Function[r, s] = twosum(a, b)

1: r ← a+ b
2: z ← r − a
3: s← (a− (r − z)) + (b− z)

Algorithm 2 (|a| ≥ |b|)
Function[r, s] = twosum(a, b)

1: r ← a+ b
2: z ← r − a
3: s← b− z

“Infinite” precision: reproducible independently from the inputs
→ Example: Kulisch accumulator (=16 FLOPs)

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 10 / 42

Exact Multi-Level Parallel Reduction
Preliminaries

Fixed FP expansions (FPE) with Error-Free Transformations
→ Example: double-double or quad-double (Briggs, Bailey, Hida, Li)

(work well on a set of relatively close numbers)

Algorithm 1 (Dekker and Knuth)
Function[r, s] = twosum(a, b)

1: r ← a+ b
2: z ← r − a
3: s← (a− (r − z)) + (b− z)

Algorithm 2 (|a| ≥ |b|)
Function[r, s] = twosum(a, b)

1: r ← a+ b
2: z ← r − a
3: s← b− z

“Infinite” precision: reproducible independently from the inputs
→ Example: Kulisch accumulator (=16 FLOPs)

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 10 / 42

Exact Multi-Level Parallel Reduction
Highlights of the Algorithm

Parallel algorithm with
5-levels

Suitable for today’s parallel
architectures

Based on FPE with EFT and
Kulisch accumulator

Guarantees “inf” precision
→ bit-wise reproducibility

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 11 / 42

ExSUM: Results
Performance Scaling on NVIDIA Tesla K20c

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

G
ac

c/
s

Array size

Parallel FP Sum
Demmel fast

Superacc
FPE2 + Superacc
FPE3 + Superacc
FPE4 + Superacc
FPE8 + Superacc

FPE8EE + Superacc

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 12 / 42

ExSUM: Results
Data-Dependent Performance on NVIDIA Tesla K20c

n = 67e06

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 1e+20
 1e+40

 1e+60
 1e+80

 1e+100
 1e+120

 1e+140

G
ac

c/
s

Dynamic range

Parallel FP Sum
Demmel fast

Superacc
FPE2 + Superacc
FPE3 + Superacc
FPE4 + Superacc
FPE8 + Superacc

FPE8EE + Superacc

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 13 / 42

ExBLAS-1 Highlights (1/2)

BLAS-1 routines
Some are virtually built upon exsum

→ For instance, exdot = twoprod + exsum

→ twoprod(a,b) (= 3 FLOPs):
1: res← a · b,
2: err ← fma(a, b,−res)

The others are trivial: exaxpy = fma(α, x[i], y[i])

exscal
x := α · x→ correctly rounded and reproducible
Within LU: x := 1/α · x→ not correctly rounded
exinvscal: x := x/α→ correctly rounded and reproducible

exger
General case: A := α · x · yT +A

Within LU (α = 1.0): A := x · yT +A.
Using fma→ correctly rounded and reproducible

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 14 / 42

ExBLAS-1 Highlights (1/2)

BLAS-1 routines
Some are virtually built upon exsum

→ For instance, exdot = twoprod + exsum

→ twoprod(a,b) (= 3 FLOPs):
1: res← a · b,
2: err ← fma(a, b,−res)

The others are trivial: exaxpy = fma(α, x[i], y[i])

exscal
x := α · x→ correctly rounded and reproducible
Within LU: x := 1/α · x→ not correctly rounded
exinvscal: x := x/α→ correctly rounded and reproducible

exger
General case: A := α · x · yT +A

Within LU (α = 1.0): A := x · yT +A.
Using fma→ correctly rounded and reproducible

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 14 / 42

ExBLAS-1 Highlights (1/2)

BLAS-1 routines
Some are virtually built upon exsum

→ For instance, exdot = twoprod + exsum

→ twoprod(a,b) (= 3 FLOPs):
1: res← a · b,
2: err ← fma(a, b,−res)

The others are trivial: exaxpy = fma(α, x[i], y[i])

exscal
x := α · x→ correctly rounded and reproducible
Within LU: x := 1/α · x→ not correctly rounded
exinvscal: x := x/α→ correctly rounded and reproducible

exger
General case: A := α · x · yT +A

Within LU (α = 1.0): A := x · yT +A.
Using fma→ correctly rounded and reproducible

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 14 / 42

ExBLAS-1 Highlights (2/2)
Programming and compilation solutions

axpy
y := α · x+ y

→ fma(α, x[i], y[i])

→ correctly rounded and reproducible

axpy-like
y := α · x+ β · y

Warning: C++ compilers can change the execution order

→ instruct compiler to use fma, eg std::fma with C++11

→ prevent the use of value changing optimization techniques,
eg -fp-model precise for icc

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 15 / 42

An unblocked LU Factorization
Variant 5

LU Factorization

π1 := PivIndex

(
α11

a21

)
(max)(

α11

a21

)
:= P (π1)

(
α11

a21

)
(swap)

a21 := a21/α11 (scal)
A22 := A22 − a21aT12 (ger)

A00 a01 A02

aT10 α11 aT12

A20 a21 A22

i

1

p

i 1 p

3× 3 partitioning of A

max is reproducible once the choice among equal elements is
deterministic

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 16 / 42

An unblocked LU Factorization
Performance Scaling on NVIDIA Pascal P100

A = LU

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1000 2000 3000 4000 5000 6000

T
im

e
 [

se
c
s]

Matrix size [m = n]

UnblLU
ExLU

variant 5 of LU
max()
swap()

a21 := a21/α11 scal
A22 := A22 − a21aT12 ger

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 17 / 42

ExBLAS-2 Highlights
Matrix-Vector Product

gemv: y := αAx+ βy

m

p

:=

mb

A x

+

y

Based on exdot

twoprod(a, b)
1: r ← a · b
2: s← fma(a, b,−r)

fma(a, b, c) = a ∗ b+ c

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 18 / 42

Matrix-Vector Product
Performance Scaling on NVIDIA Pascal P100

gemv: y := Ax+ y

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 1000 2000 3000 4000 5000 6000

T
im

e
[s

ec
s]

Matrix size [m = n]

Parallel DGEMV
Superacc

ExGEMV

Blocked exgemv

Based on exdot

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 19 / 42

Matrix-Vector Product
Accuracy

gemv: y := Ax

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

R
e
la

ti
v

e
 f

o
rw

a
rd

 e
rr

o
r

Condition number

DGEMV

ExGEMV

Preserve every bit of
information

Correctly-rounded

cond(A, x) = ‖|A|·|x|‖
‖A·x‖

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 20 / 42

Outline

1 Background: Computer Arithmetic

2 ExBLAS and Matrix Factorizations

3 Reproducible Preconditioned Conjugate Gradient

4 Feltor and its Algorithmic, Programming, and Compilation Solu-
tions

5 Conclusion

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 21 / 42

Preconditioned Conjugate Gradient
Background

Problem
We consider the efficient solution of linear system

Ax = b,

where
A ∈ Rn×n is a large and sparse symmetric positive definite (SPD)
coefficient matrix
x ∈ Rn×n is a sought-after solution
b ∈ Rn×n is a give right-hand side vector

Solution
We propose to address Ax = b iteratively using

Preconditioned Conjugate Gradient (PCG) method
Among the most often used iterative approaches to solve SPD linear
systems
Jacobi preconditioner is good enough for many problems

On clusters of multicore processors with Message Passing Interface
Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 22 / 42

Preconditioned Conjugate Gradient
Algorithm

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 23 / 42

Preconditioned Conjugate Gradient
Communication

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 24 / 42

Reproducible Conjugate Gradient
Overview of reproducibility strategies

Sources
Identify sources of non-reproducibility: dot (parallel
reduction), axpy, and spmv

Solutions
Combine sequential executions, reorganization of
operations, and arithmetic solutions

→ aiming for lighter or lightweight approaches

axpy is made reproducible thanks to fma

spmv computes blocks of rows in parallel, but with
a ∗ b+ /− c ∗ d

→ ensure deterministic execution with explicit fma

dot –> apply the ExBLAS- and FPE-based approaches

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 25 / 42

Reproducible Conjugate Gradient
Reproducible dot product

Distributed Dot Product with ExBLAS
Exploit the ExBLAS parallel reduction with the twoprod EFT
Drawbacks:

The required memory storage
The number of required operations

Distributed Dot Product with FPEs
The PCG method can accommodate accurate and reproducible
computations using few floating point numbers (FPEs)
FPE8 is capable to represent 8x53 bits of significant. FPE3 is
frequently enough
Combined with the early-exit technique
Improves algorithm’s performance and enhance its accuracy

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 26 / 42

Reproducible Conjugate Gradient
Reproducible dot product

Distributed Dot Product with ExBLAS
Exploit the ExBLAS parallel reduction with the twoprod EFT
Drawbacks:

The required memory storage
The number of required operations

Distributed Dot Product with FPEs
The PCG method can accommodate accurate and reproducible
computations using few floating point numbers (FPEs)
FPE8 is capable to represent 8x53 bits of significant. FPE3 is
frequently enough
Combined with the early-exit technique
Improves algorithm’s performance and enhance its accuracy

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 26 / 42

Reproducible Conjugate Gradient
Reproducible dot product and allreduce with ExBLAS

Dot product
Extended ExSUM to ExDOT using twoprod EFT

This is combined with reduction among all processes

Allreduce
Allreduce is split into Reduce and Bcast

This facilitates implementation but also delivers better
performance for some cases

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 27 / 42

Reproducible Conjugate Gradient
Reproducible dot product with FPEs

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 28 / 42

Reproducible Conjugate Gradient
Reproducible allreduce with FPEs

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 29 / 42

Reproducible Conjugate Gradient
Rounding FPEs

For FPEs of size eight, we rely upon NearSuma

aS. M. Rump, T. Ogita, S. Oishi, Accurate floating-point summation part ii: Sign,
k-fold faithful and rounding to nearest, SIAM J. Sci. Comput. 31 (2008) 1269-1302.

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 30 / 42

Reproducible Conjugate Gradient
Experimental results

Test matrices
Sparse positive definite coefficient matrix

3D Poison’s equation with 27 stencil points

Transform it into a matrix band→ The size of the band depends
on the number of nodes (100 x #nodes)

N = 4,000,000 rows/columns, but increase its bandwidth
proportionally to the hardware resources

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 31 / 42

Reproducible Conjugate Gradient
Evaluation

Set-up
Two versions of reproducible PCG: ExBLAS- and FPE-based (Opt)

Two different clusters: Tintorrum and Marenostrum4

Reproducibility results of residual and direct error

Strong and weak scaling
Strong scaling: Fix the matrix size to N = 16,000,000 and band_size
= 100 and increase the number of cores

Weak scaling: Fix the matrix size to N = 4,000,000 and increase
band_size from 100 to 100 x max_nodes

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 32 / 42

Reproducible Conjugate Gradient
Accuracy and reproducibility results

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 33 / 42

Reproducible Conjugate Gradient
Strong scaling results on Tintorrum

3D Poisson’s equation with 27 stencil points and tol = 10−8

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

16 32 64 128

N
o
rm

a
liz

e
d
 T

im
e
 w

.r
.t

 R
e
g
u
la

r

Number of cores

Strong Scalability on Tintorrum

Exblas
Opt

Tintorrum nodes have two 8-core Intel Xeon(R) E5-2630 (Haswell-EP)
CPUs @2.4 GHz and 64 GBs of DDR3

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 34 / 42

Reproducible Conjugate Gradient
Strong scaling results on MareNostrum4

3D Poisson’s equation with 27 stencil points and tol = 10−8

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

48 96 192 384 768

N
o
rm

a
liz

e
d
 T

im
e
 w

.r
.t

 R
e
g
u
la

r

Number of cores

Strong Scalability on MareNostrum 4

Exblas
Opt

MN4 (BSC) nodes have two 24-core Intel Xeon Platinum 8160 CPUs
@2.1 GHz, 96 GBs of DDR3, and connected with Intel Omni-Path

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 35 / 42

Outline

1 Background: Computer Arithmetic

2 ExBLAS and Matrix Factorizations

3 Reproducible Preconditioned Conjugate Gradient

4 Feltor and its Algorithmic, Programming, and Compilation Solu-
tions

5 Conclusion

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 36 / 42

Feltor

Full-F ELectromagnetic code in TORoidal geometry

Both a numerical library and a scientific software package

2D and 3D drift- and gyrofluid simulations

Discontinuous Galerkin methods on structured grids to
spatially discretize model equations

Platform independent code from laptop CPUs to hybrid
CPU+GPU distributed memory systems

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 37 / 42

Feltor: Accuracy and reproducibility issue
The dimensionless modified full-F Hasegawa-Wakatani model

0 4000 8000 12000
t

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

ε r
el

∂tn+ {φ, n} = α{φ− ln(n)}
∂tN + {φ− (∇φ)2/2, N} = 0
∇ · (N∇φ) = n−N
n – electron density
N – ion gyro-center density
φ – electric potential

erel =
‖n1−n2‖2
‖n1‖2

Accuracy and reproducibility issue
Preconditioned Conjugate Gradient (PCG) to invert elliptic
equation

The issue lies in the underlying kernels: dot(a,b), dot(a,b,c),
axpby, and spmv

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 38 / 42

Feltor: reproducibility and accuracy
The radial zonal flow structure

0 20 40 60 80 100 120
x

0.15

0.10

0.05

0.00

0.05

0.10

0.15
〈 u y〉

t= 12000

naive #1
naive #2

repro #1
repro #2

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 39 / 42

Outline

1 Background: Computer Arithmetic

2 ExBLAS and Matrix Factorizations

3 Reproducible Preconditioned Conjugate Gradient

4 Feltor and its Algorithmic, Programming, and Compilation Solu-
tions

5 Conclusion

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 40 / 42

Conclusion and Future Work
Conclusion

ExBLAS leverages long accumulator and FPEs and often
provides correctly-rounded results independently from

Data permutation, data assignment, partitioning/blocking
Thread scheduling
Reduction trees

Ensured reproducibility of PCG using combined algorithmic and
programming strategies

ExBLAS-based approach is generic and, hence, robust, but
slow on few nodes. FPE-only approach is faster but less generic

Both approaches show overhead below 30 % at large scale

Future Work
Detailed error analysis of the FPE-based solution

Modified FPE-based solution with AccSum

Different preconditioners and pipelined PCGs
Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 41 / 42

Thank you for your attention!

ExBLAS: https://github.com/riakymch/exblas

Articles: Computer Physics Communications and JCAM
SCAN 2018 special issue

Preprints: https://arxiv.org/pdf/1807.01971.pdf
https://hal.archives-ouvertes.fr/hal-02391618v1

Codes: https://github.com/feltor-dev/feltor
https://github.com/riakymch/ReproCG

Roman Iakymchuk (Sorbonne and Fraunhofer ITWM) Jan 29th-30th, 2020 42 / 42

https://github.com/riakymch/exblas
https://arxiv.org/pdf/1807.01971.pdf
https://hal.archives-ouvertes.fr/hal-02391618v1
https://github.com/feltor-dev/feltor
https://github.com/riakymch/ReproCG

	Background: Computer Arithmetic
	ExBLAS and Matrix Factorizations
	Reproducible Preconditioned Conjugate Gradient
	Feltor and its Algorithmic, Programming, and Compilation Solutions
	Conclusion

