More system independent usage of numerical verification algorithms
written in high-level programming languages

OHLHUS, Kai Torben

Graduate School of Science
Tokyo Woman's Christian University

Workshop on Large-scale Parallel Numerical Computing Technology (LSPANC)
RIKEN Center for Computational Science (R-CCS), Kobe, Japan

January 29 — 30, 2020

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020

1/22

@ Introduction and system dependency problem

© Solution 1: Spack

© Solution 2: Singularity

@ Summary and future work

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages

Introduction

e Verification methods / algorithms:

» "Mathematical theorems are formulated whose assumptions are verified with the aid of a
computer." (Rump [7])

o High-level programming language:
» Providing abstractions (e.g. no data types, memory management)

» Less error prone, more expressive, faster development of algorithms.

v

Compiled or interpreted.

> Not necessarily limited or slow. Depending on the purpose / computation.

v

But: Code / tools / libraries providing the abstraction become dependencies.

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 3/22

Introduction

@ In my PhD thesis and before [6, 1] we computed rigorous error bounds for conic linear
programs with up to 19 million variables and 27 thousand constraints.

@ The following simplified software stack (mostly high-level, interpreted code) was used®:

Define a conic problem
P = (A,b,¢,K) in either
primal (P) or dual (D)
standard form.

Compute an approximate solution
(#,7,2) of P using a conic solver of your
choice.

VSDP
min (¢, z) Compute rigorous bounds for the unknown INTLAB l CSDP / MOSEK / SDPA / SeDuMi / SDPTS, ...
(P) st. Az =b, optimal solution (z*,y*): Matlab / GNU Octave
zeKCR" TR
(¢, z*) > rigorous_lower_bound (P, 7) Linux’
max (b,y) (b,y") < rigorous_upper_bound (P, i)
(D) st z:=c— Ay, Optional a priori known upper bounds (Z,7) on
zeK* CR", the optimal solution speed up the computation.
y e R™.

o For larger problem instances the current "Linux" system was insufficient.
— Move to another "Linux" system, but...

'https://vsdp.github.io/

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 4/22

https://vsdp.github.io/

There is not just "Linux"...

First release Distribution Kernel GCC? || Scilab Octave
55 9.2 6.0.2 5.1
2019 RHEL/CentOS 8.1 4.18 8.3 - -
2018 SLES 15.1 4.12 7.2 - -
2018 Ubuntu 18.04.3 4.15 7.3 6.0.1 4.2
2016 Ubuntu 16.04.6 4.4 5.4 5.5 4.0
2014 SLES 12.4 4.12 4.8 - -
2014 RHEL/CentOS 7.7 3.10 4.8 - 3.8
2010 RHEL/Cent0S 6.10 2.6 4.43 - 3.4

2MATLAB®requires GCC 6.3
https://www.mathworks.com/support/requirements/supported-compilers.html
3No C11/C+4+11 support https://gcc.gnu.org/projects/cxx-status.html

Kai T. Ohlhus (TWCU)

Numerical verification in high-level languages

January 30, 2020

5/22

https://www.mathworks.com/support/requirements/supported-compilers.html
https://gcc.gnu.org/projects/cxx-status.html

What to expect from "Linux-clusters" today?

e Many free and open source high-level programming languages and libraries (e.g. Scilab,
Octave, OpenBLAS, ...) are not suitable/not good performing:
» outdated versions or missing
* system dependent approaches (packages)
(RedHat: devtoolsets, EPEL, ...; Ubuntu Backports)
* system independent approaches
(Anaconda [Python], flatpak, snap, ...)
» configured for general purpose systems
* linked against reference implementations

@ Mostly proprietary pendants (e.g. MATLAB®, CUDA®, Intel®MKL, ...) are available in
more recent versions on these "old" systems.

@ Compiling missing software from source?
» Dependencies often outdated too. In case of Octave: OpenBLAS, SuiteSparse, Arpack, ...

» Space quotas, installation permissions, ...

@ Reproducibility of previous results?

6 /22

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020

Sometimes things are even worse...

e Kashiwagi described a problem* for Linux + OpenBLAS (multiple threads) + Octave and
switching of the directed rounding mode. It occurs in the following short example:

N = 5000;

A = rand(N); % create random 5000x5000 matrix
B = rand(N); % elements in (0,1)
setround (—1); % rounding downwards mode

Cl = A x B; % lower bound for AxB

setround (+1); % rounding upwards mode

C2 = A % B; % upper bound for AxB
min(min(C2 — C1)) % should not be zero!

@ The default OpenBLAS package of most Linux distributions is compiled using
CONSISTENT_FPCSR=0, which means that the floating-point control and status
register is not synchronized within multiple threads.

@ The software stack relies on a version and a configuration.

“http://verifiedby.me/adiary/060

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 7/22

http://verifiedby.me/adiary/060

How to ensure complicated software stacks?

VSDP©2018

INTLAB@11

CSDP©6.2.0 / MOSEK®©8.1.0.62 /
SDPA®7.3.8 / SeDuMi@1.32 /
SDPT304.0, ...

linked against OpenBLAS®@0.3.7
configured with CONSISTENT_FPCSR=1

GNU Octave©@4.4.1

@ Similar problem investigated by Shudler et al. [8] for
SENSEI, presented on SC'19 in Denver.

Image: https://commons.wikimedia.org/wiki/File:Rock_balancing_(Counter_Balance).jpg

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020

8 /22

https://commons.wikimedia.org/wiki/File:Rock_balancing_(Counter_Balance).jpg

© Solution 1: Spack

Kai T. Ohlhus (TWCU Numerical verification in high-level languages

Supercomputing package manager® (1/5)

@ Very actively developed since 2013 (started by members of the Lawrence Livermore
National Laboratory).

e Contains currently 3838 packages (812 Python, 782 R).

@ Addresses several problems with current Linux software distribution models:
» Packages and (some!) dependencies are build from source. (# ArchLinux).

» Define target architecture, compiler (incl. icc), version, configuration (variants), ...
— Reproducibility!

» Packages peacefully coexist on the same machine.
— Maintenance!

@ Will be the default package manager for Fugaku®.

Shttps://postk-web.r-ccs.riken. jp/oss/public/
®https://spack.io and [2].

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020

10 / 22

https://postk-web.r-ccs.riken.jp/oss/public/
https://spack.io

Spack (2/5)
$ spack info openblas

Safe versions:

0.3.7 https://github.com/xianyi/OpenBLAS/archive/v0.3.7.tar.gz
Variants:

Name [Default] Allowed values Description

ilp64 [off] True, False Force 64—bit Fortran native
integers

pic [on] True, False Build position independent
code

shared [on] True, False Build shared libraries

threads [none] pthreads, openmp, Multithreading support

none

$ spack install octave@5.1.0 “openblas@0.3.7+ilp64 threads=openmp
CONSISTENT_FPCSR=1

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 11 /22

Spack (3/5)

@ Spack grammar in extended Backus-Naur form [2]:

(spec) u= (id) | (constraints) |

‘@ (version-listy | ‘+ (variant)

‘=" {variant) | *~ {variant)

% (compiler) | ‘=" (architecture) }

{
|
| (dep-list) |
{

{constraints)

{dep-list) n= { N (spec) }

{version-list) u= (version) | { ¢, (version) } |
{version) n= (d) | (id) *7 | 0 (id) | (id) 27 {id)
{compiler) = (id) | (version-list) |

{variant) {id)

{architecture) = (id)

(id) n= [A-Za-z0@-9_|[A-Za-z0-9_.-|*

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 12 /22

Spack (4/5)

e Example Spack package definition written in Python [2]:

1
2
3
4
5
53
7
8

9
10
11

class Mpileaks(Package):

e

"""Tool to detect and report leaked MPI objects.

homepage = "https://github.com/hpc/mpileaks”
url = homepage + "/releases/download/v1.@/mpileaks-1.@.tar.gz"

version('1.9", '8838c574b39202a57d7c2d68692718aa")
version('1.1", '4282eddb@8ad8d36df15b@6d4be38bch")

depends_on('mpi')
depends_on('callpath')

def install(self, spec, prefix):
configure("--prefix=" + prefix,
"--with-callpath=" + spec['callpath'].prefix)
make()
make("install™)

Kai T. Ohlhus (TWCU)

Numerical verification in high-level languages

Spack (5/5) summary

@ Spack allows to obtain more customized packages than classical Linux package managers.

@ It addresses the resulting combinatorial configuration space by building only requested
combinations.

@ Build receipts are maintained and tested by several HPC facilities.

OpenBLAS o;ggs;g\s
@o.3.7 threads=none
OpenBLAS
OpenBLAS 0’8833'-95 @036
= threads=pthreads
OpenBLAS OpenBLAS
@0.3.5 @0.3.6
threads=openmp

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 14 / 22

© Solution 2: Singularity

Kai T. Ohlhus (TWCU Numerical verification in high-level languages

Singularity [4] - Container for HPC?

@ Initial version created by Gregory M. Kurtzer about 2015 at the Berkeley National Lab.
o Still free software developed by Sylabs Inc.

o Lightweight container solution:

» Container overhead negligible [3, 5, 9, 8].

» Singularity images are a single self-contained file. Distribution by copy&paste, no
DockerHub, ...

» Native MPI, Ininiband, and GPU support.

» No root daemon for the execution of Singularity images necessary. Runs with the privileges of
the user. — Security.

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 16 / 22

Singularity definition files (1/3)

Bootstrap: docker
From: centos

%post

Install some development tools to build our code
yum install —y \

cmake \

environment—modules \

gcc—gfortran \

gnuplot \

python3 \

texinfo \

wget

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages

January 30, 2020 17 / 22

Singularity definition files (2/3)

%post

Setup Spack
cd /

wget https://github.com/spack/spack/archive/develop.tar.gz
tar —xf develop.tar.gz
mv spack—develop spack

source /spack/share/spack/setup—env.sh

spack install octave@5.1.0 \
~ openblas@0.3.7+ilp64 threads=openmp \
CONSISTENT_FPCSR=1

Tidy up, shrink container size ~710 MB —> ~590 MB

rm —Rf /develop.tar.gz /spack/var/spack/cache/
yum clean all

Kai T. Ohlhus (TWCU)

Numerical verification in high-level languages

January 30, 2020 18 / 22

Singularity definition files (3/3)

%runscript

Commands to be executed, when container starts
spack load octave
octave

%environment
export LC_ALL=en_US.UTF-8

source /usr/share/Modules/init/sh
source /spack/share/spack/setup—env.sh

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages

January 30, 2020

19 /22

Build and run Singularity Image Files (SIF)

@ Build SIF with root privileges
sudo singularity build octave.sif octave.def

» Reduce image size, avoid unnecessary tools.

» Reduce build time, trade-off install via Spack or guest Linux package manager.
yum in this case.

@ Run with user privileges
singularity run octave.sif

» Access to user's /home directory.

» Other host system directories by default not accessible, but "--bind" possible.

January 30, 2020 20 / 22

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages

@ Summary
» High-level programming languages provide useful abstractions for faster and less error prone
development of verification methods.

» To provide these abstractions sometimes nontrivial software stacks are required.

» Spack can be used to uniquely specify and build these software stacks more independent of
the underlying Linux distribution.

» Singularity containers further increase independence of the underlying system without
sacrificing security, InfiniBand, MPI, or CUDA support.

o Future work
» Improve Spack receipts to support all required variations for VSDP.

» More performance tests with Singularity containers and large scale linear conic programs.

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 21 /22

Thank you for your attention!

Questions?

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 22 /22

D. Chaykin et al. “Rigorous results in electronic structure calculations”. In: (2016). URL:
http://www.optimization-online.org/DB_HTML/2016/11/5730_html.

Todd Gamblin et al. “The Spack Package Manager: Bringing Order to HPC Software
Chaos”. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC '15. Austin, Texas: Association for
Computing Machinery, Nov. 15, 2015, pp. 1-12. por: 10.1145/2807591.2807623.

Stephen Herbein et al. “Resource Management for Running HPC Applications in
Container Clouds”. In: High Performance Computing. Ed. by Julian M. Kunkel,
Pavan Balaji, and Jack Dongarra. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2016, pp. 261-278. 1SBN: 978-3-319-41321-1. DOI:
10.1007/978-3-319-41321-1_14.

Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. "Singularity: Scientific
Containers for Mobility of Compute”. [n: PLOS ONE 12.5 (May 11, 2017), e0177459.
1SSN: 1932-6203. pot: 10.1371/journal .pone.0177459.

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages

http://www.optimization-online.org/DB_HTML/2016/11/5730.html
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1007/978-3-319-41321-1_14
https://doi.org/10.1371/journal.pone.0177459

Emily Le and David Paz. “Performance Analysis of Applications Using Singularity
Container on SDSC Comet". In: Proceedings of the Practice and Experience in Advanced
Research Computing 2017 on Sustainability, Success and Impact. PEARC17. New
Orleans, LA, USA: Association for Computing Machinery, July 9, 2017, pp. 1-4. ISBN:
978-1-4503-5272-7. po1: 10.1145/3093338.3106737. URL:
https://doi.org/10.1145/3093338.3106737.

Kai Torben Ohlhus. “Rigorose Fehlerschranken fiir das Elektronenstrukturproblem™.
Thesis. Technische Universitdit Hamburg, 2019. po1: 10.15480/882.2227.

Siegfried M. Rump. “Verification methods: Rigorous results using floating-point
arithmetic”. In: Acta Numerica 19 (May 2010), pp. 287-449. 1sSN: 1474-0508,
0962-4929. por: 10.1017/5096249291000005X.

Sergei Shudler et al. “Spack Meets Singularity: Creating Movable In-Situ Analysis Stacks
with Ease”. In: Proceedings of the Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization. ISAV '19. Denver, Colorado: ACM, 2019,

pp. 34-38. 1SBN: 978-1-4503-7723-2. po1: 10.1145/3364228.3364682. URL:
http://doi.acm.org/10.1145/3364228.3364682.

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages

https://doi.org/10.1145/3093338.3106737
https://doi.org/10.1145/3093338.3106737
https://doi.org/10.15480/882.2227
https://doi.org/10.1017/S096249291000005X
https://doi.org/10.1145/3364228.3364682
http://doi.acm.org/10.1145/3364228.3364682

Andrew J. Younge et al. “A Tale of Two Systems: Using Containers to Deploy HPC
Applications on Supercomputers and Clouds”. In: 2017 |EEE International Conference on

Cloud Computing Technology and Science (CloudCom). Dec. 2017, pp. 74-81. DOT:
10.1109/CloudCom.2017 .40.

Numerical verification in high-level languages

Kai T. Ohlhus (TWCU)

https://doi.org/10.1109/CloudCom.2017.40

	Introduction and system dependency problem
	Solution 1: Spack
	Solution 2: Singularity
	Summary and future work

