
More system independent usage of numerical verification algorithms
written in high-level programming languages

OHLHUS, Kai Torben

Graduate School of Science
Tokyo Woman’s Christian University

Workshop on Large-scale Parallel Numerical Computing Technology (LSPANC)
RIKEN Center for Computational Science (R-CCS), Kobe, Japan

January 29 – 30, 2020

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 1 / 22

1 Introduction and system dependency problem

2 Solution 1: Spack

3 Solution 2: Singularity

4 Summary and future work

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 2 / 22

Introduction

Verification methods / algorithms:
I "Mathematical theorems are formulated whose assumptions are verified with the aid of a

computer." (Rump [7])

High-level programming language:
I Providing abstractions (e.g. no data types, memory management)

I Less error prone, more expressive, faster development of algorithms.

I Compiled or interpreted.

I Not necessarily limited or slow. Depending on the purpose / computation.

I But: Code / tools / libraries providing the abstraction become dependencies.

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 3 / 22

Introduction
In my PhD thesis and before [6, 1] we computed rigorous error bounds for conic linear
programs with up to 19 million variables and 27 thousand constraints.

The following simplified software stack (mostly high-level, interpreted code) was used1:
Define a conic problem
P = (A, b, c,K) in either
primal (P) or dual (D)
standard form.

min 〈c, x〉
(P) s.t. Ax = b,

x ∈ K ⊂ Rn.

max 〈b, y〉
(D) s.t. z := c−A∗y,

z ∈ K∗ ⊂ Rn,

y ∈ Rm.

Compute an approximate solution
(x̃, ỹ, z̃) of P using a conic solver of your
choice.

Compute rigorous bounds for the unknown
optimal solution (x∗, y∗):

〈c, x∗〉 ≥ rigorous lower bound (P, ỹ)

〈b, y∗〉 ≤ rigorous upper bound (P, x̃)

Optional a priori known upper bounds (x, y) on

the optimal solution speed up the computation.

VSDP
INTLAB CSDP / MOSEK / SDPA / SeDuMi / SDPT3, ...

Matlab / GNU Octave
"Linux"

For larger problem instances the current "Linux" system was insufficient.
→ Move to another "Linux" system, but...

1https://vsdp.github.io/
Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 4 / 22

https://vsdp.github.io/

There is not just "Linux"...

First release Distribution Kernel GCC2 Scilab Octave ...
5.5 9.2 6.0.2 5.1

2019 RHEL/CentOS 8.1 4.18 8.3 - -
2018 SLES 15.1 4.12 7.2 - -
2018 Ubuntu 18.04.3 4.15 7.3 6.0.1 4.2
2016 Ubuntu 16.04.6 4.4 5.4 5.5 4.0
2014 SLES 12.4 4.12 4.8 - -
2014 RHEL/CentOS 7.7 3.10 4.8 - 3.8
2010 RHEL/CentOS 6.10 2.6 4.43 - 3.4

2MATLAB R©requires GCC 6.3
https://www.mathworks.com/support/requirements/supported-compilers.html

3No C11/C++11 support https://gcc.gnu.org/projects/cxx-status.html
Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 5 / 22

https://www.mathworks.com/support/requirements/supported-compilers.html
https://gcc.gnu.org/projects/cxx-status.html

What to expect from "Linux-clusters" today?
Many free and open source high-level programming languages and libraries (e.g. Scilab,
Octave, OpenBLAS, ...) are not suitable/not good performing:

I outdated versions or missing
F system dependent approaches (packages)

(RedHat: devtoolsets, EPEL, ...; Ubuntu Backports)
F system independent approaches

(Anaconda [Python], flatpak, snap, ...)
I configured for general purpose systems

F linked against reference implementations

Mostly proprietary pendants (e.g. MATLAB R©, CUDA R©, Intel R©MKL, ...) are available in
more recent versions on these "old" systems.

Compiling missing software from source?
I Dependencies often outdated too. In case of Octave: OpenBLAS, SuiteSparse, Arpack, ...
I Space quotas, installation permissions, ...

Reproducibility of previous results?
Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 6 / 22

Sometimes things are even worse...
Kashiwagi described a problem4 for Linux + OpenBLAS (multiple threads) + Octave and
switching of the directed rounding mode. It occurs in the following short example:

N = 5000 ;
A = rand (N) ; % c r e a t e random 5000 x5000 mat r i x
B = rand (N) ; % element s i n (0 , 1)
s e t r ound (−1); % round ing downwards mode
C1 = A ∗ B; % lowe r bound f o r A∗B
s e t r ound (+1); % round ing upwards mode
C2 = A ∗ B; % upper bound f o r A∗B
min (min (C2 − C1)) % shou ld not be z e r o !

The default OpenBLAS package of most Linux distributions is compiled using
CONSISTENT_FPCSR=0, which means that the floating-point control and status
register is not synchronized within multiple threads.
The software stack relies on a version and a configuration.

4http://verifiedby.me/adiary/060
Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 7 / 22

http://verifiedby.me/adiary/060

How to ensure complicated software stacks?

VSDP@2018

INTLAB@11
CSDP@6.2.0 / MOSEK@8.1.0.62 /
SDPA@7.3.8 / SeDuMi@1.32 /

SDPT3@4.0, ...
GNU Octave@4.4.1

linked against OpenBLAS@0.3.7
configured with CONSISTENT_FPCSR=1

...

Similar problem investigated by Shudler et al. [8] for
SENSEI, presented on SC’19 in Denver.

Image: https://commons.wikimedia.org/wiki/File:Rock_balancing_(Counter_Balance).jpg

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 8 / 22

https://commons.wikimedia.org/wiki/File:Rock_balancing_(Counter_Balance).jpg

1 Introduction and system dependency problem

2 Solution 1: Spack

3 Solution 2: Singularity

4 Summary and future work

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 9 / 22

Supercomputing package manager6 (1/5)
Very actively developed since 2013 (started by members of the Lawrence Livermore
National Laboratory).

Contains currently 3838 packages (812 Python, 782 R).

Addresses several problems with current Linux software distribution models:
I Packages and (some!) dependencies are build from source. (6= ArchLinux).

I Define target architecture, compiler (incl. icc), version, configuration (variants), ...
→ Reproducibility!

I Packages peacefully coexist on the same machine.
→ Maintenance!

Will be the default package manager for Fugaku5.
5https://postk-web.r-ccs.riken.jp/oss/public/
6https://spack.io and [2].

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 10 / 22

https://postk-web.r-ccs.riken.jp/oss/public/
https://spack.io

Spack (2/5)
$ spack info openblas
Safe versions :

0.3.7 h t t p s : // g i t hub . com/ x i a n y i /OpenBLAS/ a r c h i v e /v0 . 3 . 7 . t a r . gz
. . .
Variants:

Name [De f au l t] A l lowed v a l u e s D e s c r i p t i o n
============== ==================== ==============================

ilp64 [o f f] True , F a l s e Force 64− b i t Fo r t r an n a t i v e
i n t e g e r s

p i c [on] True , F a l s e Bu i l d p o s i t i o n i ndependen t
code

sha r ed [on] True , F a l s e Bu i l d sha r ed l i b r a r i e s
threads [none] p th reads , openmp , Mu l t i t h r e a d i n g suppo r t

none

$ spack install octave@5.1.0 ˆopenblas@0.3.7+ilp64 threads=openmp
CONSISTENT_FPCSR=1

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 11 / 22

Spack (3/5)
Spack grammar in extended Backus-Naur form [2]:

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 12 / 22

Spack (4/5)
Example Spack package definition written in Python [2]:

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 13 / 22

Spack (5/5) summary
Spack allows to obtain more customized packages than classical Linux package managers.
It addresses the resulting combinatorial configuration space by building only requested
combinations.
Build receipts are maintained and tested by several HPC facilities.

OpenBLAS

OpenBLAS
@0.3.7

OpenBLAS
@0.3.6

OpenBLAS
@0.3.5

OpenBLAS
@0.3.6

threads=none

OpenBLAS
@0.3.6

threads=pthreads

OpenBLAS
@0.3.6

threads=openmp

...

...

...

...

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 14 / 22

1 Introduction and system dependency problem

2 Solution 1: Spack

3 Solution 2: Singularity

4 Summary and future work

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 15 / 22

Singularity [4] - Container for HPC?

Initial version created by Gregory M. Kurtzer about 2015 at the Berkeley National Lab.

Still free software developed by Sylabs Inc.

Lightweight container solution:
I Container overhead negligible [3, 5, 9, 8].

I Singularity images are a single self-contained file. Distribution by copy&paste, no
DockerHub, ...

I Native MPI, Ininiband, and GPU support.

I No root daemon for the execution of Singularity images necessary. Runs with the privileges of
the user. → Security.

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 16 / 22

Singularity definition files (1/3)

Boot s t r ap : docke r
From : c en to s

%pos t

I n s t a l l some deve lopment t o o l s to b u i l d our code
yum i n s t a l l −y \

cmake \
env i ronment−modules \
gcc−g f o r t r a n \
gnup lo t \
python3 \
t e x i n f o \
wget

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 17 / 22

Singularity definition files (2/3)
%pos t

. . .

Setup Spack
cd /
wget h t t p s : // g i t hub . com/ spack / spack / a r c h i v e / deve l op . t a r . gz
t a r −x f d ev e l op . t a r . gz
mv spack−deve l op spack
sou r c e / spack / sha r e / spack / setup−env . sh

spack i n s t a l l octave@5 . 1 . 0 \
^ openb las@0 .3 .7+ i l p 6 4 t h r e ad s=openmp \

CONSISTENT_FPCSR=1

Tidy up , s h r i n k c o n t a i n e r s i z e ~710 MB −−> ~590 MB

rm −Rf / deve l op . t a r . gz / spack / va r / spack / cache /
yum c l e a n a l l

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 18 / 22

Singularity definition files (3/3)

%r u n s c r i p t

Commands to be executed , when c o n t a i n e r s t a r t s
spack l oad oc tave
oc tave

%env i ronment

e xpo r t LC_ALL=en_US .UTF−8
sou r c e / u s r / sha r e /Modules / i n i t / sh
sou r c e / spack / sha r e / spack / setup−env . sh

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 19 / 22

Build and run Singularity Image Files (SIF)

Build SIF with root privileges
sudo singularity build octave.sif octave.def

I Reduce image size, avoid unnecessary tools.

I Reduce build time, trade-off install via Spack or guest Linux package manager.
yum in this case.

Run with user privileges
singularity run octave.sif

I Access to user’s /home directory.

I Other host system directories by default not accessible, but "--bind" possible.

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 20 / 22

Summary
I High-level programming languages provide useful abstractions for faster and less error prone

development of verification methods.

I To provide these abstractions sometimes nontrivial software stacks are required.

I Spack can be used to uniquely specify and build these software stacks more independent of
the underlying Linux distribution.

I Singularity containers further increase independence of the underlying system without
sacrificing security, InfiniBand, MPI, or CUDA support.

Future work
I Improve Spack receipts to support all required variations for VSDP.

I More performance tests with Singularity containers and large scale linear conic programs.

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 21 / 22

Thank you for your attention!

Questions?

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 22 / 22

D. Chaykin et al. “Rigorous results in electronic structure calculations”. In: (2016). url:
http://www.optimization-online.org/DB_HTML/2016/11/5730.html.
Todd Gamblin et al. “The Spack Package Manager: Bringing Order to HPC Software
Chaos”. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC ’15. Austin, Texas: Association for
Computing Machinery, Nov. 15, 2015, pp. 1–12. doi: 10.1145/2807591.2807623.
Stephen Herbein et al. “Resource Management for Running HPC Applications in
Container Clouds”. In: High Performance Computing. Ed. by Julian M. Kunkel,
Pavan Balaji, and Jack Dongarra. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2016, pp. 261–278. isbn: 978-3-319-41321-1. doi:
10.1007/978-3-319-41321-1_14.
Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. “Singularity: Scientific
Containers for Mobility of Compute”. In: PLOS ONE 12.5 (May 11, 2017), e0177459.
issn: 1932-6203. doi: 10.1371/journal.pone.0177459.

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 23 / 22

http://www.optimization-online.org/DB_HTML/2016/11/5730.html
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1007/978-3-319-41321-1_14
https://doi.org/10.1371/journal.pone.0177459

Emily Le and David Paz. “Performance Analysis of Applications Using Singularity
Container on SDSC Comet”. In: Proceedings of the Practice and Experience in Advanced
Research Computing 2017 on Sustainability, Success and Impact. PEARC17. New
Orleans, LA, USA: Association for Computing Machinery, July 9, 2017, pp. 1–4. isbn:
978-1-4503-5272-7. doi: 10.1145/3093338.3106737. url:
https://doi.org/10.1145/3093338.3106737.
Kai Torben Ohlhus. “Rigorose Fehlerschranken für das Elektronenstrukturproblem”.
Thesis. Technische Universität Hamburg, 2019. doi: 10.15480/882.2227.
Siegfried M. Rump. “Verification methods: Rigorous results using floating-point
arithmetic”. In: Acta Numerica 19 (May 2010), pp. 287–449. issn: 1474-0508,
0962-4929. doi: 10.1017/S096249291000005X.
Sergei Shudler et al. “Spack Meets Singularity: Creating Movable In-Situ Analysis Stacks
with Ease”. In: Proceedings of the Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization. ISAV ’19. Denver, Colorado: ACM, 2019,
pp. 34–38. isbn: 978-1-4503-7723-2. doi: 10.1145/3364228.3364682. url:
http://doi.acm.org/10.1145/3364228.3364682.

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 24 / 22

https://doi.org/10.1145/3093338.3106737
https://doi.org/10.1145/3093338.3106737
https://doi.org/10.15480/882.2227
https://doi.org/10.1017/S096249291000005X
https://doi.org/10.1145/3364228.3364682
http://doi.acm.org/10.1145/3364228.3364682

Andrew J. Younge et al. “A Tale of Two Systems: Using Containers to Deploy HPC
Applications on Supercomputers and Clouds”. In: 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom). Dec. 2017, pp. 74–81. doi:
10.1109/CloudCom.2017.40.

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 25 / 22

https://doi.org/10.1109/CloudCom.2017.40

	Introduction and system dependency problem
	Solution 1: Spack
	Solution 2: Singularity
	Summary and future work

