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Introduction

Verification methods / algorithms:
I "Mathematical theorems are formulated whose assumptions are verified with the aid of a

computer." (Rump [7])

High-level programming language:
I Providing abstractions (e.g. no data types, memory management)

I Less error prone, more expressive, faster development of algorithms.

I Compiled or interpreted.

I Not necessarily limited or slow. Depending on the purpose / computation.

I But: Code / tools / libraries providing the abstraction become dependencies.
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Introduction
In my PhD thesis and before [6, 1] we computed rigorous error bounds for conic linear
programs with up to 19 million variables and 27 thousand constraints.

The following simplified software stack (mostly high-level, interpreted code) was used1:
Define a conic problem
P = (A, b, c,K) in either
primal (P ) or dual (D)
standard form.

min 〈c, x〉
(P ) s.t. Ax = b,

x ∈ K ⊂ Rn.

max 〈b, y〉
(D) s.t. z := c−A∗y,

z ∈ K∗ ⊂ Rn,

y ∈ Rm.

Compute an approximate solution
(x̃, ỹ, z̃) of P using a conic solver of your
choice.

Compute rigorous bounds for the unknown
optimal solution (x∗, y∗):

〈c, x∗〉 ≥ rigorous lower bound (P, ỹ)

〈b, y∗〉 ≤ rigorous upper bound (P, x̃)

Optional a priori known upper bounds (x, y) on

the optimal solution speed up the computation.

VSDP
INTLAB CSDP / MOSEK / SDPA / SeDuMi / SDPT3, ...

Matlab / GNU Octave
"Linux"

For larger problem instances the current "Linux" system was insufficient.
→ Move to another "Linux" system, but...

1https://vsdp.github.io/
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There is not just "Linux"...

First release Distribution Kernel GCC2 Scilab Octave ...
5.5 9.2 6.0.2 5.1

2019 RHEL/CentOS 8.1 4.18 8.3 - -
2018 SLES 15.1 4.12 7.2 - -
2018 Ubuntu 18.04.3 4.15 7.3 6.0.1 4.2
2016 Ubuntu 16.04.6 4.4 5.4 5.5 4.0
2014 SLES 12.4 4.12 4.8 - -
2014 RHEL/CentOS 7.7 3.10 4.8 - 3.8
2010 RHEL/CentOS 6.10 2.6 4.43 - 3.4

2MATLAB R©requires GCC 6.3
https://www.mathworks.com/support/requirements/supported-compilers.html

3No C11/C++11 support https://gcc.gnu.org/projects/cxx-status.html
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What to expect from "Linux-clusters" today?
Many free and open source high-level programming languages and libraries (e.g. Scilab,
Octave, OpenBLAS, ...) are not suitable/not good performing:

I outdated versions or missing
F system dependent approaches (packages)

(RedHat: devtoolsets, EPEL, ...; Ubuntu Backports)
F system independent approaches

(Anaconda [Python], flatpak, snap, ...)
I configured for general purpose systems

F linked against reference implementations

Mostly proprietary pendants (e.g. MATLAB R©, CUDA R©, Intel R©MKL, ...) are available in
more recent versions on these "old" systems.

Compiling missing software from source?
I Dependencies often outdated too. In case of Octave: OpenBLAS, SuiteSparse, Arpack, ...
I Space quotas, installation permissions, ...

Reproducibility of previous results?
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Sometimes things are even worse...
Kashiwagi described a problem4 for Linux + OpenBLAS (multiple threads) + Octave and
switching of the directed rounding mode. It occurs in the following short example:

N = 5000 ;
A = rand (N) ; % c r e a t e random 5000 x5000 mat r i x
B = rand (N) ; % element s i n (0 , 1 )
s e t r ound (−1); % round ing downwards mode
C1 = A ∗ B; % lowe r bound f o r A∗B
s e t r ound (+1); % round ing upwards mode
C2 = A ∗ B; % upper bound f o r A∗B
min (min (C2 − C1 ) ) % shou ld not be z e r o !

The default OpenBLAS package of most Linux distributions is compiled using
CONSISTENT_FPCSR=0, which means that the floating-point control and status
register is not synchronized within multiple threads.
The software stack relies on a version and a configuration.

4http://verifiedby.me/adiary/060
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How to ensure complicated software stacks?

VSDP@2018

INTLAB@11
CSDP@6.2.0 / MOSEK@8.1.0.62 /
SDPA@7.3.8 / SeDuMi@1.32 /

SDPT3@4.0, ...
GNU Octave@4.4.1

linked against OpenBLAS@0.3.7
configured with CONSISTENT_FPCSR=1

...

Similar problem investigated by Shudler et al. [8] for
SENSEI, presented on SC’19 in Denver.

Image: https://commons.wikimedia.org/wiki/File:Rock_balancing_(Counter_Balance).jpg
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Supercomputing package manager6 (1/5)
Very actively developed since 2013 (started by members of the Lawrence Livermore
National Laboratory).

Contains currently 3838 packages (812 Python, 782 R).

Addresses several problems with current Linux software distribution models:
I Packages and (some!) dependencies are build from source. ( 6= ArchLinux).

I Define target architecture, compiler (incl. icc), version, configuration (variants), ...
→ Reproducibility!

I Packages peacefully coexist on the same machine.
→ Maintenance!

Will be the default package manager for Fugaku5.
5https://postk-web.r-ccs.riken.jp/oss/public/
6https://spack.io and [2].

Kai T. Ohlhus (TWCU) Numerical verification in high-level languages January 30, 2020 10 / 22

https://postk-web.r-ccs.riken.jp/oss/public/
https://spack.io


Spack (2/5)
$ spack info openblas
Safe versions :

0.3.7 h t t p s : // g i t hub . com/ x i a n y i /OpenBLAS/ a r c h i v e /v0 . 3 . 7 . t a r . gz
. . .
Variants:

Name [ De f au l t ] A l lowed v a l u e s D e s c r i p t i o n
============== ==================== ==============================

ilp64 [ o f f ] True , F a l s e Force 64− b i t Fo r t r an n a t i v e
i n t e g e r s

p i c [ on ] True , F a l s e Bu i l d p o s i t i o n i ndependen t
code

sha r ed [ on ] True , F a l s e Bu i l d sha r ed l i b r a r i e s
threads [ none ] p th reads , openmp , Mu l t i t h r e a d i n g suppo r t

none

$ spack install octave@5.1.0 ˆopenblas@0.3.7+ilp64 threads=openmp
CONSISTENT_FPCSR=1
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Spack (3/5)
Spack grammar in extended Backus-Naur form [2]:
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Spack (4/5)
Example Spack package definition written in Python [2]:
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Spack (5/5) summary
Spack allows to obtain more customized packages than classical Linux package managers.
It addresses the resulting combinatorial configuration space by building only requested
combinations.
Build receipts are maintained and tested by several HPC facilities.

OpenBLAS

OpenBLAS
@0.3.7

OpenBLAS
@0.3.6

OpenBLAS
@0.3.5

OpenBLAS
@0.3.6

threads=none

OpenBLAS
@0.3.6

threads=pthreads

OpenBLAS
@0.3.6

threads=openmp

...

...

...

...
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Singularity [4] - Container for HPC?

Initial version created by Gregory M. Kurtzer about 2015 at the Berkeley National Lab.

Still free software developed by Sylabs Inc.

Lightweight container solution:
I Container overhead negligible [3, 5, 9, 8].

I Singularity images are a single self-contained file. Distribution by copy&paste, no
DockerHub, ...

I Native MPI, Ininiband, and GPU support.

I No root daemon for the execution of Singularity images necessary. Runs with the privileges of
the user. → Security.
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Singularity definition files (1/3)

Boot s t r ap : docke r
From : c en to s

%pos t

# I n s t a l l some deve lopment t o o l s to b u i l d our code
yum i n s t a l l −y \

cmake \
env i ronment−modules \
gcc−g f o r t r a n \
gnup lo t \
python3 \
t e x i n f o \
wget
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Singularity definition files (2/3)
%pos t

. . .

# Setup Spack
cd /
wget h t t p s : // g i t hub . com/ spack / spack / a r c h i v e / deve l op . t a r . gz
t a r −x f d ev e l op . t a r . gz
mv spack−deve l op spack
sou r c e / spack / sha r e / spack / setup−env . sh

spack i n s t a l l octave@5 . 1 . 0 \
^ openb las@0 .3 .7+ i l p 6 4 t h r e ad s=openmp \

CONSISTENT_FPCSR=1

# Tidy up , s h r i n k c o n t a i n e r s i z e ~710 MB −−> ~590 MB

rm −Rf / deve l op . t a r . gz / spack / va r / spack / cache /
yum c l e a n a l l
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Singularity definition files (3/3)

%r u n s c r i p t

# Commands to be executed , when c o n t a i n e r s t a r t s
spack l oad oc tave
oc tave

%env i ronment

e xpo r t LC_ALL=en_US .UTF−8
sou r c e / u s r / sha r e /Modules / i n i t / sh
sou r c e / spack / sha r e / spack / setup−env . sh
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Build and run Singularity Image Files (SIF)

Build SIF with root privileges
sudo singularity build octave.sif octave.def

I Reduce image size, avoid unnecessary tools.

I Reduce build time, trade-off install via Spack or guest Linux package manager.
yum in this case.

Run with user privileges
singularity run octave.sif

I Access to user’s /home directory.

I Other host system directories by default not accessible, but "--bind" possible.
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Summary
I High-level programming languages provide useful abstractions for faster and less error prone

development of verification methods.

I To provide these abstractions sometimes nontrivial software stacks are required.

I Spack can be used to uniquely specify and build these software stacks more independent of
the underlying Linux distribution.

I Singularity containers further increase independence of the underlying system without
sacrificing security, InfiniBand, MPI, or CUDA support.

Future work
I Improve Spack receipts to support all required variations for VSDP.

I More performance tests with Singularity containers and large scale linear conic programs.
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Thank you for your attention!

Questions?
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