Double-precision FPUs in High-Performance Computing: An Embarrassment of Riches?

Workshop on Large-scale Parallel Numerical Computing Technology (LSPANC 2020 January), RIKEN R-CCS, Japan
Outline

- Motivation and Initial Question
- Methodology
 - CPU Architectures
 - Benchmarks and Execution Environment
 - Information Extraction via Performance Tools
- Results
 - Breakdown FP32 vs. FP64 vs. Integer
 - Gflop/s, …
 - Memory-Bound vs Compute-Bound
- Discussion & Summary & Lessons-learned
 Suggestions for Vendors and HPC Community
Motivation and Initial Question (To float … or not to float …?)

Thanks to the (curse of) the TOP500 list, the HPC community (and vendors) are chasing higher FP64 performance, thru frequency, SIMD, more FP units, …

Motivation:

- Less FP64 units

 - Saves power
 - Free chip area (for e.g.: FP16)
 - Less divergence of “HPC-capable” CPUs from mainstream processors

Resulting Research Questions:

- **Q1:** How much do HPC workloads actually depend on FP64 instructions?
- **Q2:** How well do our HPC workloads utilize the FP64 units?
- **Q3:** Are our architectures well- or ill-balanced: more FP64, or FP32, Integer, memory?

 … and …

- **Q4:** How can we actually verify our hypothesis, that we need less FP64 and should invest $ and chip area in more/faster FP32 units and/or memory)?
Approach and Assumptions

Idea/Methodology

- Compare two similar chips; different balance in FPUs ➔ Which?
- Use ‘real’ applications running on current/next-gen. machines ➔ Which?

Assumptions

- Our HPC (mini-)apps are well-optimized
 - Appropriate compiler settings
 - Used in procurement of next gen. machines (e.g. Summit, Post-K, …)
 - Mini-apps: Legit representative of the priority applications

- We can find two chips which are similar
 - No major differences (besides FP64 units)
 - Aside from minor differences we know of (…more on next slide)

- The measurement tools/methods are reliable
 - Make sanity checks (e.g.: use HPL and HPCG as reference)

1 Aaziz et al., “A Methodology for Characterizing the Correspondence Between Real and Proxy Applications”, in IEEE Cluster 2018

Jens Domke
Two very **similar CPUs with large difference in FP64 units**

- Intel dropped 1 DP unit for 2x SP and 4x VNNI (similar to Nvidia’s TensorCore)
- Vector Neural Network Instruction (VNNI) supports SP floating point and mixed precision integers (16-bit input/32-bit output) ops

⇒ **KNM: 2.6x higher SP** peak performance and **35% lower DP** peak perf.

KNL vs KNM: Port comparisons

(Figure source: https://www.servethehome.com/intel-knights-mill-for-machine-learning/)
Methodology – CPU Architectures

- Results may be subject to adjustments to reflect minor differences (red)
- Use dual-socket Intel Broadwell-EP as reference system (to avoid any “bad apples -to- bad apples” comparison); values per node:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Knights Landing</th>
<th>Knights Mill</th>
<th>2x Broadwell-EP Xeon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Intel Xeon Phi CPU 7210F</td>
<td>Intel Xeon Phi CPU 7295</td>
<td>Xeon E5-2650 v4</td>
</tr>
<tr>
<td># of Cores</td>
<td>64 (4x HT)</td>
<td>72 (4x HT)</td>
<td>24 (2x HT)</td>
</tr>
<tr>
<td>CPU Base Frequency</td>
<td>1.3 GHz</td>
<td>1.5 GHz</td>
<td>2.2 GHz</td>
</tr>
<tr>
<td>Max Turbo Frequency</td>
<td>1.5 GHz (1 or 2 cores)</td>
<td>1.6 GHz</td>
<td>2.9 GHz</td>
</tr>
<tr>
<td></td>
<td>1.4 GHz (all cores)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU Mode</td>
<td>Quadrant mode</td>
<td>Quadrant mode</td>
<td>N/A</td>
</tr>
<tr>
<td>TDP</td>
<td>230 W</td>
<td>320 W</td>
<td>210 W</td>
</tr>
<tr>
<td>Memory Size</td>
<td>96 GiB</td>
<td>96 GiB</td>
<td>256 GiB</td>
</tr>
<tr>
<td>Triad Stream BW</td>
<td>71 GB/s</td>
<td>88 GB/s</td>
<td>122 GB/s</td>
</tr>
<tr>
<td>MCDRAM Size</td>
<td>16 GB</td>
<td>16 GB</td>
<td>N/A</td>
</tr>
<tr>
<td>Triad BW (flat mode)</td>
<td>439 GB/s</td>
<td>430 GB/s</td>
<td>N/A</td>
</tr>
<tr>
<td>MCDRAM Mode</td>
<td>Cache mode (caches DDR)</td>
<td>Cache mode</td>
<td>N/A</td>
</tr>
<tr>
<td>LLC Size</td>
<td>32 MB</td>
<td>36 MB</td>
<td>60 MB</td>
</tr>
<tr>
<td>Instruction Set Extension</td>
<td>AVX-512</td>
<td>AVX-512</td>
<td>AVX2 (256 bits)</td>
</tr>
<tr>
<td>Theor. Peak Perf. (SP)</td>
<td>5,324 Gflop/s</td>
<td>13,824 Gflop/s</td>
<td>1,382 Gflop/s</td>
</tr>
<tr>
<td>Theor. Peak Perf. (DP)</td>
<td>2,662 Gflop/s</td>
<td>1,728 Gflop/s</td>
<td>691 Gflop/s</td>
</tr>
</tbody>
</table>
Methodology – Benchmarks and Execution Environment

- **Exascale Computing Project (ECP)** proxy applications (12 apps)
 - Used in procuring CORAL machine
 - They mirror the priority applications for DOE/DOD (US)

- **RIKEN R-CCS’ Fiber mini-apps** (8 apps)
 - Used in procuring Post-K computer
 - They mirror the priority applications for RIKEN (Japan)

- **Intel’s HPL and HPCG** (and BabelStream) (3 apps)
 - Used for sanity checks

Other mini-app suites exist:

- PRACE (UEABS), NERSC DOE mini-apps, LLNL Co-Design ASC proxy-apps and CORAL codes, Mantevo suite, …
Methodology – Benchmarks and Execution Environment

- 23 mini-apps used in procurement process of next-gen machines

<table>
<thead>
<tr>
<th>ECP</th>
<th>Workload</th>
<th>Post-K</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMG</td>
<td>multigrid solver for unstructured grids</td>
<td>CCS QCD</td>
<td>Linear equation solver (sparse matrix) for lattice quantum chromodynamics (QCD) problem</td>
</tr>
<tr>
<td>CANDLE</td>
<td>DL predict drug response based on molecular features of tumor cells</td>
<td>FFVC</td>
<td>Solves the 3D unsteady thermal flow of the incompressible fluid</td>
</tr>
<tr>
<td>CoMD</td>
<td>Generate atomic transition pathways between any two structures of a protein</td>
<td>NICAM</td>
<td>Benchmark of atmospheric general circulation model reproducing the unsteady baroclinic oscillation</td>
</tr>
<tr>
<td>Laghos</td>
<td>Solves the Euler equation of compressible gas dynamics</td>
<td>mVMC</td>
<td>Variational Monte Carlo method applicable for a wide range of Hamiltonians for interacting fermion systems</td>
</tr>
<tr>
<td>MACSio</td>
<td>Scalable I/O Proxy Application</td>
<td>NGSA</td>
<td>Parses data generated by a next-generation genome sequencer and identifies genetic differences</td>
</tr>
<tr>
<td>miniAMR</td>
<td>Proxy app for structured adaptive mesh refinement (3D stencil) kernels used by many scientific codes</td>
<td>MODYLAS</td>
<td>Molecular dynamics framework adopting the fast multipole method (FMM) for electrostatic interactions</td>
</tr>
<tr>
<td>miniFE</td>
<td>Proxy for unstructured implicit finite element or finite volume applications</td>
<td>NTChem</td>
<td>Kernel for molecular electronic structure calculation of standard quantum chemistry approaches</td>
</tr>
<tr>
<td>miniTRI</td>
<td>Proxy for dense subgraph detection, characterizing graphs, and improving community detection</td>
<td>FFB</td>
<td>Unsteady incompressible Navier-Stokes solver by finite element method for thermal flow simulations</td>
</tr>
<tr>
<td>Nekbone</td>
<td>High order, incompressible Navier-Stokes solver based on spectral element method</td>
<td>Bench</td>
<td>Workload</td>
</tr>
<tr>
<td>SW4lite</td>
<td>Kernels for 3D seismic modeling in 4th order accuracy</td>
<td>HPL</td>
<td>Solves dense system of linear equations Ax = b</td>
</tr>
<tr>
<td>SWFFT</td>
<td>Fast Fourier transforms (FFT) used in by Hardware Accelerated Cosmology Code (HACC)</td>
<td>HPCG</td>
<td>Conjugate gradient method on sparse matrix</td>
</tr>
<tr>
<td>XSBench</td>
<td>Kernel of the Monte Carlo neutronics app: OpenMC</td>
<td>Stream</td>
<td>Throughput measurements of memory subsystem</td>
</tr>
</tbody>
</table>
Methodology – Benchmarks and Execution Environment

- OS: clean install of **centos 7**
- Kernel: 3.10.0-862.9.1.el7.x86_64 (w/ enabled meltdown / spectre patches)
- Identical SSD for all 3 nodes
- Similar DDR4 (with 2400 MHz; different vendors)
- No parallel FS (lustre/NFS/…) ➔ low OS noise
- Boot with `intel_pstate=off` for better CPU frequency control
- **Fixed CPU core/[uncore] freq.** to max: 2.2/[2.7] BDW, 1.3 KNL, 1.5 KNM

Compiler: **Intel Parallel Studio XE** (2018; update 3) with default flags for each benchmark plus additional: `--ipo -xHost`
 (exceptions: AMG w/ xCORE-AVX2 and NGSA bwa with gcc)

 and Intel’s Tensorflow with MKL-DNN (for CANDLE)
Step 1: Check benchmark settings for strong-scaling runs (none for MiniAMR) (important for fair comparison!)

Step 2: Identify kernel/solver section of the code wrap with additional instructions for timing, SDE, PCM, VTune, etc.

Step 3: Find “optimal” #MPI + #OMP configuration for each benchmark (try under-/over-subscr.; each 3x runs; “best” based on time or Gflop/s)

Step 4: Run 10x “best” configuration w/o additional tool

Step 5: Exec. proxy-app once with each performance tool
Early observation

- Relatively high runtime in initializing / post-processing within proxy-apps
 - E.g. HPCG only 11% – 30% in solver (dep. on system)

- Measuring complete application yields misleading results

- Need to wrap kernel and on/off instructions for tools:

```
PseudoCode 1: Injecting analysis instructions

#define START_ASSAY {measure time; toggle on [PCM | SDE | VTune]}
#define STOP_ASSAY {measure time; toggle off [PCM | SDE | VTune]}

Function main is

STOP_ASSAY
Initialize benchmark

foreach solver loop do
  START_ASSAY
  Call benchmark solver/kernel
  STOP_ASSAY
  Post-processing

Verify benchmark result
START_ASSAY
```
Performance analysis tools we used *(on the solver part)*:

- **GNU perf** *(perf. counters, cache accesses, …)*
- **Intel SDE** *(wraps Intel PIN; simulator to count each executed instruction)*
- **Intel PCM** *(measure memory [GB/s], power, cache misses, …)*
- **Intel Vtune** *(HPC/memory mode: FPU, ALU util, memory boundedness, …)*
- **Valgrind, heaptrack** *(memory utilization)*
- *(tried many more tools/approaches with less success 😞)*

<table>
<thead>
<tr>
<th>Raw Metric</th>
<th>Method/Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runtime [s]</td>
<td>MPI_Wtime()</td>
</tr>
<tr>
<td>#{FP / integer operations}</td>
<td>Software Development Emulator</td>
</tr>
<tr>
<td>#{Branches operations}</td>
<td>SDE</td>
</tr>
<tr>
<td>Memory throughput [B/s]</td>
<td>PCM (pcm-memory.x)</td>
</tr>
<tr>
<td>#{L2/LLC cache hits/misses}</td>
<td>PCM (pcm.x)</td>
</tr>
<tr>
<td>Consumed Power [Watt]</td>
<td>PCM (pcm-power.x)</td>
</tr>
<tr>
<td>SIMD instructions per cycle</td>
<td>perf + VTune (‘hpc-performance’)</td>
</tr>
<tr>
<td>Memory/Back-end boundedness</td>
<td>perf + VTune (‘memory-access’)</td>
</tr>
</tbody>
</table>
Many times we were stuck (a few examples below)

- VTune crashing machines (w/ Intel’s sampling driver 😞 → use perf)
 - Worked on older kernels (pre Spectre and Meltdown patch)
- Changing core frequency leads to change in uncore frequency
 - Use LikWid to fix uncore frequency
 - LikWid itself requires changing a kernel parameter (intel_pstate=off)
- Many applications crashed for different reason
 - E.g.: AMG’s iteration count is inconsistent with AVX512 optimization; NGSA only compiled w/ GNU gcc; we fixed MACSio’s segfaults for Intel compiler
- Several apps have different input datasets
 - “Right” choice tricky (but req. for strong-scaling sweep of threads/processes)
 - Some enforce the #thread/#proc based on domain decomposition scheme
- Measuring performance metric for solver phase in apps
 - For some (like CANDLE written in Python) not straightforward
Results

What are we looking for?

- Breakdown of applications requirements/characteristics
- **Performance metrics**
- **Memory-bound vs. compute-bound**
- Power profile

If we measure the things on top, we can get:

- Indications of **impact of # FPUs** on performance (and power)
- Understanding what are the **real requirements of HPC** applications
 - Data-centric?
- Indications of what can be optimized on current hardware
 - Manipulate frequency? (⇒ similar to **READEX**?)
- Indications of how supercomputers, as a utility is impacted
Results – Breakdown %FP32 vs. %FP64 vs. %Integer

Following: few examples of >25 metrics (many more in raw data)

- Integer (+DP) heavy (>50%; 16 of 22), only 4 w/ FP32, only 1 mixed precision
Results – Compare Time-to-Solution in Solver

- Only 3 apps seem to suffer from missing DP (MiniTri: no FP; FFVC: only int+FP32)
- VNNI may help with CANDLE perf. on KNM; NTChem improvement unclear
- KNM overall better (due to 100MHz freq. incr.?)
- Memory throughput on Phi (in cache mode) doesn’t reach peak of flat mode (only ~86% on KNL; ~75% on KNL)

Note: MiniAMR not strong-scaling ➔ limited comparability

Jens Domke
Results – Compare Gflop/s in Comp. Kernel/Solver

- 8 apps out of 18: less Gflop/s on Phi than on BDW (ignoring I/O & Int-based apps)
- All apps (ignoring HPL) with low FP efficiency:
 ≤ 21.5% on BDW, ≤ 10.5% on KNL, ≤ 15.1% on KNM (Why? ➔ next slides)
- Phi performance comes from higher peak flop/s, Iop/s and/or faster MCDRAM?

Relative perf. over BDW baseline

Absolute Gflop/s perf. compared to theor. peak

Jens Domke
Surprisingly high (~80% for Phi) \Rightarrow “unclear” how VTune calculates these %
(Memory-bound \neq backend-bound \Rightarrow no direct comparison BDW vs Phi)
Results – Frequency Scaling for Memory-Boundedness

Alternative idea:

- Theory: Higher CPUfreq ➔ faster compute?
 ➔ compute-bound?

- 20 of 22 of apps below ideal scaling on BDW ➔ not compute-bound ➔ memory-bound?

- HPCG on Phi (vs. BDW):
 - no improve. w/ freq.
 - ≈2x mem. throughput
 - runtime ≈10% lower
 ➔ memory-latency bound (so, MCDRAM is bigger bottleneck)
 (➔ one of Dongarra’s original design goals)

- BDW: TurboBoost (TB) mostly useless for apps

Fig. 6. Speedup obtained through increased CPU frequency (w.r.t baseline frequency of 1.0 Ghz on KNL/KNM and 1.2 Ghz on BDW); Top plot: KNL, middle plot: KNL, bottom plot: BDW; Theoretical peak (ThPeak): furthest
Results – Roofline Analysis for Verification

- **Supports** our previous hypothesis that most of the proxy-/mini-apps are memory-bound

- Outlier: only Laghos seems (intentionally?) poorly optimized

- Verifies our assumption about optimization status of the apps (→ similar to other HPC roofline plots)

- KNL/KNM roofline plots show nearly same results (omitted to avoid visual clutter)

Fig. 5. Roofline plot (w.r.t dominant FP operations and DRAM bandwidth) for Broadwell-EP reference system; Filtered proxy-apps with negligible FP operations: MxIO, MTri, and NGSA; Proxy-app labels acc. to Section II-B
Results – Requirement for a “Weighted Look” at Results

- Studied HPC utilization reports of 8 centers across 5 countries
- **Not every app equally important** (most HPC cycles dominated by Eng. (Mech./CFD), Physics, Material Sci., QCD)

![HPC utilization chart](chart.png)

- Some supercomputers are “specialized”
 - **Dedicated HPC** (e.g.: weather forecast)
- For system X running **memory-bound** apps
 - **Why pay premium for FLOPS?**
 - NASA applies this pragmatic approach

Table II

<table>
<thead>
<tr>
<th>Application Categorization, Compute Patterns, and Main Programming Languages Used; MACSio, HPL, HPCG, and BabelStream Benchmarks Omitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECP</td>
</tr>
<tr>
<td>AMG</td>
</tr>
<tr>
<td>CANDLE</td>
</tr>
<tr>
<td>CoMD</td>
</tr>
<tr>
<td>Laghos</td>
</tr>
<tr>
<td>miniAMR</td>
</tr>
<tr>
<td>miniFE</td>
</tr>
<tr>
<td>miniTRI</td>
</tr>
<tr>
<td>Nekbone</td>
</tr>
<tr>
<td>SW4lite</td>
</tr>
<tr>
<td>SWFFT</td>
</tr>
<tr>
<td>XSbench</td>
</tr>
</tbody>
</table>

| **RIKEN** | **Scientific/Engineering Domain** | **Compute Pattern** | **Language** |
|---|
| FFB | Engineering (Mechanics, CFD) | Stencil | Fortran |
| FFVC | Engineering (Mechanics, CFD) | Stencil | C++/Fortran |
| mVMC | Physics | Dense matrix | C |
| NICAM | Geoscience/Earthscience | Stencil | Fortran |
| NGSA | Bioscience | Irregular | C |
| MODYLAS | Physics and Chemistry | N-body | Fortran |
| NTChem | Chemistry | Dense matrix | Fortran |
| QCD | Lattice QCD | Stencil | Fortran/C |

Jens Domke
Discussion on Floating-Point in HPC

- FLOPS: de-facto performance metric in HPC 😞
 - Procurement (proxy)apps highly FP64 dependent, but often memory-bound?
 - Even for memory-bound apps (HPCG): Performance reported in FLOPS!!

 ➔ Community move to less FLOP-centric performance metrics?

Options for memory-bound applications:
- Invest in memory-/data-centric architectures (and programming models)
- Reduction of FP64 units acceptable ➔ reuse chip area
- Move to FP32 or mixed precision ➔ less memory pressure

Options for compute-bound applications:
- Brace for less FP64 units (driven by market forces) and less “free” performance (10nm, 7nm, 3nm, …then?)
- FP32 underutilized
 - Research use of mixed/low precision without loosing required accuracy
 - Remove and design FP64-only architectures
- Libraries will pragmatically try to utilize lower precision FPUs
 - E.g.: use GPU FP16 TensorCores in GEMM (Dongarra’s paper at SC18)
- If no library ➔ Take performance hit / rewrite code to use low precision units

Research focus can help many applications

Not much improvement

Research use of mixed/low precision without loosing required accuracy

Remove and design FP64-only architectures

E.g.: use GPU FP16 TensorCores in GEMM (Dongarra’s paper at SC18)

If no library ➔ Take performance hit / rewrite code to use low precision units
Summary & Lessons-learned & Suggestions

Lessons-learned:

- IOP counting method may be misleading (.instructions instead of ops?)
- **Fixing uncore** frequency is important
- Defining/measuring memory boundedness is hard 😞
- Intel MPI good on all Intel chips (i.e., default settings, rank/thread mapping)
- Intel’s performance tools need some improvements (others: A LOT)
 - SDE: CANDLE; VTune+sample driver: nodes crash; Heaptrack: NGSA, …

Suggestions:

- **Improved proxy-apps** and better documentation (and more diversity?)
 - Avoid bugs, e.g. MACSio+icc, NGSA+icc, and AMG + AVX512
 - Easy choice of inputs for adapting runtime and strong- vs. weak-scaling
- Community effort into one repo of HPC BMs (similar to SPEC)?
Acknowledgements and Repo

Much more data/details in the full paper:

Double-precision FPUs in High-Performance Computing: An Embarrassment of Riches?

Complete measurement **framework and all raw data** available:

https://gitlab.com/domke/PAstudy

The work was made possible by the dedicated efforts of these students

Kazuaki Matsumura and Haoyu Zhang
Keita Yashima and Toshiki Tsuchikawa and Yohei Tsuji
(w/ add. input: Hamid R. Zohouri and Ryan Barton)

of the MATSUOKA Lab, Department of Mathematical and Computer Science, Tokyo Tech and their supervisors:

Prof. Satoshi Matsuoka, Artur Podobas, and Mohamed Wahib (+ myself).

This work was supported by MEXT, JST special appointed survey 30593/2018, JST-CREST Grant Number JPMJCR1303, JSPS KAKENHI Grant Number JP16F16764, the New Energy and Industrial Technology Development Organization (NEDO), and the AIST/TokyoTech Real-world Big-Data Computation Open Innovation Laboratory (RWBC-OIL).
Postdoctoral Researcher
High Performance Big Data Research Team,
RIKEN Center for Computational Science,
Kobe, Japan

Tokyo Tech Research Fellow
Satoshi MATSUOKA Laboratory,
Tokyo Institute of Technology,
Tokyo, Japan

http://domke.gitlab.io/ jens.domke@riken.jp