
Gauge-equivariant multigrid neural networks

Christoph Lehner and Tilo Wettig (University of Regensburg)
arXiv:2302.05419 [hep-lat]
arXiv:2304.10438 [hep-lat]

RIKEN-CCS, March 29, 2024

http://arxiv.org/pdf/2302.05419
http://arxiv.org/pdf/2304.10438

Outline

Introduction

Parallel-transport convolution layers

Wilson-clover Dirac operator

High-mode preconditioners

Low-mode preconditioners
Standard construction
Gauge-equivariant construction

Multigrid preconditioners

Summary and outlook

1/42

Introduction

Brief introduction to lattice QCD

ZQCD =

∫
DA e−SYM

∫
Dψ̄Dψ e

−∫ d4 x
Nf∑
f =1
ψ̄(D+m f)ψ

=

∫
DA e−SYM

N f∏
f =1

det(D+m f)

• (Euclidean) space-time is discretized
on a finite lattice
→ Path integral replaced by finite number

of ordinary integrals
→ Can be computed numerically

• Physical observables are extracted in 3 limits

a→ 0 Continuum limit
V →∞ Thermodynamic limit

mq→ mq,phys Physical quark masses

• Only systematically improvable theoretical tool to compute nonperturbative results

Li & Liu, Nucl. Phys. Rev. 38 (2021) 129

2/42

http://dx.doi.org/10.11804/NuclPhysRev.38.2021022

Treatment of fermion determinant

• For simplicity, redefine Dirac operator D to include the quark mass
• Neither Grassmann integral nor fermion determinant can be evaluated efficiently
• Rewrite fermionic determinant as a bosonic integral involving inverse Dirac operator
Schematically:

det D =
1

det D−1
=

∫
Dφ†Dφ e−φ† D−1φ

• State-of-the-art algorithms (HMC) sample the “pseudofermion” field φ
→ Need to (formally) invert the matrix representing the Dirac operator
In practice: Solve Dirac equation for given RHS

3/42

Preconditioning

• In lattice QCD, wall-clock time is typically dominated by solution of Dirac equation

Du= b

• Usually done by an iterative solver (here, GMRES)

• Time to solution is determined by condition number of Dirac matrix
• Condition number increases dramatically in continuum limit and for physical quark mass
• Thus number of iterations also increases dramatically (“Critical slowing down”)

• Way out: Preconditioning
• Find a preconditioner M such that M ≈ D−1

• Define v = M−1u and use

DM M−1u= (DM)v = b

to solve for v with preconditioned matrix DM (smaller condition number)
• Then u= M v

4/42

Measure of performance

Iteration count gain= Iteration count without preconditioner
Iteration count with preconditioner

• Iteration count refers to outer solver (here, GMRES)

5/42

Low and high modes
• Consider the eigendecomposition of D

D =
∑

n

λn|n〉〈n|
• Preconditioner should approximate low-mode and high-mode components of D−1

• Iterative solution of Du= b

uk+1 = f (D, b, uk) with uk→ u (true solution)

• Residual

rk = b− Duk with rk→ 0

• Residual rk can formally be expanded in the eigenmodes |n〉 of D
→ Preconditioner should reduce low- and high-mode contributions to rk

• State-of-the-art algorithms (multigrid) are designed to do this
• We follow this paradigm, but here we learn the preconditioner

6/42

Multigrid in a nutshell

• Multigrid has two components

https://summerofhpc.prace-ri.eu/multithreading-
the-multigrid-solver-for-lattice-qcd

• Smoother: Reduces error from high modes
• Coarse-grid correction: Reduces error from low modes

• “Restriction” to a coarse grid
• Approximate solution of Dirac equation on coarse grid
• “Prolongation” of solution vector from coarse to fine grid

• Can be done on multiple levels

• Multigrid setup
• The art of multigrid: How to construct suitable restriction and prolongation operators?
• Observation: Low eigenmodes are “locally coherent” Lüscher, arXiv:0706.2298 [hep-lat]
(i.e., they are locally well approximated by a relatively small number of vectors)
→ Construct vectors that approximately span the near-null space
Block these vectors to define the restriction operator (and use P = R†)

• Setup is expensive but needs to be done only once per gauge-field configuration
(can then be reused for multiple RHS)

7/42

https://summerofhpc.prace-ri.eu/multithreading-the-multigrid-solver-for-lattice-qcd
https://summerofhpc.prace-ri.eu/multithreading-the-multigrid-solver-for-lattice-qcd
https://arxiv.org/pdf/0706.2298

Multigrid reduces/eliminates critical slowing down

30

50

200

400

100

1000

10000

−0.02−0.03−0.04−0.05mdmumcrit

mud

ti
m
e
to

so
lu
ti
o
n
(i
n
se
co
n
d
s)

m0

inexact deflation
two-level DD-αAMG

three-level DD-αAMG
four-level DD-αAMG

mp oe BiCGStab

Frommer et al., SIAM J. Sci. Comput. 36 (2014) A1581

8/42

Related work

1. Multigrid algorithms in lattice QCD
• Brannick, Brower, Clark, Osborn, Rebbi arXiv:0707.4018 [hep-lat]
• R. Babich et al. arXiv:1005.3043 [hep-lat]
• Frommer et al. arXiv:1303.1377 [hep-lat]
• Boyle arXiv:1402.2585 [hep-lat]
• Brannick et al. arXiv:1410.7170 [hep-lat]
• Brower, Clark, Strelchenko, Weinberg arXiv:1801.07823 [hep-lat]
• Brower, Clark, Howarth, Weinberg arXiv:2004.07732 [hep-lat]

2. Neural networks for multigrid (but not for gauge theories), e.g.,
• Katrutsa, Daulbaev, Oseledets arXiv:1711.03825 [math.NA]
• He & Xu arXiv:1901.10415 [cs.CV]
• Greenfeld, Galun, Basri, Yavneh, Kimmel arXiv:1902.10248 [cs.LG]
• Eliasof, Ephrath, Ruthotto, Treister arXiv:2011.09128 [cs.CV]
• Huang, Li, Xi arXiv:2102.12071 [math.NA]

9/42

https://arxiv.org/pdf/0707.4018
https://arxiv.org/pdf/1005.3043
https://arxiv.org/pdf/1303.1377
https://arxiv.org/pdf/1402.2585
https://arxiv.org/pdf/1410.7170
https://arxiv.org/pdf/1801.07823
https://arxiv.org/pdf/2004.07732
https://arxiv.org/pdf/1711.03825
https://arxiv.org/pdf/1901.10415
https://arxiv.org/pdf/1902.10248
https://arxiv.org/pdf/2011.09128
https://arxiv.org/pdf/2102.12071

Related work

3. Gauge-equivariant neural networks (but not for solving Dirac equation), e.g.,
• Cohen, Weiler, Kicanaoglu, Welling arXiv:1902.04615 [cs.LG]
• Finzi, Stanton, Izmailov, Wilson arXiv:2002.12880 [stat.ML]
• Luo, Carleo, Clark, Stokes arXiv:2012.05232 [cond-mat.str-el]
• Kanwar et al. arXiv:2003.06413 [hep-lat]
• Boyda et al. arXiv:2008.05456 [hep-lat]
• Favoni, Ipp, Müller, Schuh arXiv:2012.12901 [hep-lat]
• Abbott et al. arXiv:2207.08945 [hep-lat]
• Aronsson, Müller, Schuh arXiv:2303.11448 [hep-lat]

4. Neural-network preconditioners for Schwinger model (not gauge-equivariant)
• Calì et al. arXiv:2208.02728 [hep-lat]

10/42

https://arxiv.org/pdf/1902.04615
https://arxiv.org/pdf/2002.12880
https://arxiv.org/pdf/2012.05232
https://arxiv.org/pdf/2003.06413
https://arxiv.org/pdf/2008.05456
https://arxiv.org/pdf/2012.12901
https://arxiv.org/pdf/2207.08945
https://arxiv.org/pdf/2303.11448
https://arxiv.org/pdf/2208.02728

Related work

5. Gauge-equivariant multigrid setup and coarse gauge fields (late 1980s/early 1990s)
• Amsterdam group (Hulsebos, Smit, Vink)
e.g., Nucl. Phys. B Proc. Suppl. 9, 512 (1989), Nucl. Phys. B Proc. Suppl. 20, 94 (1991),
Nucl. Phys. B 368, 379 (1992)

• Israel group (Ben-Av et al.)
e.g., Nucl. Phys. B 329, 193 (1990), Phys. Lett. B 253, 185 (1991), Nucl. Phys. B 405, 623 (1993)

• Boston group (Brower et al.)
e.g., Phys. Rev. D 43, 1965 (1991), Phys. Rev. D 43, 1974 (1991), Phys. Rev. Lett. 66, 1263 (1991)

• Hamburg group (Kalkreuter et al.)
e.g., Nucl. Phys. B 376, 637 (1992), Int. J. Mod. Phys. C 5, 629 (1994)

11/42

https://doi.org/10.1016/0920-5632(89)90152-7
https://doi.org/10.1016/0920-5632(91)90888-L
https://doi.org/10.1016/0550-3213(92)90533-H
https://doi.org/10.1016/0550-3213(90)90064-K
https://doi.org/10.1016/0370-2693(91)91382-6
https://doi.org/10.1016/0550-3213(93)90562-4
https://doi.org/10.1103/PhysRevD.43.1965
https://doi.org/10.1103/PhysRevD.43.1974
https://doi.org/10.1103/PhysRevLett.66.1263
https://doi.org/10.1016/0550-3213(92)90122-R
https://doi.org/10.1142/S0129183194000799

Parallel-transport convolution layers

Parallel transport

• Consider a field φ(x) with x ∈ S (space-time lattice, dim = d) and φ ∈ VI = VG ⊗ VḠ

(gauge space: VG = CN , non-gauge space: VḠ = CN̄)

• Also consider an SU(N) gauge field Uµ(x) acting on VG

• Define the parallel-transport operator for a path p = p1, . . . , pnp
with pi ∈ {±1, . . . ,±d}

Tp = Hpnp
· · ·Hp2

Hp1
with Hµφ(x) = U†

µ(x − µ̂)φ(x − µ̂)

• Hµ transports information by a single hop in direction µ̂

• Hµ acts on field; new field Hµφ is evaluated at x

• Example: Tp = H−1H−2H−1H2H2

12/42

Gauge equivariance
• A gauge transformation by Ω(x) ∈ SU(N) acts in the usual way

φ(x)→ Ω(x)φ(x)
Uµ(x)→ Ω(x)Uµ(x)Ω†(x + µ̂)

• Such gauge transformations commute with Tp for any path p

Tpφ(x)→ Ω(x)Tpφ(x)

• This is an example of gauge equivariance (a.k.a. gauge covariance):

An object (here: φ) and the transformed object (here: Tpφ)
transform in the same way under a gauge transformation.

• Building gauge equivariance into the model implies that the model does not have to
learn the gauge symmetry→ Same expressivity with fewer weights

13/42

Parallel-transport convolutions
• Parallel-transport convolution layer and local parallel-transport convolution layer

ψa(x)
PTC
=
∑

b

∑
p∈P

W p
ab Tpφb(x) ψa(x)

LPTC
=
∑

b

∑
p∈P

W p
ab(x)Tpφb(x)

(L)PTC

• a = output feature index
• b = input feature index
• P = set of paths
• W p

ab acts on VḠ (here: 4× 4 spin matrix)
• Elements of W : trainable layer weights

• Layers are gauge-equivariant
• No activation function since we want
to learn a linear preconditioner

• Graphical conventions
• Feature = Plane
• Layer = Paths + Arrow 14/42

Parallel and identity layers

• Parallel layers act on the same input feature in parallel
• Identity layer (dashed arrow w/o paths): simple copy operation, i.e., output = input
• Example: (All layers except L1 are identity layers)

L1

L2

15/42

Communication avoidance

• On machines with many nodes, subvolumes are assigned to different MPI processes

• We also consider models where no information is communicated between
subvolumes (by setting the links Uµ(x) connecting subvolumes to zero)

• We find that the performance of these models (in terms of iteration count gain) is
close to those with communication
→ Overall wall-clock time could be lower since no time is spent on communication

16/42

Wilson-clover Dirac operator

Dirac operator

• The Wilson Dirac operator can be written in terms of single hops:

DW =
1
2

4∑
µ=1

γµ(H−µ − H+µ)− 1
2

4∑
µ=1

(H−µ + H+µ − 2) +m

• For Wilson-clover, consider closed paths with four hops and define

Qµν = H−µH−νH+µH+ν + H−νH+µH+νH−µ + H+νH−µH−νH+µ + H+µH+νH−µH−ν

Then

DWC = DW − csw

4

4∑
µ,ν=1

σµνFµν

with

Fµν =
1
8
(Qµν −Qνµ) σµν =

1
2
(γµγν − γνγµ)

17/42

Numerical details and eigenvalue spectrum
• V = 83 × 16, β = 6.0 (pure gauge), cSW = 1, periodic boundary conditions for all fields
• Quark mass m is tuned so that DWC is near criticality
(i.e., real part of smallest nonzero eigenvalue ≈ 0)
→ Solution of Du= b is challenging problem

Q = 0 (m= −0.6) Q = 1 (m= −0.5645)

−0.1 0.0 0.1 0.2 0.3 0.4

Re λ

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Im
λ

18/42

High-mode preconditioners

Model setup and training strategy

• High-mode part of Dirac spectrum is related to short-distance behavior
→ Expect one or two layers with small number of hops to show gain in iteration count

• Consider a linear model M mapping a vector x to M x

• Supervised learning approach with training step as follows:
• Pick random vector v from Gaussian distribution (mean zero, standard deviation 1)
• Compute training tuple (DWCv, v) and optimize cost function

C = |M DWCv − v|2
→ Model learns to map DWCv to v (and hence M ≈ D−1

WC)
• Optimizer is Adam Kingma & Ba, arXiv:1412.6980 [cs.LG]
• Derivatives w.r.t. model weights computed using backpropagation

• Training data set is unbounded in size→ No need to add a regulator

• Cost function is dominated by high modes

19/42

https://arxiv.org/pdf/1412.6980

Models chosen for high-mode preconditioner

• One layer, one hop (i.e., 9 paths)

T0 = 1 , T1 = H1 , T2 = H2 , T3 = H3 , T4 = H4 , T5 = H−1 , T6 = H−2 , T7 = H−3 , T8 = H−4

• One layer, two hops: extend the above by 56 two-hop paths

HaHb with a, b ∈ {−4,−3,−2,−1,1,2, 3,4} (a ̸= −b)

• “Deep” network of two one-hop layers:
• 1→ 1→ 1: Two successive layers with one hop each
• 1→ 2→ 1: Two output features in first layer, two input features in second layer

• PTC (layer weights constant) and LPTC (layer weights depend on x)

• Communication avoidance: Uµ(x)≡ 0 between subvolumes of size 43 × 8

20/42

Results for high-mode preconditioner (one layer, one hop)

0 250 500 750 1000

Training Step

10−3

10−2

10−1

C
o
st

F
u
n
ct

io
n

0 250 500 750 1000

Training Step

0

2

4

6

It
er

a
ti

o
n

C
o
u
n
t

G
a
in

LPTC, 1 layer, 1 hop

PTC, 1 layer, 1 hop

LPTC, 1 layer, 1 hop, comm. avoid.

PTC, 1 layer, 1 hop, comm. avoid.

• No gain from LPTC (and they require more training)
• Communication-avoiding version only slightly worse (could be amortized)

21/42

Results for high-mode preconditioner (“deep” network or multiple hops)

0 250 500 750 1000

Training Step

10−3

10−2

10−1

C
o
st

F
u

n
ct

io
n

0 250 500 750 1000

Training Step

0

2

4

6

8

10

It
er

a
ti

o
n

C
o
u

n
t

G
a
in

PTC, 2 layers (1→ 1→ 1), 1 hop

PTC, 2 layers (1→ 2→ 1), 1 hop

PTC, 1 layer, 2 hops

• 1→ 2→ 1 model performs best (and gives ∼ twice the gain of 1 layer/1 hop model)
• Since layers are linear, deep models are not more expressive than shallow models
with same number of hops (but easier to train b/o smaller number of weights)
→ 2-hop model should reach similar performance with improved training procedure

22/42

Transfer learning

0 100 200 300 400

Training Step

10−3

10−2

10−1

C
o
st

F
u
n
ct

io
n

0 100 200 300 400

Training Step

0

2

4

6

8

10

It
er

a
ti

o
n

C
o
u
n
t

G
a
in

PTC, 1 layer, 1 hop, different conf.

PTC, 1 layer, 1 hop, β = 5.9

PTC, 1 layer, 1 hop, m = −0.55

• No retraining required for (i) different configuration from same ensemble,
(ii) configuration with different β , (iii) different mass

• m= −0.55 is not tuned to criticality→ Easier initial problem→ Smaller gain
• Performance varies slightly between configurations

23/42

Low-mode preconditioners

Possible approaches

• Low-mode part of Dirac spectrum is related to long-distance behavior
→ Need deep network of (L)PTC layers to propagate information over long distances

• Alternative: Use multigrid paradigm
• Define coarse version of the lattice
• Define restriction and prolongation operations (= layers)
• Preserve low-mode part of Dirac spectrum

24/42

Low-mode preconditioners

Standard construction

Standard approach: No gauge degrees of freedom on the coarse grid

• Define a coarse grid S̃ with fields φ̃(y), where y ∈ S̃ and φ̃ ∈ ṼI

• ṼI has no gauge degrees of freedom→ No gauge transformations on ṼI

• B = block map from S̃ to S (i.e., sites B(y) on fine grid correspond to y on coarse grid)
• Restriction and prolongation layer (with R= P†)

ψ̃(y)
RL
=
∑

x∈B(y)

W (y, x)φ(x)
ψ(x)

PL
=W (y, x)†φ̃(y)

RL
PL

25/42

Restriction and prolongation layers

• Find s vectors in the near-null space of D

Dui ≈ 0 (i = 1, . . . , s)

• Apply GMRES for D with source vector = 0 and random initial guess (solve to 10−8)
• This removes high-mode components and leaves linear combination of low modes

• Block the ui

• One site y ∈ S̃ corresponds to a set of sites (or block) B(y) ∈ S
• Blocked vector uy

i lives on the sites of B(y)

• Orthonormalize the uy
i within each block→ ūy

i

• Then the prolongation map is defined by

W (y, x)† =
s∑

i=1

ūy
i (x)ê

†
i no trainable weights

with x ∈ B(y) and êi the canonical unit vectors of ṼI

26/42

Model setup and training strategy

• Coarse-grid operator is defined as

D̃ = RDWCP

with R and P defined by restriction and prolongation layers

• Now need approximate solution of Dirac equation involving D̃

• Coarse-grid model for preconditioner M̃ contains
single LPTC layer with zero- and one-hop paths
and gauge fields replaced by 1
(layer is denoted by cLPTC)

• Same training strategy as before, with cost function

C = |M̃ D̃v − v|2

27/42

Results for low-mode preconditioner (cLPTC layer)

0 2500 5000 7500 10000

Training Step

10−3

10−2

10−1

100

C
o
st

F
u
n
ct

io
n

0 2500 5000 7500 10000

Training Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

It
er

a
ti

o
n

C
o
u
n
t

G
a
in

cLPTC, 1 layer, 1 hop

cLPTC, 1 layer, 1 hop, diff. conf.

• Iteration count gain refers to inversion of D̃ (we use S̃ = 23 × 4 and s = 12)
• Longer training period compared to high-mode preconditioner
• Transfer learning works with moderate retraining

28/42

Low-mode preconditioners

Gauge-equivariant construction

Now: Explicit gauge degrees of freedom on the coarse grid

B(y) = {•,•}
Br(y) = •

• Same coarse grid S̃ as before, but now φ̃(y) ∈ VG ⊗ ṼḠ

(VG = same local gauge space as on fine grid)
• Define a reference site Br(y) ⊂ B(y) on the fine grid
• Goal: Find restriction and prolongation layers such that φ̃(y)→ Ω̃(y)φ̃(y) under
gauge transformations Ω, where

Ω̃(y) = Ω(Br(y))

29/42

Restriction and prolongation layers

RL
PL

• Define RL/PL by pooling and subsampling layers

RL= SubSample◦Pool PL= Pool† ◦SubSample†

• Pooling layer
Poolφ(x) =
∑
q∈Q

Wq(x)Tqφ(x)
gauge-invariant weights
(now trainable)

with q = (p, Ū), path p, gauge field Ū , Tq = Tp(Ū), and Wq(x) ∈ End(VḠ) (spin matrices)
(in practice, we use a variety of differently smeared links Ū)

• Subsampling layer
SubSampleφ(y) = φ(Br(y))

30/42

Training setup: How to train RL/PL?
• Obvious idea: Train PL◦RL as an autoencoder that preserves the low modes

• Use cost function C = |PL◦RL vℓ − vℓ|2 with fine-grid vectors vℓ from near-null space
• Result: Did not perform well in multigrid preconditioner!

• What was missing?
• PL◦RL should also project high eigenmodes to zero
• Also encourage RL◦PL= 1 (so that P = PL◦RL is proper projection operator with P2 = P)

• Combined cost function

C = |PL◦RL vℓ − vℓ|2 + |PL◦RL vh − Pℓvh|2 + |RL◦PL vc − vc |2
• vh and vc are random vectors on fine and coarse grid, respectively
• Pℓ is blocked low-mode projector

Pℓ =W †W with W (y, x)† =
s∑

i=1

ūy
i (x)ê

†
i

• Still costly since we need near-null space vectors, but see Outlook

31/42

For gauge-equivariant coarse layers we need coarse gauge field
• Option 1: Plain coarse-gauge-field construction

• Let y and y ′ be neighboring points on the coarse grid with Br(y ′)− Br(y) = bµ̂
• The corresponding coarse-grid gauge field is then

Ũµ(y) = Uµ(Br(y)) · · ·Uµ(Br(y) + (b− 1)µ̂)

• Option 2: Galerkin coarse-gauge-field construction

Ũµ(y) = D̃(y, y +µ) with D̃ = RL◦DWC ◦ PL

• Both options transform correctly under gauge transformations (on coarse grid)

• Coarse-grid model for preconditioner M̃ similar to standard version but with coarse
gauge fields (instead of 1)

32/42

Multigrid preconditioners

Model setup

https://summerofhpc.prace-ri.eu/multithreading-
the-multigrid-solver-for-lattice-qcd

• Combine the high- and low-mode models to learn a model M that approximates the
short- and long-distance features of D−1

• First create a short-distance model that accepts a second input feature (initial guess)
• Model plays role of smoother in multigrid method
• Initial guess from long-distance model acting on coarse grid

33/42

https://summerofhpc.prace-ri.eu/multithreading-the-multigrid-solver-for-lattice-qcd
https://summerofhpc.prace-ri.eu/multithreading-the-multigrid-solver-for-lattice-qcd

Smoother

• Recall: Iterative solver finds a sequence of uk that approximately solve Du= b
(exact solution for large k)

• Assume we have a high-mode model Mh that approximates D−1

• Smoother maps the tuple (uk, b) to uk+1

uk+1 = (1−MhD)uk +Mh b

= uk +Mh(b− Duk)

(“ iterative relaxation approach” or “defect correction” with defect b− Du)

34/42

Smoother model setup and training strategy
• In smoother iteration

uk+1 = uk +Mh(b− Duk) (∗)
both D and high-mode model Mh can be represented by (L)PTC layers→ Train a model Ms to map (uk, b) to a uk+r (with r ∈ N+)
• Model must have two input features and one output feature
• Every smoother iteration (∗) corresponds to two (L)PTC layers
→ Construct Ms using 2r successive layers (here with up to one hop each)

• We use r = 2 since it performed better
than r = 1 in full multigrid model

• Cost function

C = |Ms(uk, b)− uk+r |2
For training, use random vectors uk, b and uk+r given by (∗)

35/42

Results for smoother

0 250 500 750 1000

Training Step

10−3

10−2

10−1

100

C
o
st

F
u

n
ct

io
n

0 250 500 750 1000

Training Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

It
er

a
ti

o
n

C
o
u

n
t

G
a
in

PTC, 4 layers (2→ 2→ 2→ 1), 1 hop

LPTC, 4 layers (2→ 2→ 2→ 1), 1 hop

• Iteration count gain from using Ms as preconditioner for Du= b with initial guess zero
• Performance is ∼ twice that of Mh with 1 layer/1 hop (since r = 2)
• Trained PTC model is used as initial weights for LPTC model (but no benefit from LPTC)

36/42

Combined two-level multigrid model (standard version)

• Duplicate the input feature and preserve one copy for smoother
• Restrict other copy to coarse grid and apply our coarse-grid model
• Prolongate result to fine grid
• Combine copy of initial feature and result of coarse-grid model to two input features
for smoother (= last four layers)

• Additional multigrid levels: Recursively replace coarse-grid layer by entire model
37/42

Combined two-level multigrid model (gauge-equivariant version)

• Duplicate the input feature and preserve one copy for smoother
• Restrict other copy to coarse grid and apply our coarse-grid model
• Prolongate result to fine grid
• Combine copy of initial feature and result of coarse-grid model to two input features
for smoother (= last four layers)

• Additional multigrid levels: Recursively replace coarse-grid layer by entire model
38/42

Training strategy for multigrid model

• First train layer weights of individual models

• Performance can be further improved by continued training with cost function

C = |M bh − uh|2 + |M bℓ − uℓ|2

• bh = DWCv1, uh = v1, bℓ = v2, uℓ = D−1
WCv2

• v1 and v2 are random vectors with |bh|= |bℓ|= 1

39/42

Results: Critical slowing down (CSD) for Q = 1

−0.564 −0.562 −0.560 −0.558

m

0

1000

2000

3000

4000

5000

It
er

a
ti

o
n

C
o
u

n
t

Unpreconditioned

Smoother-only model

Gauge-equivariant Galerkin model

−0.564 −0.562 −0.560 −0.558

m

0

50

100

150

200

250

300

350

400

It
er

a
ti

o
n

C
o
u

n
t

Original multi-grid model

Gauge-equivariant plain coarse-link model

Gauge-equivariant Galerkin model

• Iteration count of GMRES to 10−8 precision with and without preconditioner
• CSD eliminated by standard multigrid model and model with Galerkin gauge fields
• Small remnants of CSD with plain coarse gauge fields

40/42

Summary and outlook

Summary

• We reformulate the problem of constructing a (multigrid) preconditioner in the
language of gauge-equivariant neural networks.

• We find that such networks can learn the general paradigms of multigrid, significantly
reduce the iteration count of the outer solver, and eliminate critical slowing down.
• Both for standard and gauge-equivariant construction of restriction/prolongation.

• Transfer learning: If we change the gauge-field configuration or system parameters
like κ and β , only very little or no extra training is needed.

• We can implement communication avoidance naturally.

• We provide a flexible implementation interface (GPT) for experimentation and
further studies.

41/42

https://github.com/lehner/gpt

Outlook
• Setup (determination of spin matrices for restriction/prolongation layers) currently
still costly because near-null space is needed
• Future: Remove this cost by gauge-invariant models with these spin matrices as output
• Use energy density, topological-charge density, Wilson loops
• Useful for ensemble generation (where setup cost cannot be amortized)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t

0

1

2

3

4

5

6

7

z

y

x

|Tr
(
WW †) |

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t

0

1

2

3

4

5

6

7

z

y

x

qtop after 40× 0.1 stout smearing

−80

−60

−40

−20

0

Figure by Daniel Knüttel

• Apply our methods to Dirac operators whose spectrum encircles the origin (e.g., DWF)
• Benchmarking on large lattices and comparison to state-of-the-art multigrid
(larger volumes should lead to larger iteration count gain)

42/42

Backup slides

Results for full multigrid model (standard version)

0 20 40

Training Step

2× 10−2

3× 10−2

4× 10−2

6× 10−2

C
o
st

F
u
n
ct

io
n

0 20 40

Training Step

0

10

20

30

40

50

It
er

a
ti

o
n

C
o
u
n
t

G
a
in

MG model

MG model, different conf.

• Performance greatly improved over individual high-/low-mode models
• Continued training converges very quickly
• Transfer learning works again after brief retraining

More details on the pooling layer

RL
PL

• Gauge field Ū in Tp(Ū) needs to satisfy

Ūµ(x)→ Ω(x)Ūµ(x)Ω†(x + µ̂)

In practice, we use a variety of differently smeared links
• Complete set of paths P transports every element of B(y) exactly once to Br(y)
→ |P|= |B(y)|

• φ̃ = RLφ yields φ̃(y)→ Ω̃(y)φ̃(y) under gauge transformations φ(x)→ Ω(x)φ(x)

More details
• Need prescription for q in

Poolφ(x) =
∑
q∈Q

Wq(x)Tqφ(x)

with q = (p, Ū), path p, gauge field Ū , Tq = Tp(Ū)
• For fixed i, we define paths p(i j) that connect all elements of B(y), enumerated by

j = 1, . . . , |B(y)|, to the reference site Br(y). For different i we use different
prescriptions for the paths p(i j), and then use the couples qi j = (p(i j), Ū (i)).

• We define four different prescriptions p̂1, . . . , p̂4 (depth first, breadth first,
lexicographic, reverse lexicographic)

and set p(i j) = p(j)i mod 4

More details

• Concretely, we use 9 different gauge fields Ū (i) with i = 1, . . . , 9. We construct the Ū (i)

by applying i(i − 1)/2 steps of ρ = 0.1 stout smearing to the unsmeared gauge fields
U . Smearing radius proportional to

p
i(i − 1).

• Hence we have 9 different spin-matrix fields W1(x), . . . , W9(x).
• In practice, it is sufficient to use the same weights in PL and RL so that PL= RL†.
Found no benefits from general case.

• Coarse-grid size 23 × 4

	Introduction
	Parallel-transport convolution layers
	Wilson-clover Dirac operator
	High-mode preconditioners
	Low-mode preconditioners
	Standard construction
	Gauge-equivariant construction

	Multigrid preconditioners
	Summary and outlook
	Appendix
	Backup slides

