Chimera baryon spectrum in the Sp(4) gauge theory

C.-J. David Lin

National Yang Ming Chiao Tung University

Field-theory team seminar, RIKEN R-CCS, Kobe 04/03/2024

The collaboration

Jong-Wan Lee

Ed Bennett, Biagio Lucini, Maurizio Piai

Deog Ki Hong

Ho Hsiao, C.-J. David Lin

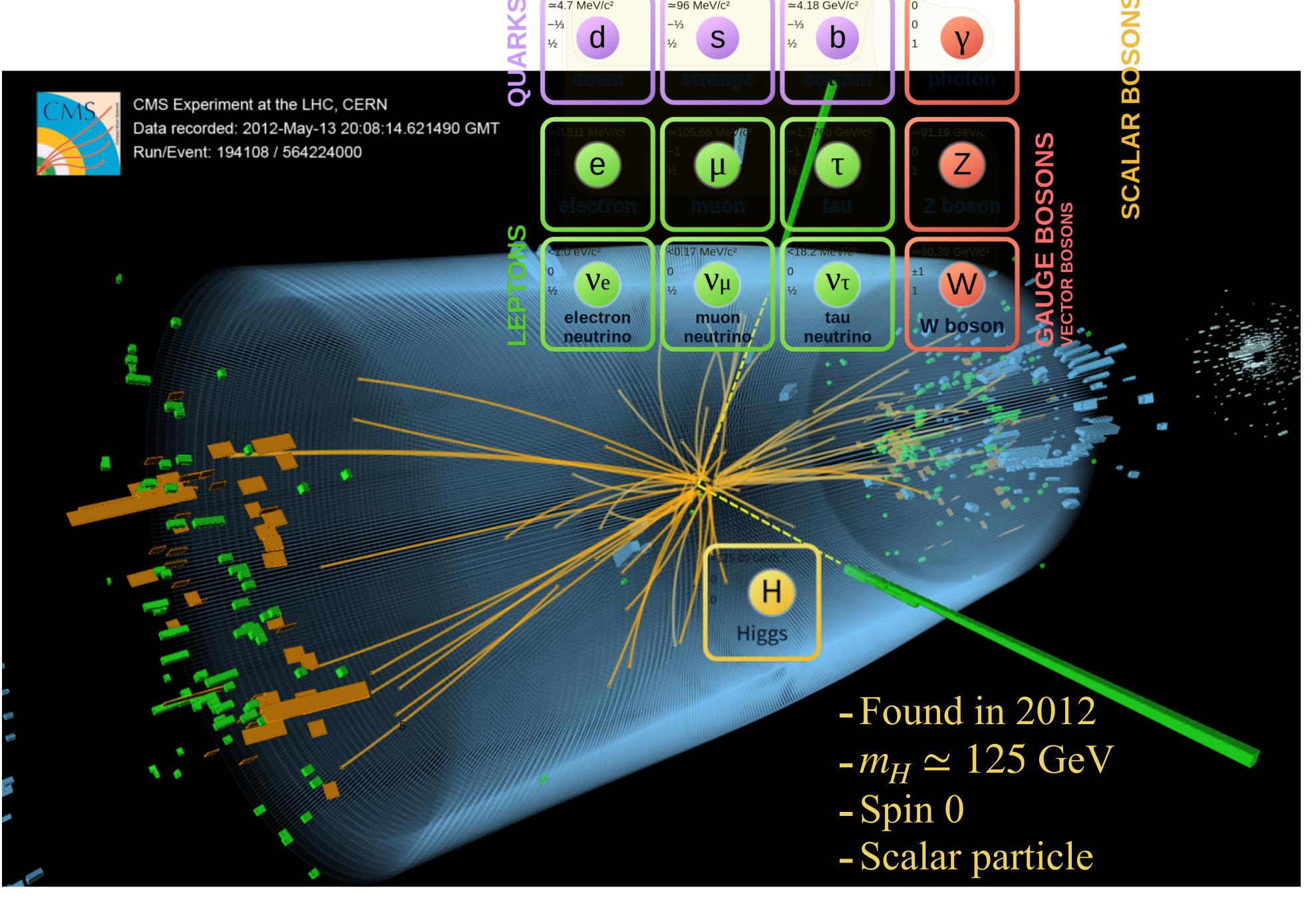
Outline

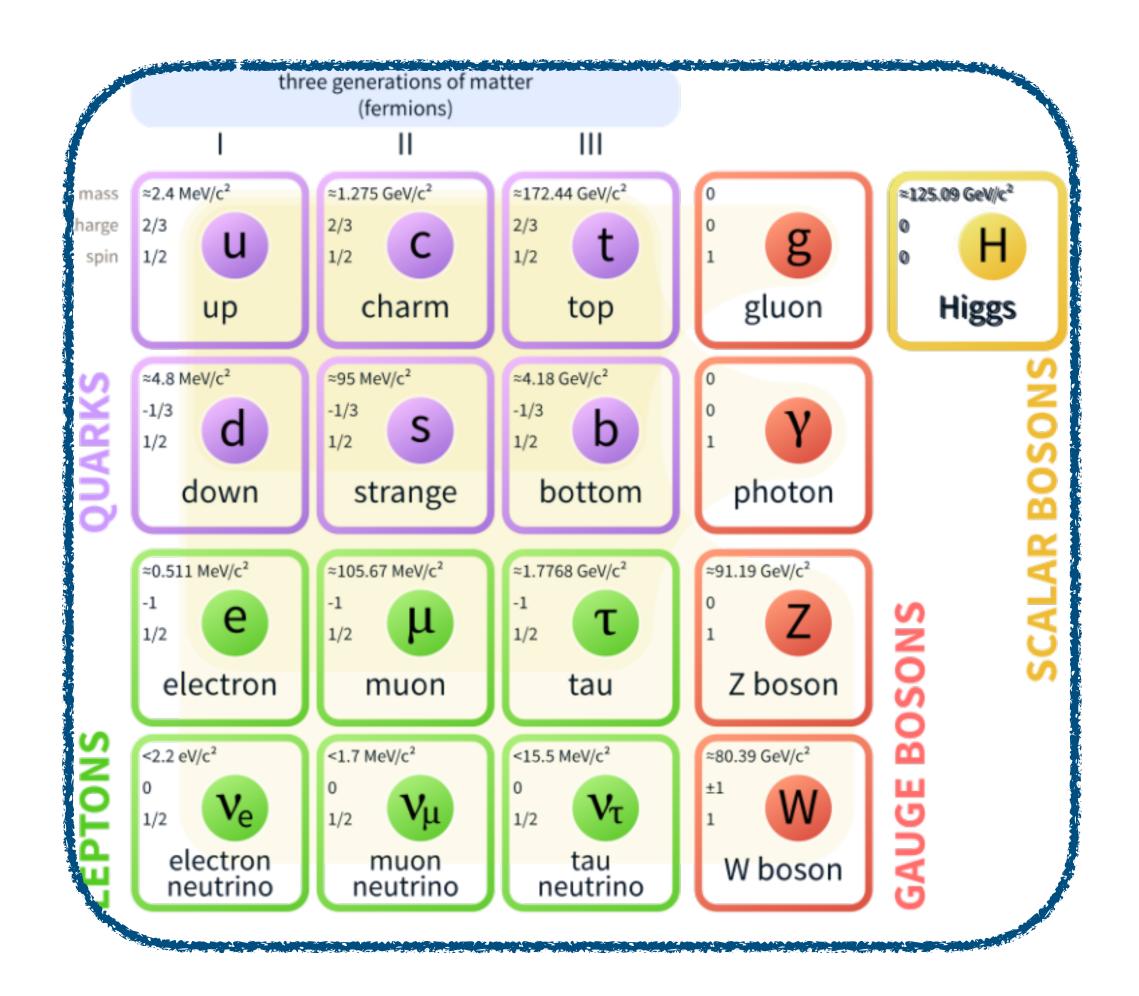
• Motivation: why composite Higgs?

• Lattice studies: our works and the chimera baryon

Conclusion and outlook

Why composite Higgs?

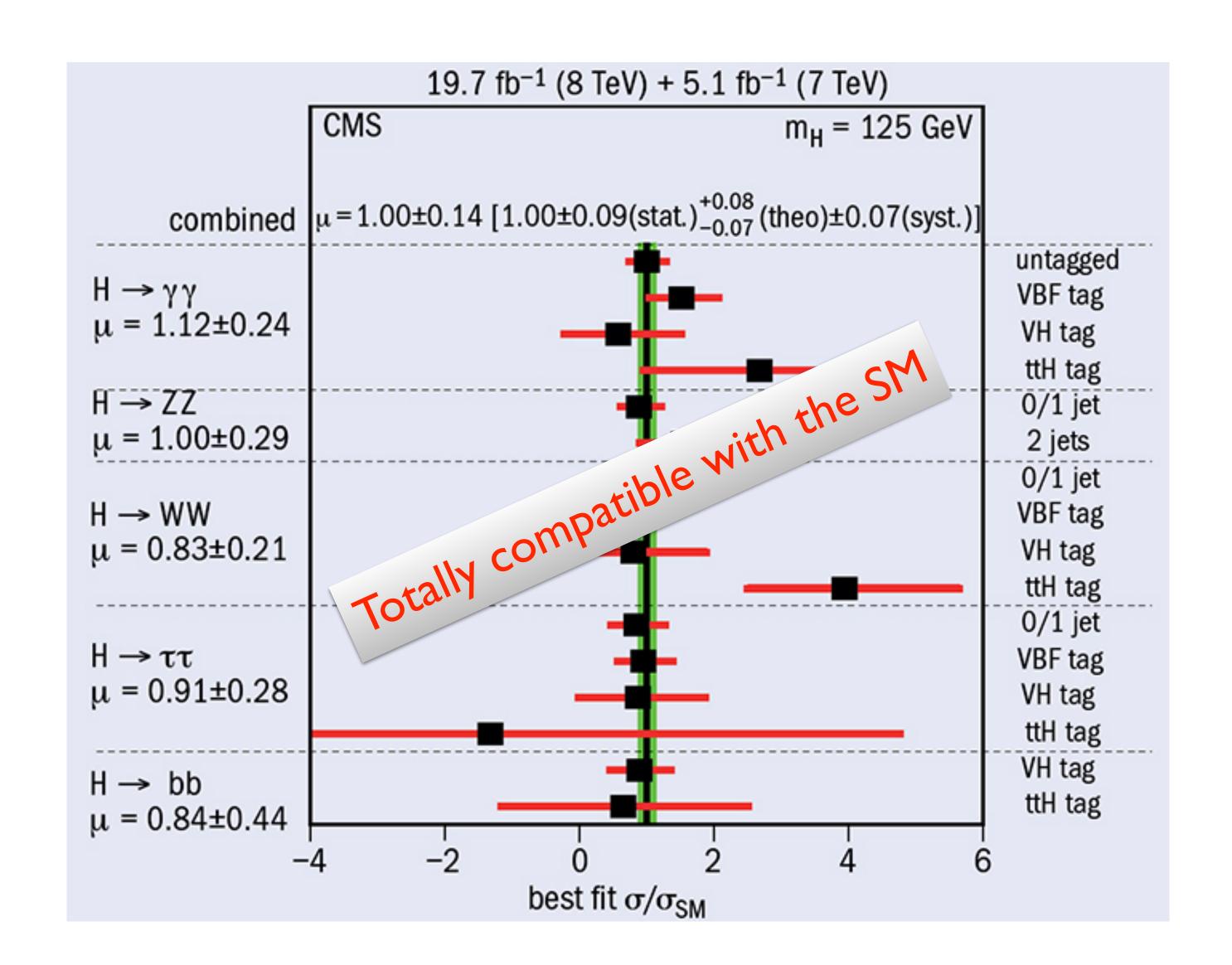




triviality of the scalar sector

-> SM is an EFT

On the other hand...

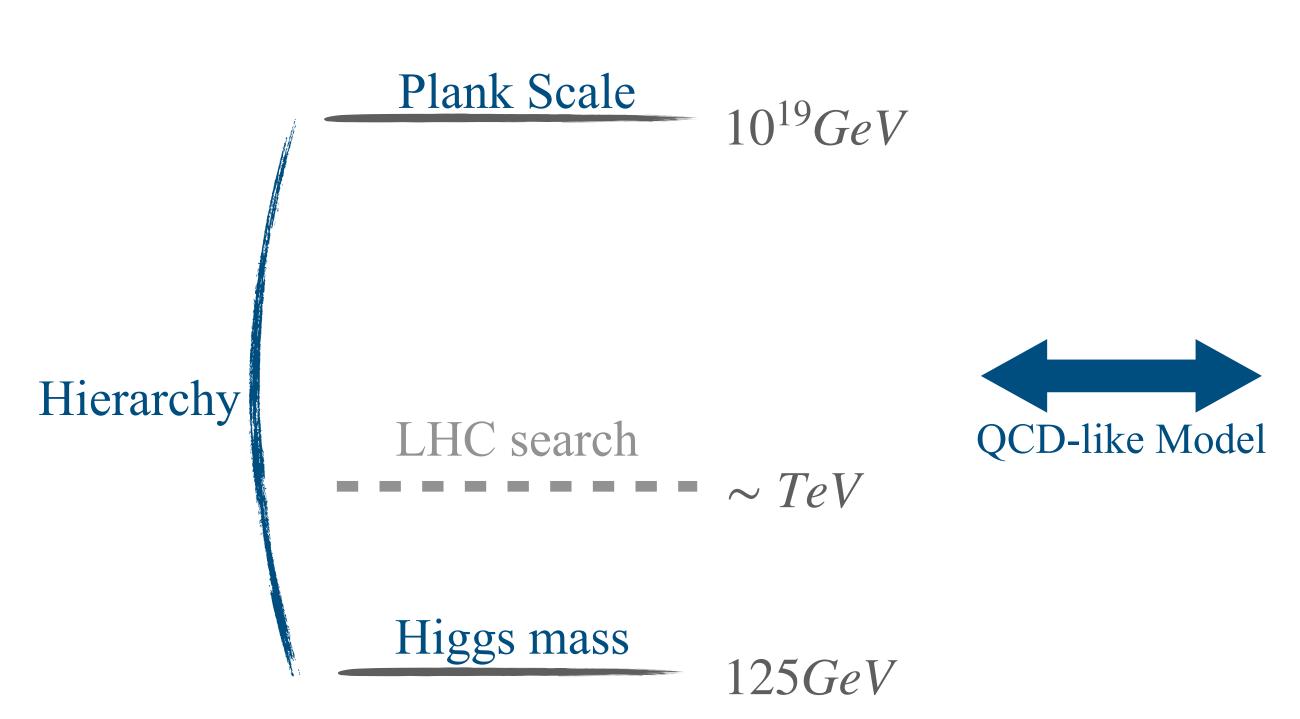


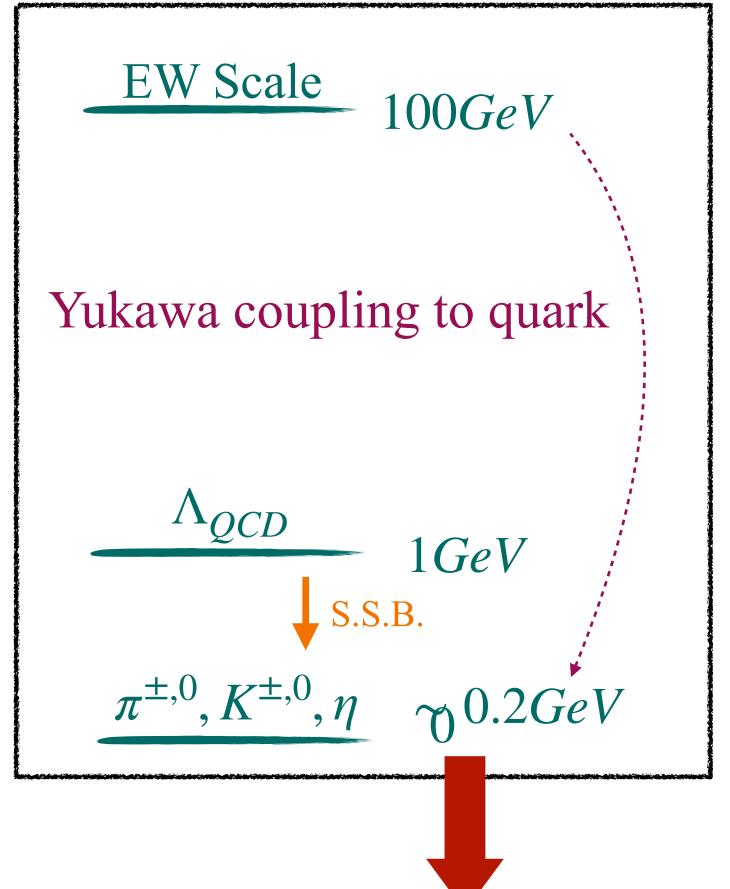
Searched up here ~10 TeV

Higgs boson ~125 GeV

Why is the Higgs boson so light?

Lesson from QCD





Naturally light pseudo Nambu-Goldstone bosons

Composite Higgs models: Hierarchy of scales



Higgs boson as a PNGB

Composite Higgs models: Generic features

D.B. Kaplan, H. Georgi, M. Dugan, S. Dimopoulos,... circa 1985

- Global symmetry G broken to H
- Standard model global $G_W \subset H$
- The Higgs boson $\in G/H$
 - \rightarrow c.f., technicolour where Higgs $\in H$
- Higgs mass generated via vacuum misalignment $v << f\sin\langle\theta\rangle, \ f = |\overrightarrow{F}| \sim \Lambda_{HC}$

$$v << f \sin \langle \theta \rangle, f = |\overrightarrow{F}| \sim \Lambda_{HC}$$

- Top-quark mass generated via partial compositeness
 - ➤ Spin-1/2 bound states mixing with top quark

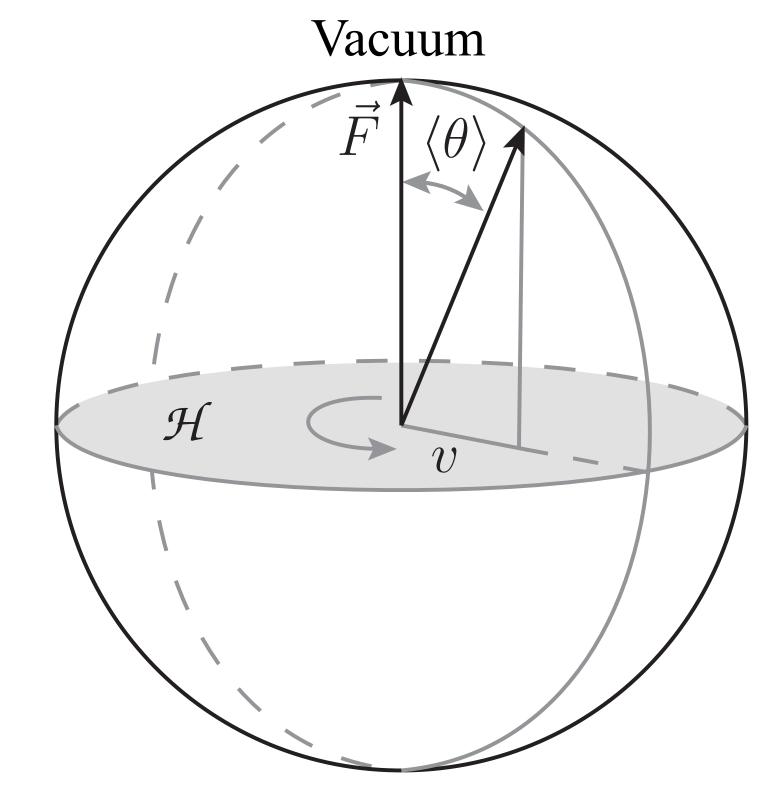


Figure from G. Panico and A. Wulzer, 1506.01961

D.B. Kaplan, 1991

UV completion of composite Higgs models

*Two-component relativistic fermions

Name	Gauge group	ψ	χ	Baryon type	
M1	SO(7)	$5 imes \mathbf{F}$	$6 imes \mathbf{Spin}$	$\psi \chi \chi$	
M2	SO(9)	$5 imes \mathbf{F}$	$6 imes \mathbf{Spin}$	$\psi \chi \chi$	
M3	SO(7)	$5 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$	
M4	SO(9)	$5 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$	
M5	Sp(4)	$5 imes \mathbf{A}_2$	$6 imes \mathbf{F}$	$\psi \chi \chi$	
M6	SU(4)	$5 imes \mathbf{A}_2$	$3 imes (\mathbf{F}, \overline{\mathbf{F}})$	$\psi \chi \chi$	
M7	SO(10)	$5 imes \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$\psi\chi\chi$	
M8	Sp(4)	$4 imes \mathbf{F}$	$6 imes {f A}_2$	$\psi\psi\chi$	
M9	SO(11)	$4 \times \text{Spin}$	$6 \times \mathbf{F}$	$\psi\psi\chi$	
M10	SO(10)	The minir Barnard et al, a	$\psi\psi\chi$		
M11	SU(4)	$4 \times (\mathbf{F}, \mathbf{F})$	$6 \times A_2$	$\psi\psi\chi$	
M12	SU(5)	$4 imes (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes({f A}_2,{\overline{f A}_2})$	$\psi\psi\chi,\psi\chi\chi$	

D. Franzosi and G. Ferretti, arXiv:1905.08273

Fermion representations and global symmetry

M. Peskin, 1980

For N_f flavours of Dirac fermions

Gauge group representation

Global symmetry breaking pattern

Complex

 $SU(N_f) \times SU(N_f) \rightarrow SU(N_f)$

Real

 $SU(2N_f) \rightarrow SO(2N_f)$

Pseudo-real

$$SU(2N_f) \rightarrow Sp(2N_f)$$

Our choice of model

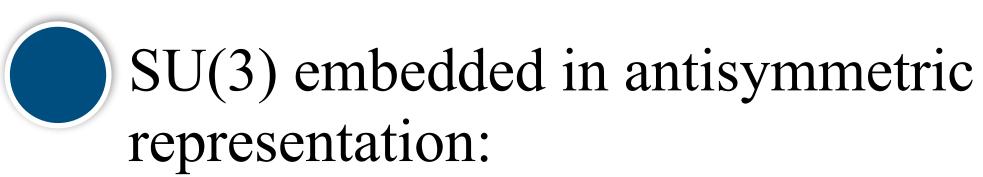
- Sp(4) gauge theory with 2F+3AS <u>Dirac fermions</u>
- Breaking pattern:

4F+6AS 2-component Weyl fermions

$$G/H = SU(4) \times SU(6) / Sp(4) \times SO(6)$$

Enhanced global symmetry due to the (pseudo-) reality

- $\int SU(4)/Sp(4)$ gives 5 goldstone bosons.
 - ▶ 4: SM Higgs doublet
 - 1: made heavy in model building



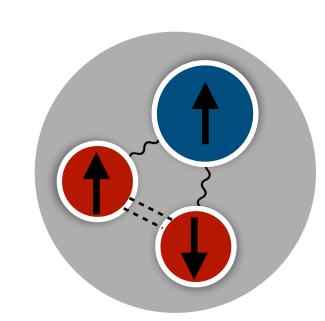
$$SU(6) \rightarrow SO(6) \supset SU(3)$$

$$\longrightarrow QCD colour SU(3)$$

The low-lying chimera baryon states

Interpolating operators

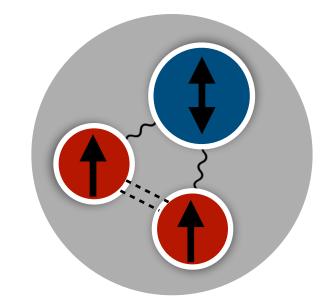
-
$$\Lambda$$
 type: $\mathcal{O}_{CB,\gamma^5} = (\bar{\psi}^{1a}\gamma^5\psi^{2b}) \Omega_{bc}\chi^{kca}$



$$(J,R) = (1/2,5)$$

*top partner

 $- \Sigma \text{ type: } \mathcal{O}_{CB,\gamma^{\mu}} = \left(\bar{\psi}^{1\,a}\gamma^{\mu}\psi^{2\,b}\right) \Omega_{bc}\chi^{k\,ca}$



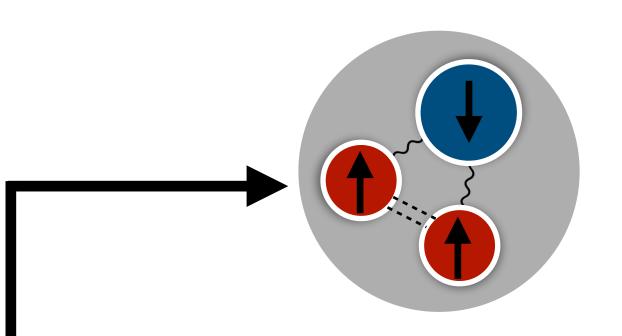
Spin projection

a, b, c: hypercolour

 Ω : 4 × 4 symplectic matrix

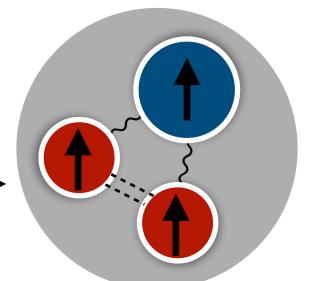
J: spin

R: irreducible rep. of the fundamental sector



$$\Sigma$$
: $(J, R) = (1/2, 10)$

*top partner



$$\Sigma^*$$
: $(J, R) = (3/2, 10)$

 $m_{\rm top} \sim 1/m_{\rm CB}$

Lattice studies

Major works from our collaboration

Quenched fundamental mesons

JHEP 03 (2018) 185, arXiv:1712.04220

• $N_f = 2$ dynamical fundamental mesons

JHEP 12 (2019) 053, arXiv:1909.12662

Quenched fundamental and antisymmetric mesons

Phys. Rev. D 101 (2020) 7, 074516, arXiv:1912.06505

Quenched glueballs

Phys. Rev. D 103 (2021) 5, 054509, arXiv:2010.15781

- General features of $N_f = 2$ fundamental and $n_f = 3$ antisymmetric dynamical hyperquarks Phys. Rev. D 106 (2022) 1, 014501, arXiv:2202.05516
- Quenched chimera baryons

Submitted to Phys. Rev. D, arXiv:2311.14663

Quenched chimera baryons

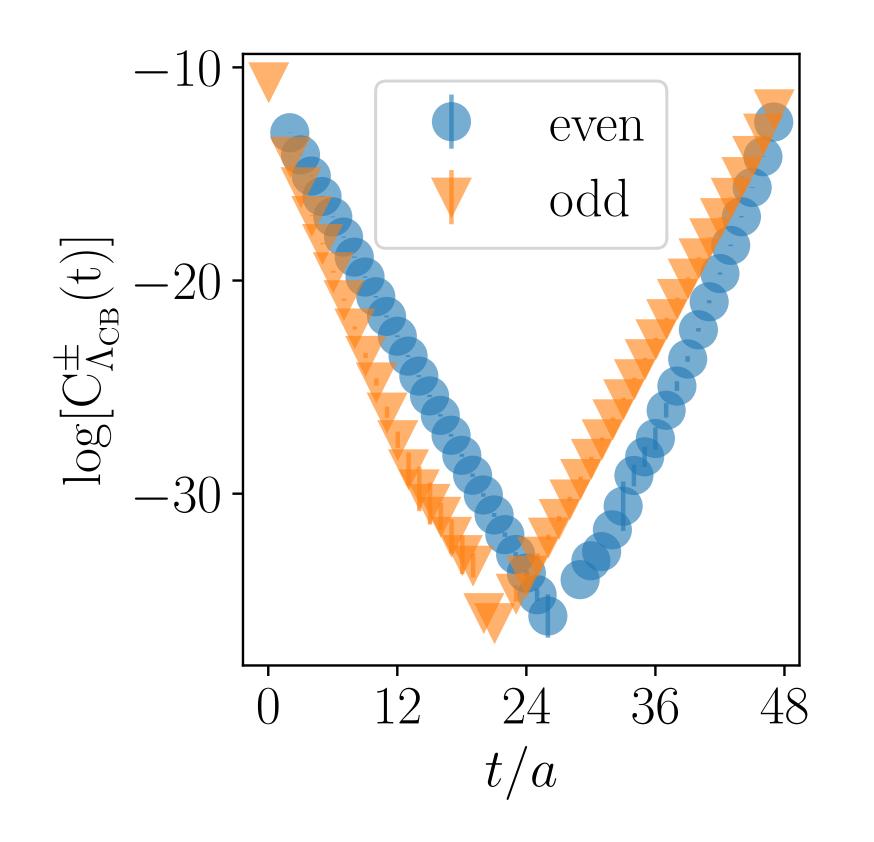
- Scan of parameter space
- Wilson plaquette and Wilson fermion actions

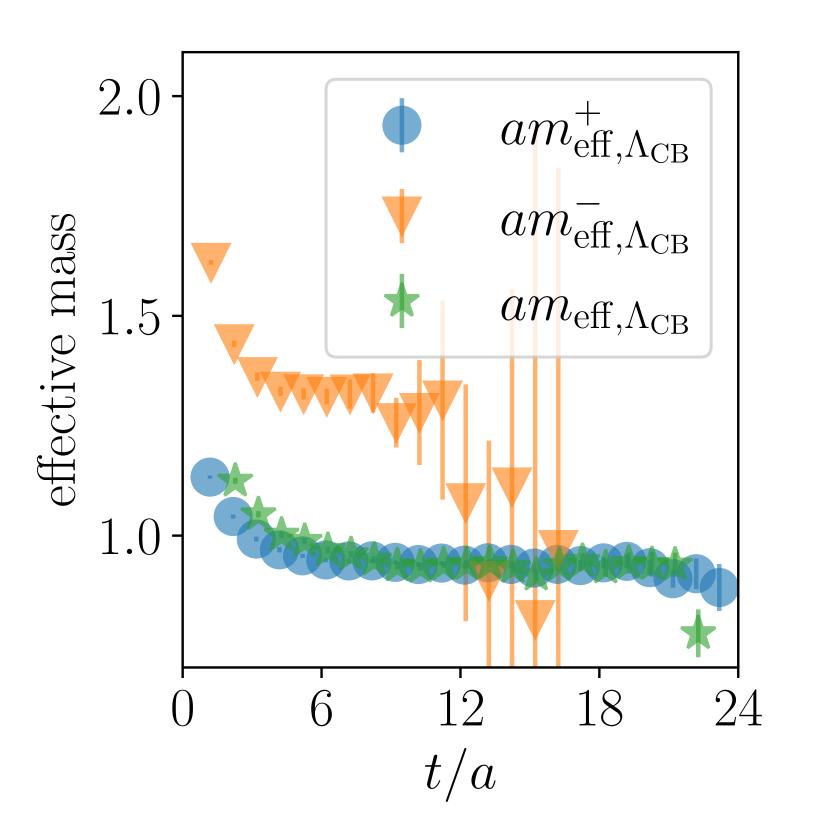
Ensemble	β	$N_t \times N_s^3$	$\langle P \rangle$	w_0/a
QB1	7.62	48×24^3	0.6018898(94)	1.448(3)
QB2	7.7	60×48^{3}	0.6088000(35)	1.6070(19)
QB3	7.85	60×48^{3}	0.6203809(28)	1.944(3)
QB4	8.0	60×48^{3}	0.6307425(27)	2.3149(12)
QB5	8.2	60×48^{3}	0.6432302(25)	2.8812(21)

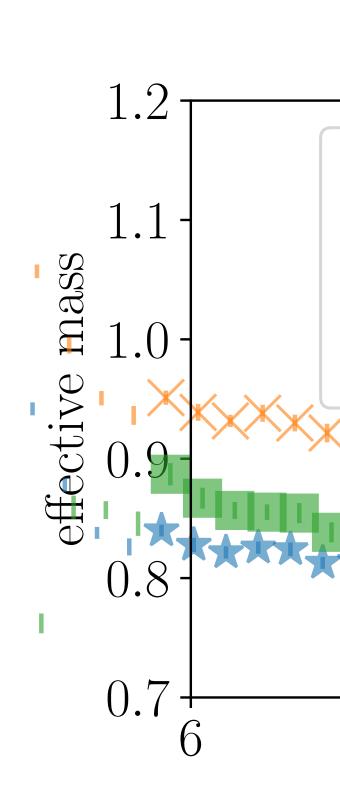
Parity partners: who is lighter?

$$C_{\text{CB}}(t) \xrightarrow{0 \ll t \ll T} P_{+} \left[c_{+}e^{-m^{+}t} - c_{-}e^{-m^{-}(T-t)} \right] + P_{-} \left[c_{-}e^{-m^{-}t} - c_{+}e^{-m^{+}(T-t)} \right]$$

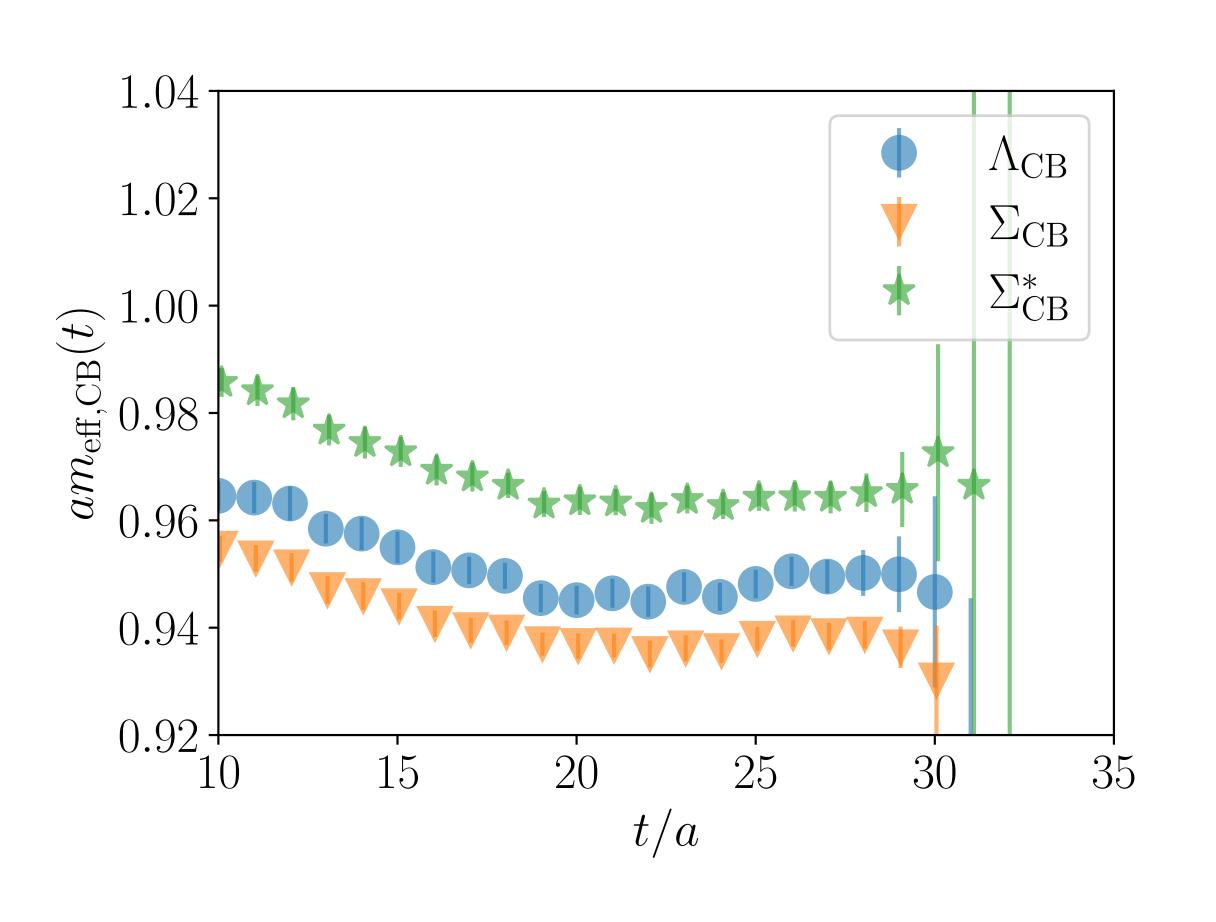
$$C_{\text{CB}}^{\pm}(t) \equiv P_{\pm} C_{\text{CB}}(t)$$

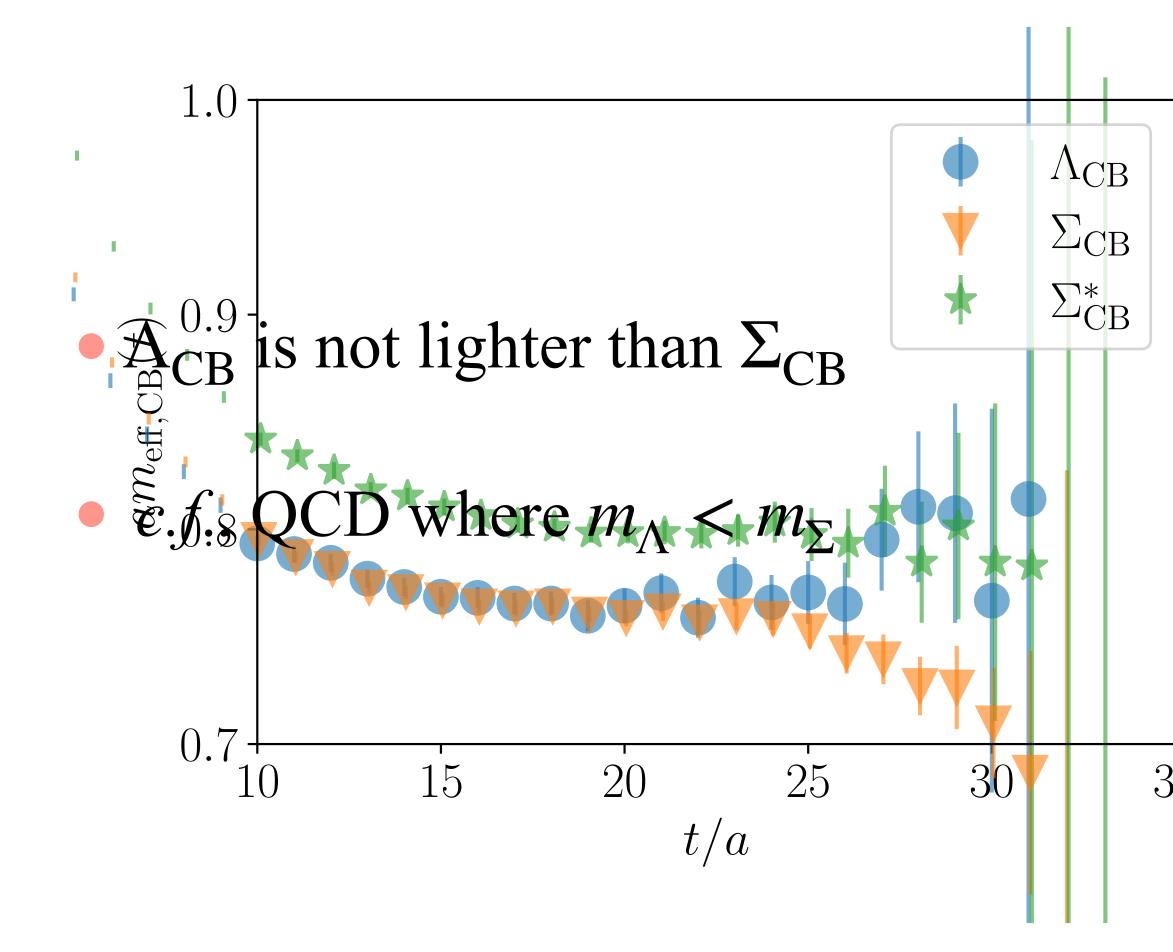




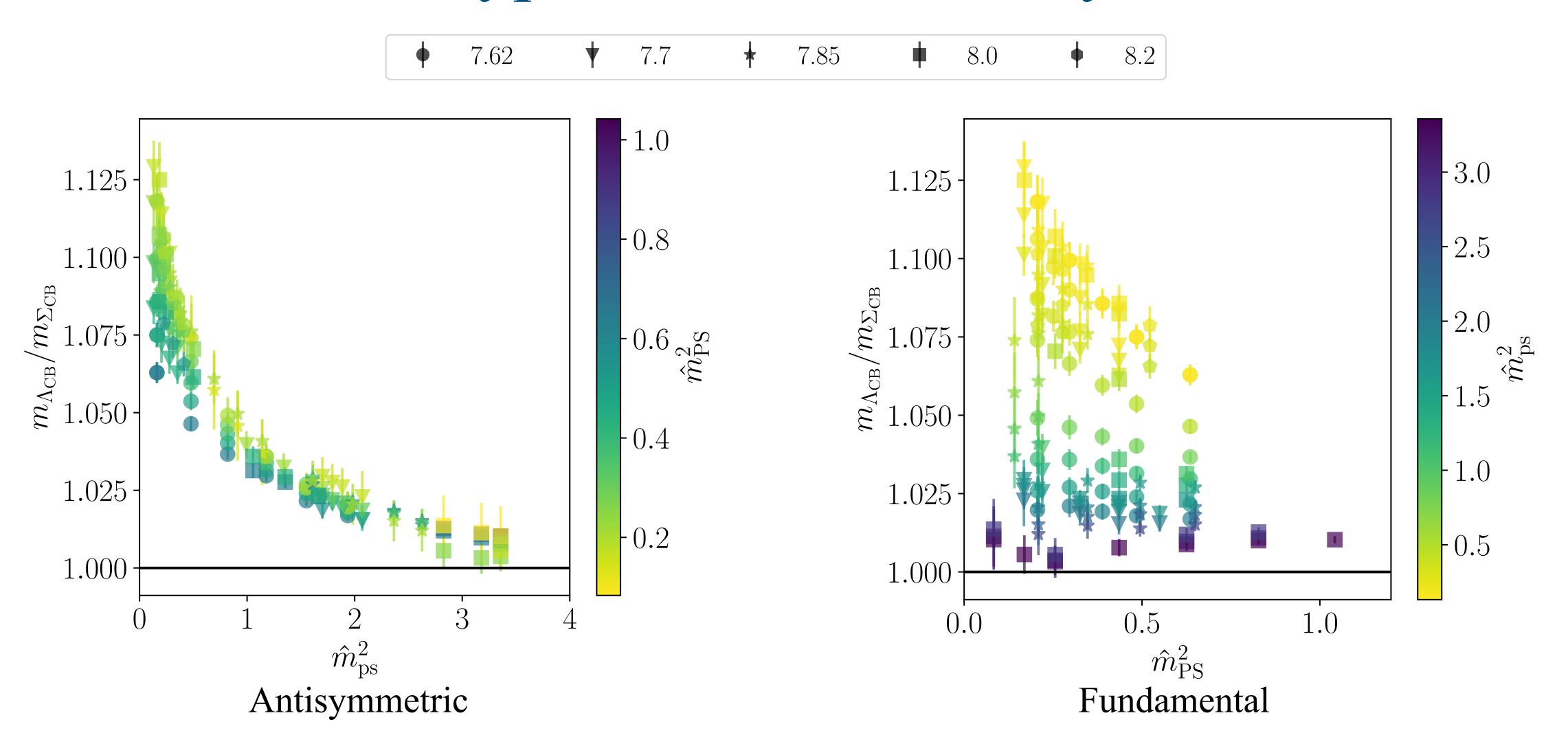


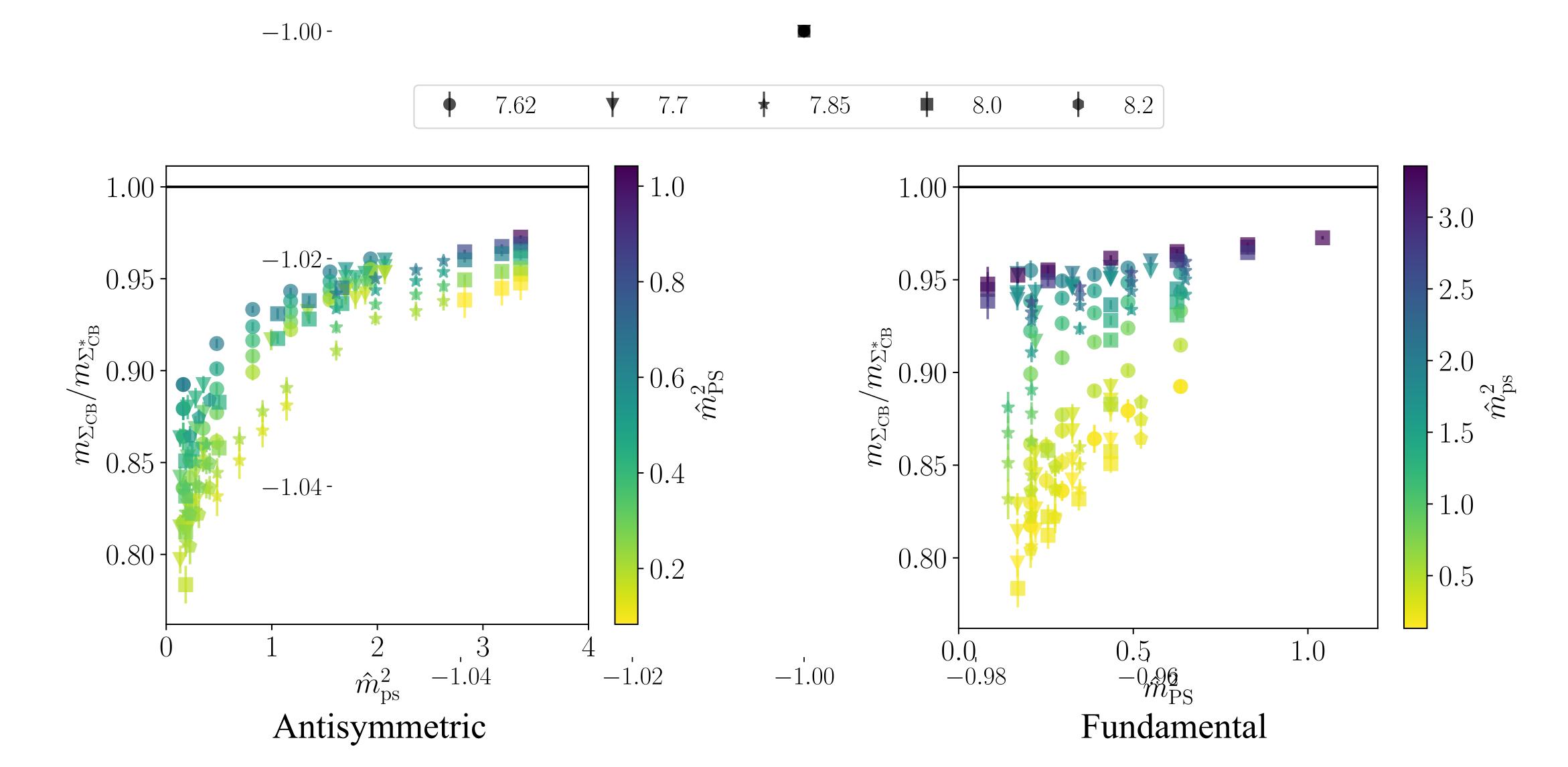
Typical mass hierarchy





Typical mass hierarchy



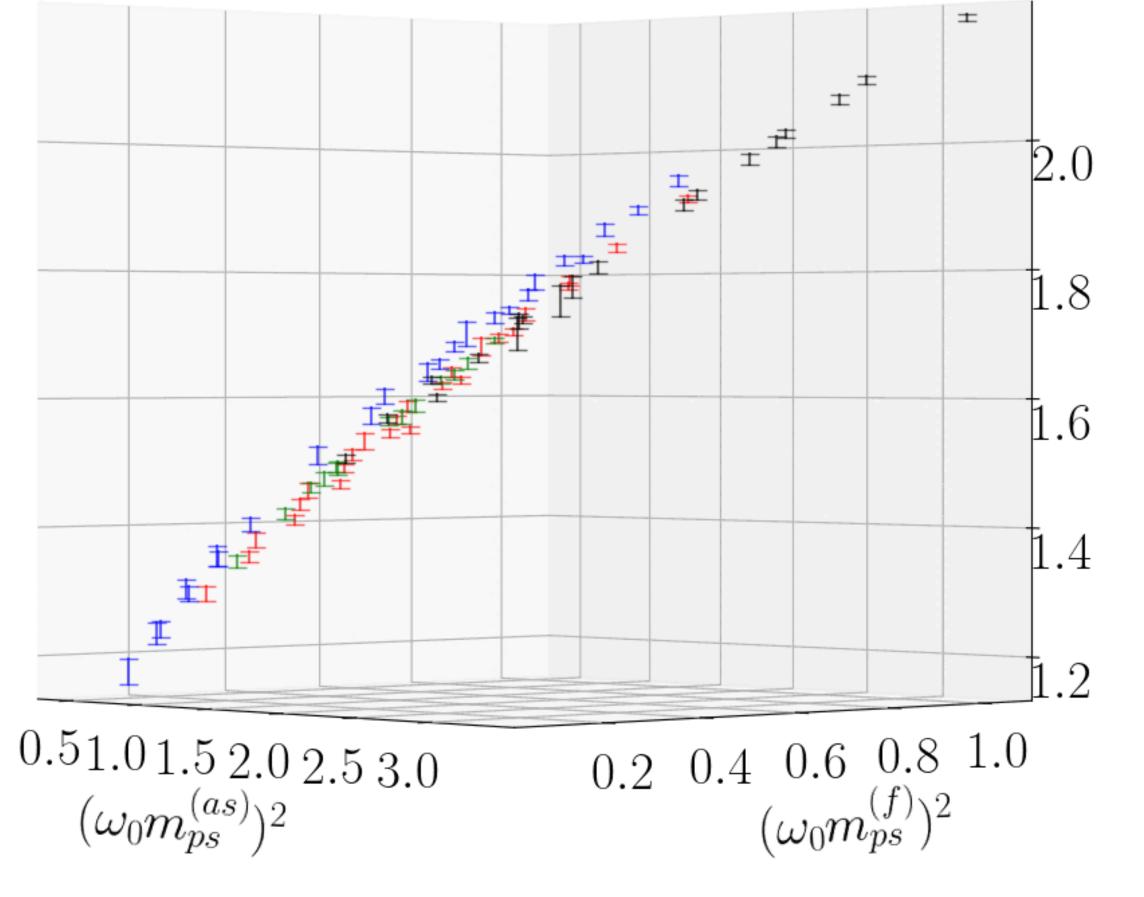


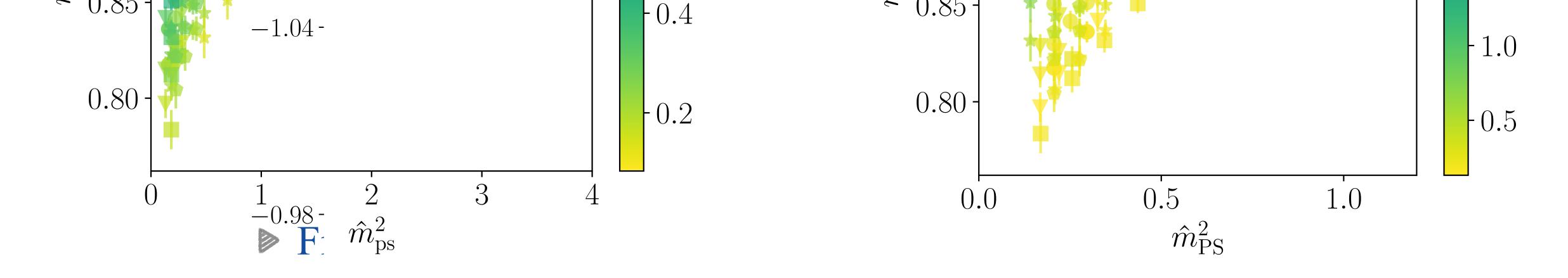
Hyperquark mass dependence

Fit to analytic terms in baryon chiral perturbation theory

$$\begin{split} m_{\text{CB}} &= m_{CB}^{\chi} + F_2 \hat{m}_{\text{PS}}^2 + A_1 \hat{m}_{\text{ps}}^2 + L_1 \hat{a} \\ &+ F_3 \hat{m}_{\text{PS}}^3 + A_3 \hat{m}_{\text{ps}}^3 + L_{2F} \hat{a} \hat{m}_{\text{PS}}^2 + L_{2A} \hat{a} \hat{m}_{\text{ps}}^2 \\ &+ F_4 \hat{m}_{\text{PS}}^4 + A_4 \hat{m}_{\text{ps}}^4 + C_4 \hat{m}_{\text{PS}}^2 \hat{m}_{\text{ps}}^2 \end{split}$$

- Cannot obtain stable fits
- Removing heavy-mass data does not help





 m_{ζ}

-1.00 -

Fit Ansatz	$\hat{m}_{\mathrm{CB}}^{\chi}$	$\hat{m}_{ ext{PS}}^2$	$\hat{m}_{ m ps}^2$	$\hat{m}_{ ext{PS}}^3$	$\hat{m}_{ m ps}^3$	$\hat{m}_{ ext{PS}}^4$	$\hat{m}_{ m ps}^4$	$ \hat{m}_{ ext{PS}}^2\hat{m}_{ ext{ps}}^2 $	\hat{a}	$\hat{m}_{\mathrm{PS}}^2 \hat{a}$	$\hat{m}_{ m ps}^2 \hat{a}$
M2	√	√	\checkmark	_	_	_	-	_	\checkmark	_	_
M3	√	√	\checkmark	√	√	_	-	_	√	√	\checkmark
MF4	$-1\sqrt{0}2$ -	√	\checkmark	\checkmark	√	√	_	_	\checkmark	\checkmark	\checkmark
MA4	√	√	\checkmark	√	√	_	√	_	√	√	\checkmark
MC4	√	\checkmark	\checkmark	\checkmark	√	_	_	√	\checkmark	\checkmark	\checkmark

$$\hat{m}_{ ext{PS,cut}}$$

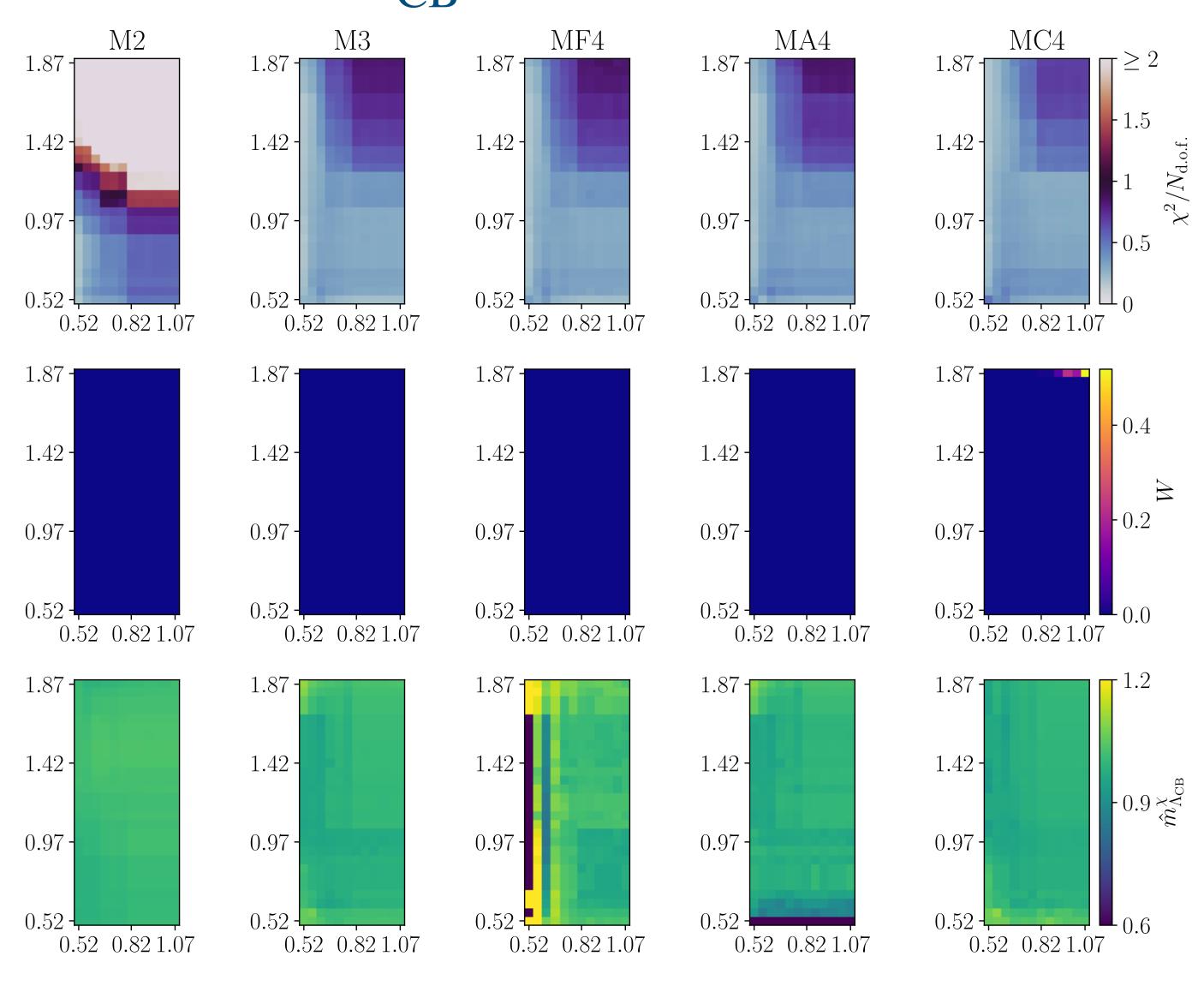
• $263 \times 5 = 1315$ analysis procedures

of removed data points

- For each procedure, compute AIC $\equiv \chi^2 + 2k + 2N_{\rm cut}$ # of fit parameters
- Probability weight $W = \frac{1}{\mathcal{N}} \exp \left[-\frac{1}{2} AIC \right]$

Fit results for $m_{\Lambda_{\text{CB}}}$

Polynomial terms in baryon chiral perturbation theory



 $\hat{m}_{ ext{PS,cut}}$

Fit results for $m_{\Sigma_{CB}}$

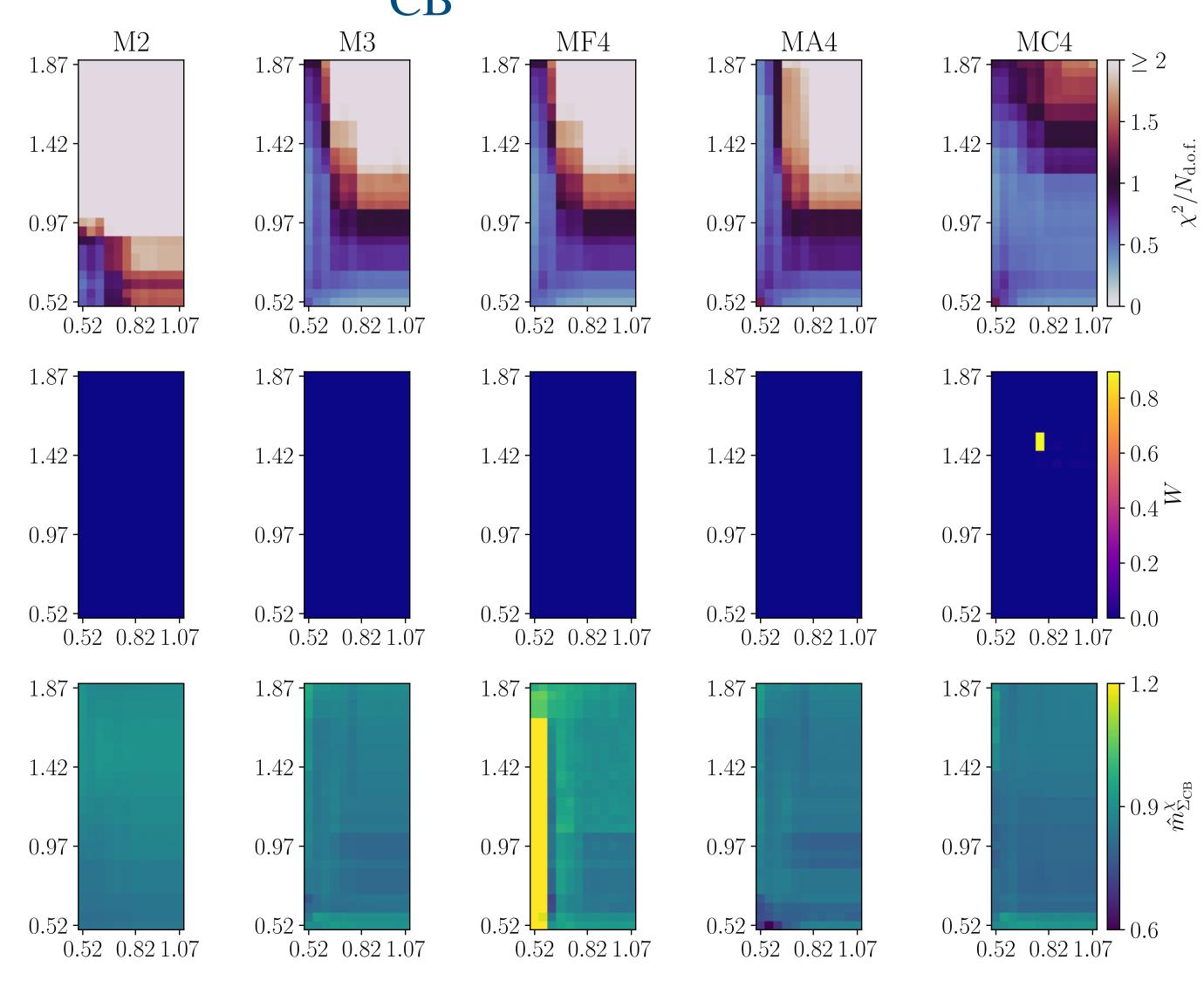
Polynomial terms in baryon chiral perturbation theory

$$m_{\text{CB}} = m_{\text{CB}}^{\chi} + F_{2}\hat{m}_{\text{PS}}^{2} + A_{1}\hat{m}_{\text{ps}}^{2} + L_{1}\hat{a} \qquad \text{M2}$$

$$M3 - - - - + F_{3}\hat{m}_{\text{PS}}^{3} + A_{3}\hat{m}_{\text{ps}}^{3} + L_{2F}\hat{a}\hat{m}_{\text{PS}}^{2} + L_{2A}\hat{a}\hat{m}_{\text{ps}}^{2}$$

$$+ F_{4}\hat{m}_{\text{PS}}^{4} + A_{4}\hat{m}_{\text{ps}}^{4} + C_{4}\hat{m}_{\text{PS}}^{2}\hat{m}_{\text{ps}}^{2}$$

$$MF4 \qquad MA4 \qquad M4C$$



Fit results for $m_{\Sigma_{CB}^*}$

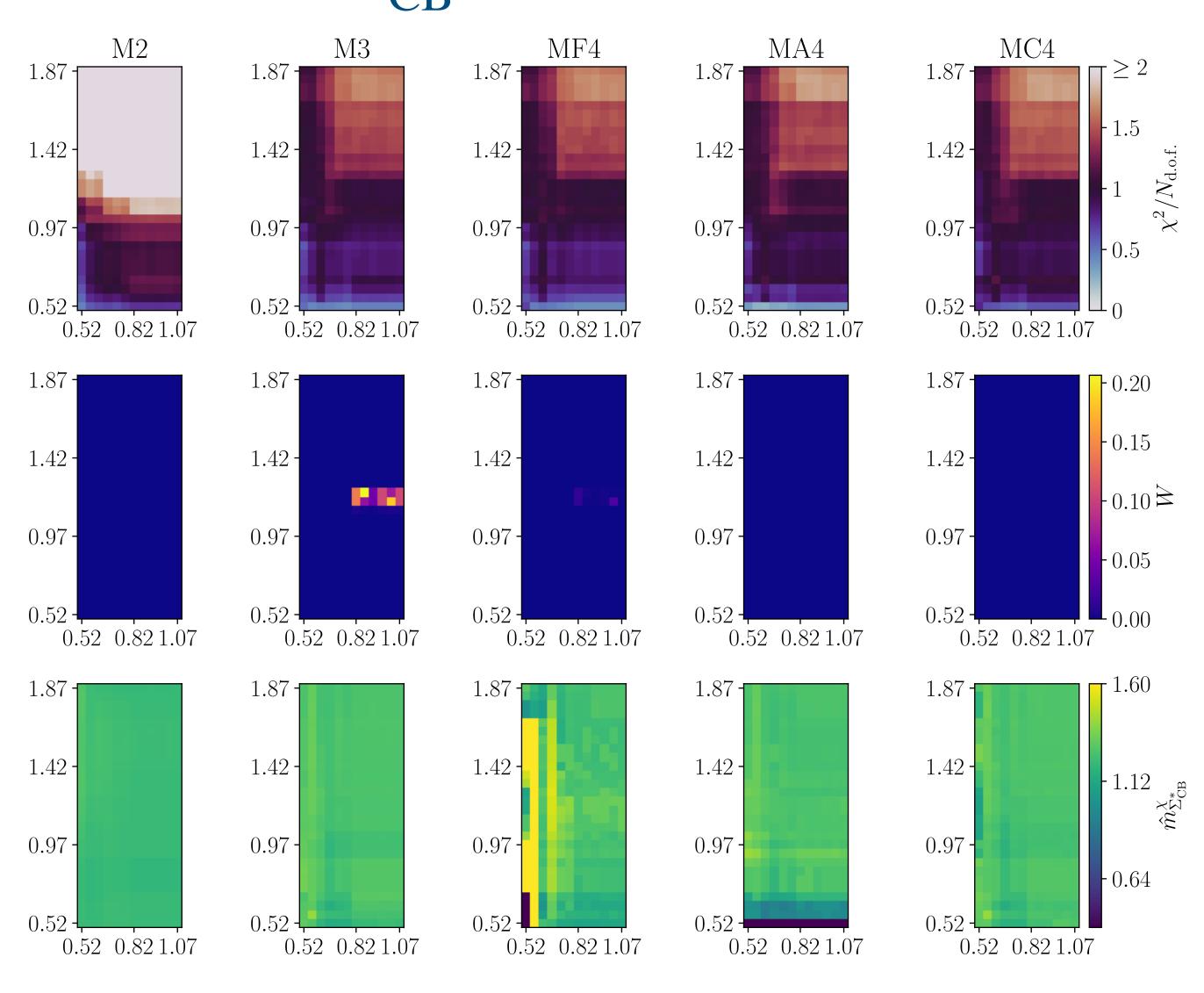
Polynomial terms in baryon chiral perturbation theory

$$m_{\text{CB}} = m_{\text{CB}}^{\chi} + F_2 \hat{m}_{\text{PS}}^2 + A_1 \hat{m}_{\text{ps}}^2 + L_1 \hat{a} \qquad \text{M2}$$

$$M3 - - - - + F_3 \hat{m}_{\text{PS}}^3 + A_3 \hat{m}_{\text{ps}}^3 + L_{2F} \hat{a} \hat{m}_{\text{PS}}^2 + L_{2A} \hat{a} \hat{m}_{\text{ps}}^2$$

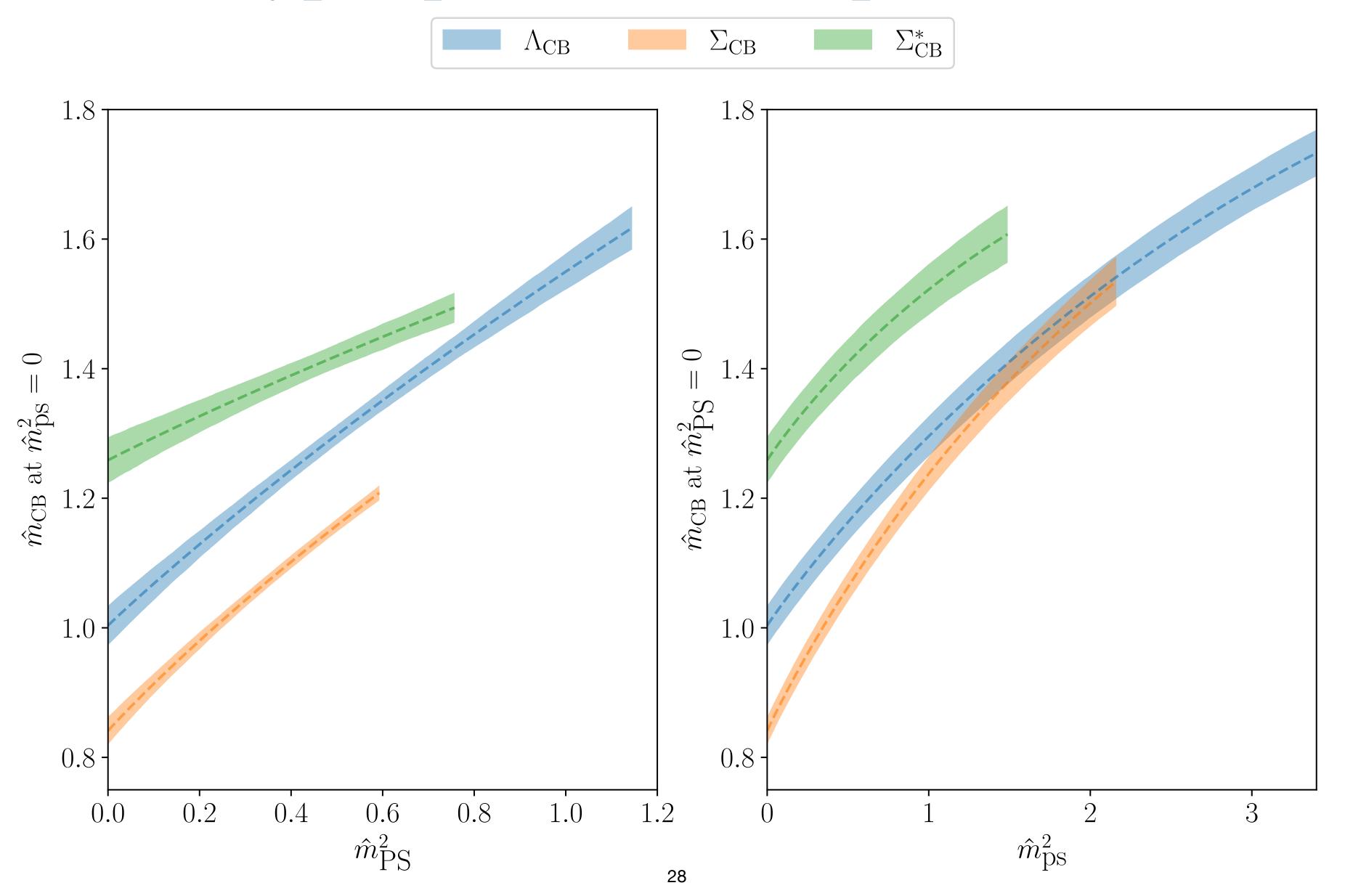
$$+ F_4 \hat{m}_{\text{PS}}^4 + A_4 \hat{m}_{\text{ps}}^4 + C_4 \hat{m}_{\text{PS}}^2 \hat{m}_{\text{ps}}^2$$

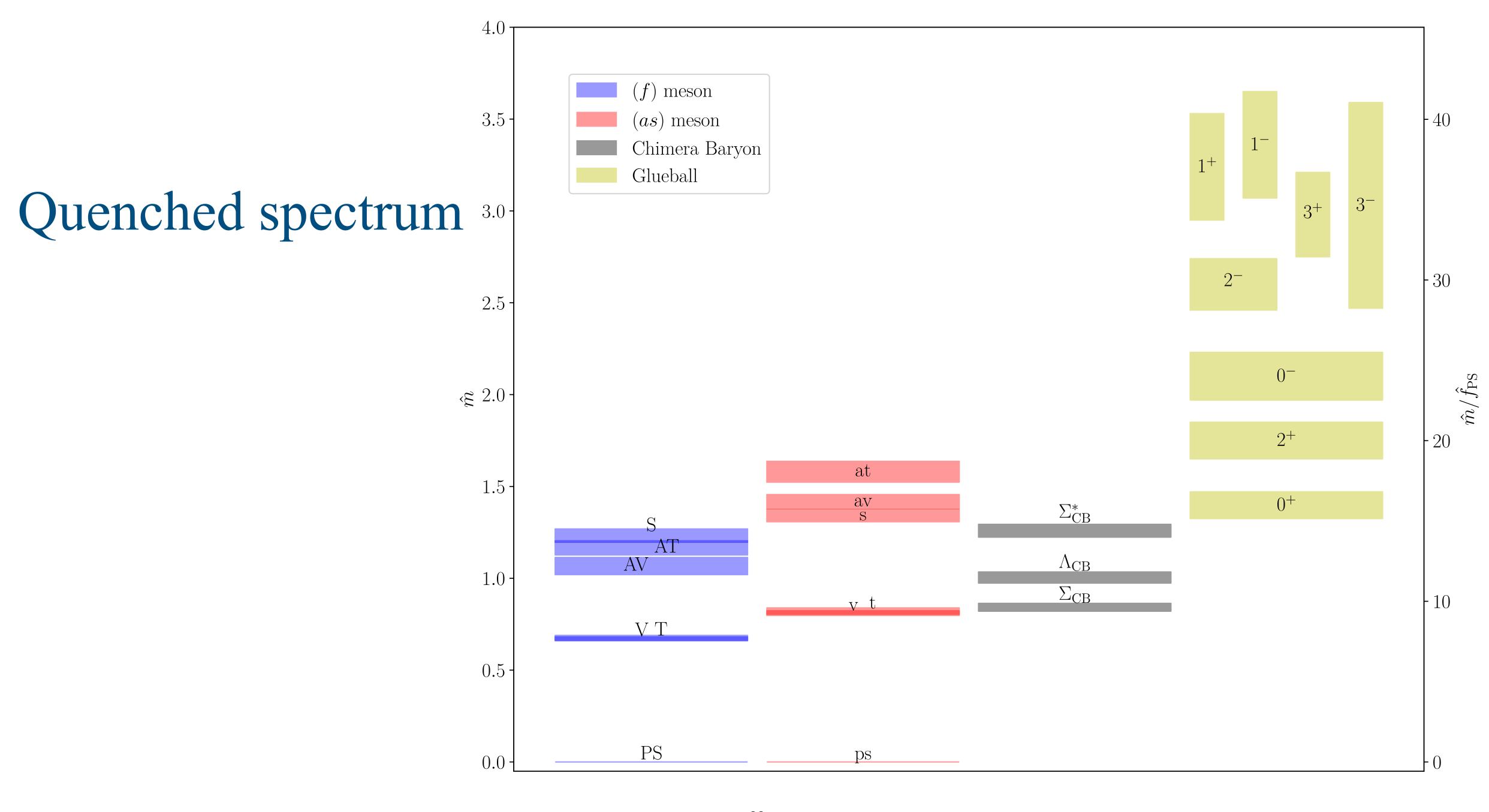
$$MF4 \qquad \text{MA4} \qquad \text{M4C}$$



 $\hat{m}_{ ext{PS,cut}}$

Hyperquark-mass dependence





Conclusion and outlook

- First lattice study of the chimera baryon masses in the Sp(4) gauge theory
 - Key difference from QCD: Λ_{CB} may not be lighter than Σ_{CB}
- Fully-dynamical simulations in progress
- Mixing strength with the top quark, also large anomalous dimension
- Also in the Sp(4) gauge theory: the Higgs potential

Backup slides

Gauge group repn and global coset

M. Peskin, 1980

Real:
$$(T^a)^* = (T^a)^T = -S^{-1}T^aS$$
, $SS^* = 1$.

Pseudoreal:
$$(T^a)^* = (T^a)^T = -S^{-1}T^aS$$
, $SS^* = -1$.

$$\Psi = \begin{pmatrix} \Psi_L \\ \Psi_R \end{pmatrix} \equiv \begin{pmatrix} \psi_{\alpha} \\ \bar{\chi}^{\dot{\beta}} \end{pmatrix} = \begin{pmatrix} \psi_{\alpha} \\ (\chi^{\beta})^* \end{pmatrix}, \quad \overline{\Psi}\Psi = \epsilon^{\alpha\beta} \chi^{ia}_{\beta} \psi_{\alpha ia} + \text{h.c.}$$

gauge repn condensate global symmetry

Complex
$$\epsilon^{\alpha\beta}\psi_{\beta}^{i(\bar{r})}\psi_{\alpha i}^{(r)} + \text{h.c.}$$
 $SU(N_f) \times SU(N_f) \to SU(N_f)$

Real
$$\epsilon^{\alpha\beta}\psi^{ia}_{\beta}\psi^{b}_{\alpha i}S^{-1}_{ab}$$
 $SU(2N_f) \rightarrow SO(2N_f)$

Pseudoreal
$$\epsilon^{\alpha\beta}\psi^{ia}_{\beta}\psi^{jb}_{\alpha}S^{-1}_{ab}E_{ij}$$
 $SU(2N_f) \rightarrow Sp(2N_f)$

The top partner and the top mass

$$\Psi_{ij}^{\alpha} = (\psi_i \chi^{\alpha} \psi_j), \ \Psi_{ij}^{c,\alpha} = (\psi_i \chi^{c,\alpha} \psi_j)$$

$$\mathcal{L}^{\text{mix}} = -\frac{1}{2} \left\{ \lambda_1 M_* \left(\frac{M_*}{\Lambda} \right)^{d_{\Psi} - 5/2} \Psi_1^T \tilde{C} t^c + \lambda_2 M_* \left(\frac{M_*}{\Lambda} \right)^{d_{\Psi} c - 5/2} t^T \tilde{C} \Psi_2^c + \right. \\ + \lambda M_* \left[\Psi_1^T \tilde{C} \Psi_1^c + \Psi_2^T \tilde{C} \Psi_2^c \right] + y v_W \left[\Psi_1^T \tilde{C} \Psi_2^c + \Psi_2^T \tilde{C} \Psi_1^c \right] \right\} + \text{h.c.}$$

$$m_t^2 \simeq rac{\lambda_1^2 \lambda_2^2 y^2 \left(rac{M_*}{\Lambda}
ight)^{2 d_\Psi + 2 d_\Psi c - 10} \, v_W^2 M_*^4}{m_1^2 m_2^2} \quad ext{where} \quad egin{align*} m_1^2 &\simeq \left(\lambda^2 + \lambda_1^2 \left(rac{M_*}{\Lambda}
ight)^{2 d_\Psi - 5}
ight) M_*^2 \,, \ m_2^2 &\simeq \left(\lambda^2 + \lambda_2^2 \left(rac{M_*}{\Lambda}
ight)^{2 d_\Psi c - 5}
ight) M_*^2 \,. \end{aligned}$$

- \star Need $d_{\Psi}=d_{\Psi^c}<5/2$, ie, large anomalous dimension
 - → IR conformality with more fermion flavours?
- These couplings can be important for Higgs potential
 - Four-fermion operators

Composite Higgs with Sp(4) gauge group

J. Barnard, T. Gherghetta, T.S. Ray, 2014

Field	Sp(4) gauge	SU(4) global			
A_{μ}	10	1			
ψ	4	4			

- Two Dirac fermions in the fundamental repn
- \star The Higss doublet in the coset SU(4)/Sp(4)
- \star The SM $SU(2)_L \times SU(2)_R$ in the unbroken global Sp(4)