The pion–nucleon sigma term from lattice QCD

Rajan Gupta¹, Sungwoo Park², Martin Hoferichter³, Emanuelle Mereghetti¹, Boram Yoon¹, Tanmoy Bhattacharya¹

¹ Los Alamos National Laboratory, NM

² Lawrence Livermore National Laboratory, CA

³ University of Bern

LA-UR-21-31181

Reference: PRL 127 (2021) 242002

RIKEN CCS, Kobe, March 27, 2024

$\sigma_{\pi N}$: pion-nucleon sigma term

$$\sigma_{\pi N} \equiv m_{ud} g_S^{u+d} \equiv m_{ud} \langle N \big| \bar{u}u + \bar{d}d \big| N \rangle$$

- Fundamental parameter of QCD that quantifies the amount of the nucleon mass generated by *u* and *d* quarks.
- g_S^2 : enters in cross-section of dark matter with nucleons
- Important input in the search of BSM physics

Three methods to calculate $\sigma_{\pi N}$

$$\sigma_{\pi N} \equiv m_{ud} g_S^{u+d} \equiv m_{ud} \langle N | \bar{u}u + \bar{d}d | N \rangle$$

- Lattice: direct calculation of $\langle N | \bar{u}u + \bar{d}d | N \rangle$
- Lattice: Feynman-Hellmann relation $\left(\frac{g_S^q}{Z_S} = \frac{\partial M_N}{\partial m_q}\right)$
- Phenomenology: connection to πN -scattering amplitude via Cheng-Dashen low-energy theorem

All discussion here assumes isospin symmetry. Effect ~1 MeV

Status of results for $\sigma_{\pi N}$ as of Dec 2020 • $\sigma_{\pi N} \equiv m_{ud} g_S^{u+d} \equiv m_{ud} \langle N | \bar{u}u + \bar{d}d | N \rangle$ in isospin limit

Tension between lattice and phenomenology

- Lattice results favor ~40 MeV
- Phenomenology favors ~60 MeV

 $-\sigma_{\pi N}$ reduced by 3.1(5) MeV for between M_{π^+} and M_{π^0}

New lattice results post FLAG 2019:

BMW (arXiv:2007.03319) $\sigma_{\pi N} = 37.4(5.1)$ MeV (FH) ETM (PRD **102**, 054517) $\sigma_{\pi N} = 41.6(3.8)$ MeV (Direct method) RQCD (PRD **108**, 034512) $\sigma_{\pi N} = 42.8(4.7)$ MeV (Direct method)

Euclidean Field Theory via Wick rotation: $t \rightarrow i\tau$

- Converts a QFT into a statistical mechanics system
- Expectation values via path integral $\langle O \rangle = \sum_i O e^{-A}$
- $e^{iE_i t} \rightarrow e^{-E_i \tau}$: Spectrum $\{E_i\}$ unchanged under $t \rightarrow i\tau$
- Fixed time matrix elements, (*j*|0|*i*), are the same in Minkowski and Euclidean Time

Challenges (complex phase/sign problem)

- Response functions
- Real time dynamics
- Finite chemical potential

Lattice QCD (100⁴ 4D grid)

Wick rotate the QCD path integral to Euclidean time: $t \rightarrow i\tau$

Links:
$$U_{x,x+\mu} = e^{-iga\lambda_c A_{\mu}^c} (\in SU(3) \text{ matrices})$$

Sites: $\psi(x)$
 $S = S_g + S_f = \frac{\beta}{N} Re Tr \sum_{x,\mu} (1 - U_p) + S_f$
 $S_f = \sum_f \overline{\psi} D_f \psi \equiv \sum_{x,\mu} \overline{\psi}_x (U_{x+\mu} + m_f) \psi_{x+\mu}$

- Rules of Grassman integration:
 - $\int d\psi = \int d\overline{\psi} = 0$
 - $\int d\psi \psi = \int d\overline{\psi} \,\overline{\psi} = 1$
- Integrate out the fermions: $S = S_g + \sum_f \text{Ln det}(D_f[U])$
- Generate gauge configurations using Boltzmann weight = e^{-S} (ensemble of configurations is a stochastic representation of the QCD vacuum)

Correlation functions: only links $U_{\mu}(x)$ and quark propagators *P* needed

Nucleon 2-point function

- $= \int d\overline{\psi} d\psi_f \, dU \, e^{-S_f} \{ \overline{\mathbb{N}}(\mathbf{x}, \tau) \, \mathbb{N}(0, 0) \}$
- $\mathbb{N} = \epsilon^{abc} [q_1^{aT}(x)C\gamma_5 q_2^b(x)] q_1^c(x)$
- Perform Wick contractions using:

$$\Rightarrow : \psi_x^{i,a} \,\overline{\psi}_y^{j,b} := [D^{-1}]_{x;y}^{i,a;j,b} = P$$

- → P = Quark propagator obtained using Krylov solvers for $D P = \eta$
- Correlation functions: tie together quark propagators with operators in all possible ways to get quark line diagrams

Quark propagator \rightarrow nucleon 2pt

LQCD is QCD (a Quantum Field Theory) discretized on a lattice. Wick rotation turns QFT into a stochastic computational problem. Simulations of LQCD provide

- The quantum vacuum of QCD
 >ensembles of gauge configurations
- Hadrons & interactions are input via external probes
 ➢N-point correlation functions
- Get quantum wavefunctions of hadronic states Matrix elements: $\langle N(p_f) | \mathcal{O}(Q^2) | N(p_i) \rangle$

Lattice Methodology is well established

Direct method: Nucleon charges g_A , g_T , and g_S obtained from ME of local quark bilinear operators $\bar{q}_i \Gamma q_j$ within ground state nucleons: $\langle N | \bar{q}_i \Gamma q_j | N \rangle$

Calculate "connected" and "disconnected" 3-point correlation functions

Spectral decomposition of Γ^3 Three-point function for matrix elements of axial current \mathcal{A}_{μ} $\langle \Omega | \mathbb{N} \, \mathcal{A}_{\mu}(t) \overline{\mathbb{N}}(0) | \Omega \rangle$ Insert $T = e^{-H\Delta t} \sum_i |n_i\rangle \langle n_i|$ at each Δt with $T |n_i\rangle \equiv e^{-H\Delta t} |n_i\rangle = e^{-E_i\Delta t} |n_i\rangle$ $\langle \Omega | \mathbb{N}(\tau) \cdots e^{-H\Delta t} \sum_{i} |n_{i}\rangle \langle n_{j} | \mathcal{A}_{\mu} e^{-H\Delta t} \sum_{i} |n_{i}\rangle \langle n_{i} | \cdots \overline{\mathbb{N}}(0) | \Omega \rangle$ $\sum_{i,j} \langle \Omega | \mathbb{N} | n_j \rangle e^{-E_j(\tau-t)} \langle n_j | A_\mu | n_i \rangle e^{-E_i t} \langle n_i | \overline{\mathbb{N}} | \Omega \rangle$ $\underbrace{A_j^*}_{A_j^*} \qquad \text{Matrix Elements} \qquad A_i$

 E_0, E_1, \ldots energies of the ground & excited states A_0, A_1, \ldots corresponding amplitudes

Main issues in lattice calculation

- 1. Statistical signal
- 2. Chiral-Continuum-Finite-Volume (CCFV) extrapolation
- 3. Excited state contributions (ESC)
 - a) Towers of multihadron states starting at ~1200 MeV
 - b) Which $N\pi$, $N\pi\pi$, ... states contribute to a given ME?
 - c) Fits using the spectral decomposition to connected plus disconnected contributions keeping up to 3 states

Signal-to-noise falls as $e^{-(M_N-1.5M_\pi)\tau}$ in nucleon n-point functions

Excited states in correlation functions

Challenge: To get the matrix elements in the ground state of hadrons (nucleons), the contributions of all excited states have to be removed.

- All states with same quantum numbers as the nucleon are allowed
- Which excited states make significant contributions to a given matrix element?
- What are their energies in a finite box?

Spectral decomposition of 3-point function

$$C^{3pt} = \langle 0|\mathcal{O}|0\rangle |A_0|^2 e^{-M_0\tau} \times \left[1 + \frac{\langle 1|\mathcal{O}|1\rangle}{\langle 0|\mathcal{O}|0\rangle} \frac{|A_1|^2}{|A_0|^2} e^{-\Delta M_1\tau} + \frac{\langle 2|\mathcal{O}|2\rangle}{\langle 0|\mathcal{O}|0\rangle} \frac{|A_2|^2}{|A_0|^2} e^{-(\Delta M_2 + \Delta M_1)\tau} + \frac{\langle 0|\mathcal{O}|1\rangle}{\langle 0|\mathcal{O}|0\rangle} \frac{|A_1|}{|A_0|^2} e^{-\Delta M_1\frac{\tau}{2}} \times 2\cosh\left(\Delta M_1(t - \frac{\tau}{2})\right) + (\cdots)$$

- The transition ME are large in some cases!
- Mass gaps, ΔM_i , of $N\pi$, $N\pi\pi$, ... are small!
- Need A_0, M_i

PRL 127 (2021) 242002 . Also See S. Park, et al., 2401.00072

Physical M_{π} Ensemble: $a \approx 0.09 fm$, $M_{\pi} = 135 MeV$, $M_{\pi}L = 3.9$

Excited-state contribution is large at realizable $\tau \approx 1.5$ fm

 χ PT analysis shows $N(\vec{k})\pi(-\vec{k})$ and $N(0)\pi(\vec{k})\pi(-\vec{k})$ states give significant contributions. Coupling of S to $\pi\pi$ is large

g_S : ESC from $N\pi / N\pi\pi$ in N²LO χ PT

Different truncations (χ PT order and \vec{p})

N²LO χ PT estimates for $\tau = 10, 12, 14, 16$

The NLO and N²LO ESC can each reduce $\sigma_{\pi N}$ at a level of 10 MeV

Estimates for the $a \approx 0.09 fm$; $M_{\pi} \approx 135 MeV$ ensemble assuming the asymptotic value is 18

without $N\pi/N\pi\pi$ ($M_1 \approx 1.6 \ GeV$)

with $N\pi / N\pi\pi$ ($M_1 \approx 1.2 \ GeV$)

List of Lattice Parameters & Statistics

• All discussion based on Clover-on-HISQ data

Ensemble ID	$a~({\rm fm})$	$M_{\pi} (\mathrm{MeV})$	$(L/a)^3 \times T/a$	$M_{\pi}L$	$N_{\rm conf}^{\rm 2pt}$	$N_{\rm conf}^{\rm conn}$	$N_{\rm LP}$	$N_{\rm HP}$	$N_{\rm conf}^l$	$N_{ m src}^l$	$N_{\rm LP}^l/N_{\rm HP}^l$
a12m310	0.1207(11)	310(3)	$24^3 \times 64$	4.55	1013	1013	64	8	1013	5000	30
a12m220	0.1184(10)	228(2)	$32^3 \times 64$	4.38	959	744	64	4	958	11000	30
a09m310	0.0888(08)	313(3)	$32^3 \times 96$	4.51	2263	2263	64	4	_	_	_
a09m220	0.0872(07)	226(2)	$48^3 \times 96$	4.79	964	964	128	8	712	8000	30
a09m130	0.0871(06)	138(1)	$64^3 \times 96$	3.90	1274	1290	128	4	1270	10000	50
a06m310	0.0582(04)	320(2)	$48^3 \times 144$	4.52	977	500	128	4	808	12000	50
a06m220	0.0578(04)	235(2)	$64^3 \times 144$	4.41	1010	649	64	4	1001	10000	50
	$\widehat{\uparrow}$										
				2pt and					disconnected 3pt		
Physical pion mass ensemble				connected 3pt							

PRL 127 (2021) 242002

Last systematics in lattice calculations

3. Chiral-Continuum-Finite-Volume (CCFV) extrapolation

 $\sigma_{\pi N}(a, M_{\pi}, M_{\pi}L) = \sigma_{\pi N}(0, M_{\pi} = 135 \text{MeV}, \infty) + \cdots$

F-H method: Chiral fit to M_N

- χ PT ansatz for M_N similar to that for $\sigma_{\pi N}$
- The most constrained fit does yield a good description of the data
- The resulting uncertainty in $\sigma_{\pi N}$ via FH method is too large with our data to compete with the direct method

Need to resolve excited states in F-H method also

 $M_{\pi} = 170$ MeV ensemble $a \approx 0.091$ fm 3000×320 measurements

- No plateau (ground state domination) even at ≈ 2 fm
- 4-state fits with $\Delta M_1 \approx 320$ and 640 MeV give similar χ^2
- For a state with $\Delta M_1 \approx 300$ MeV, the suppression $e^{-\Delta M_1 \tau} = 0.1$ only at 1.5 fm

FLAG Summary + arXiv:2105.12095

Hoferichter et al, (Phys. Lett. B 843 (2023) 138001. $\sigma_{\pi N}$ reduced by 3.1(5) MeV between π^+ and π^0

Summary

- ESC large in g_S^{u+d} : Data show large τ dependence at $\tau \approx 1.5$ fm
- χ PT suggests large contribution of $N\pi \& N\pi\pi$ states to g_S^{u+d}
- Contribution increases as $M_{\pi} \rightarrow 135$ MeV and $\Delta \vec{p} \rightarrow 0$
- Fits are consistent with coefficients predicted by χPT
- $\sigma_{\pi N}$ changes from ~40 MeV to ~60 MeV on including the $N\pi$ and $N\pi\pi$ excited states
- Need more data to improve the chiral-continuum-finite-volume extrapolation of $\sigma_{\pi N}$
- Large $N\pi$ contribution also seen in axial/pseudoscalar form factors. Including $N\pi$ states in analysis required for FF to satisfy PCAC relation

Extras