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𝜎!": pion–nucleon sigma term

𝜎!" ≡ 𝑚#$𝑔%#&$ ≡ 𝑚#$ 𝑁 (𝑢𝑢 + �̅�𝑑 𝑁

• Fundamental parameter of QCD that quantifies the amount of 

the nucleon mass generated by u and d quarks.

• 𝑔!": enters in cross-section of dark matter with nucleons

• Important input in the search of BSM physics



Three methods to calculate 𝜎!"

• Lattice:  direct calculation of 𝑁 "𝑢𝑢 + �̅�𝑑 𝑁

• Lattice:  Feynman-Hellmann relation (!!
"

"!
= #$#

#%"
)

• Phenomenology: connection to 𝜋𝑁-scattering amplitude via 

Cheng-Dashen low-energy theorem

𝜎!" ≡ 𝑚#$𝑔%#&$ ≡ 𝑚#$ 𝑁 (𝑢𝑢 + �̅�𝑑 𝑁

All discussion here assumes isospin symmetry. Effect ~1 MeV 



Status of results for 𝜎!" as of Dec 2020
• 𝜎!" ≡ 𝑚#$𝑔%#&$ ≡ 𝑚#$ 𝑁 (𝑢𝑢 + �̅�𝑑 𝑁 	in isospin limit

• Phenomenology: connection to 𝜋𝑁-
scattering amplitude via Cheng-Dashen 
low-energy theorem

• Lattice 
• With 2+1+1, 2+1, 2-flavors
• Squares: Direct
• Triangles: Feynman-Hellmann

• Mixed Lattice: Feynman-Hellmann but 
taking data from multiple calculations



Tension between lattice and phenomenology

• Lattice results favor ~40 MeV
• Phenomenology favors ~60 MeV

– 𝜎𝜋𝑁 reduced by 3.1(5) MeV for between 𝑀𝜋+ and 𝑀𝜋0

New lattice results post FLAG 2019:

BMW (arXiv:2007.03319) 𝜎%& 	= 37.4(5.1) MeV (FH)
ETM (PRD 102, 054517)   𝜎%& 	= 41.6(3.8)  MeV (Direct method)
RQCD (PRD 108, 034512) 𝜎%& 	= 42.8(4.7)  MeV (Direct method)



Euclidean Field Theory via Wick rotation: 𝑡 → 𝑖𝜏

• Converts a QFT into a statistical mechanics system
• Expectation values via path integral 𝑂 = ∑𝑖𝑂𝑒−𝐴

• 𝑒𝑖𝐸𝑖𝑡 → 𝑒−𝐸𝑖𝜏: Spectrum {𝐸𝑖} unchanged under 𝑡 → 𝑖𝜏
• Fixed time matrix elements, ⟨𝑗|𝑂|𝑖⟩, are the same in 

Minkowski and Euclidean Time

Challenges (complex phase/sign problem)
• Response functions
• Real time dynamics
• Finite chemical potential



Lattice QCD (1001 4D grid)

Links: 𝑈!,!#$ = 𝑒%&'()!*"! (∈ SU(3) matrices)
Sites: 𝜓(𝑥)

• Rules of Grassman integration: 
• ∫ 𝑑𝜓 = ∫ 𝑑𝜓 = 0
• ∫ 𝑑𝜓𝜓 = ∫ 𝑑𝜓 𝜓 = 1

• Integrate out the fermions: 𝑆 = 𝑆! + ∑" Ln	det(𝐷"[U])
• Generate gauge configurations using Boltzmann weight = 𝑒#$

(ensemble of configurations is a stochastic representation of the QCD vacuum)

𝑆 = 𝑆' + 𝑆+	 =
-
.𝑅𝑒	𝑇𝑟	 ∑!,$(1 − 𝑈/) + 𝑆+  

𝑆+ ==
+

𝜓𝐷+𝜓 ≡=
!,$

𝜓! 	(𝑈!#$+𝑚+)	𝜓!#$	

Wick rotate the QCD path integral to Euclidean time: 𝑡 → 𝑖𝜏

Discretize QCD
on a 4-D 
hypercubic 
space-time grid



Correlation functions: only links 𝑈A 𝑥  and quark propagators P needed

Nucleon 2-point function

• Perform Wick contractions using:

⇾ : 𝜓%
&,( 𝜓)

*,+
: 	= 𝐷#, %;)

&,(;*,+ = 𝑃
⇾ P = Quark propagator obtained using

Krylov solvers for 𝐷	𝑃 = 𝜂 
• Correlation functions: tie together quark 

propagators with operators in all possible
ways to get quark line diagrams

n n
𝜏

ℕ = 	 𝜖!"# 𝑞$!% 𝑥 𝐶𝛾&𝑞'" 𝑥 𝑞$#(𝑥)

Γ#$ = Ω $
%

ℕ 𝑥, 𝑡 	 ℕ 0,0 Ω

= ∫ 𝑑𝜓𝑑𝜓+	𝑑𝑈	𝑒%0&{ℕ x, 𝜏 	ℕ 0,0 }	



Quark propagator → nucleon 2pt

{�⃗�, 𝑡}
{0, 0}

𝑆1 = Ω 𝑞 𝑥, 𝑡 𝑞 0,0 Ω =
1
𝐷

a,i
b,j

𝜖
!"#

𝑞$ !%
𝑥
𝐶𝛾& 𝑞

' "
𝑥

𝑞$ #(𝑥)
𝜖!

"#
𝑞 $!

%
𝑥
𝐶𝛾

&𝑞
'"
𝑥

𝑞 $#
(𝑥
)

Γ#$ = Ω $
%

ℕ 𝑥, 𝑡 	 ℕ 0,0 ΩWick contraction of 

= Ω $
%

	𝜖./0 𝑞1.2 𝑥 𝐶𝛾3𝑞$/ 𝑥 𝑞10(𝑥) 𝑥, 𝑡 	 𝜖456 𝑞142 𝑥 𝐶𝛾3𝑞$5 𝑥 𝑞1
6(𝑥) 0,0 Ω



LQCD is QCD (a Quantum Field Theory) discretized on a lattice.
Wick rotation turns QFT into a stochastic computational problem.  
Simulations of LQCD provide 

• The quantum vacuum of QCD 
Øensembles of gauge configurations 

• Hadrons & interactions are input via external probes
ØN-point correlation functions

• Get quantum wavefunctions of hadronic states

ØMatrix elements: 𝑁(𝑝𝑓) 	𝓞 𝑄2 	 𝑁(𝑝𝑖)  

!

"



Lattice Methodology is well established

Connected Disconnected

Direct method: Nucleon charges 𝑔J, 𝑔K, and 𝒈𝑺	obtained from ME of local 
quark bilinear operators 7𝑞M 	Γ	𝑞N within ground state nucleons: 𝑁 7𝑞M 	Γ	𝑞N 𝑁

𝒈𝑺𝒖&𝒅 = 𝒈𝑺
𝒖&𝒅,𝐜𝐨𝐧𝐧	+	𝟐𝒈𝑺

𝒍,𝒅𝒊𝒔𝒄

𝜏

Calculate “connected” and “disconnected” 3-point correlation functions



2-point function
!

"

3-point functions

Connected

Disconnected

Spectral decomposition of  Γ5 

Ω	 <𝑁O
P	 =𝑁Q	|	Ω	⟩	

Ω	 <𝑁O
P	𝑂 𝑡 	 =𝑁Q	|	Ω	⟩	

Γ;<= 𝜏 	 =A
&

𝐴& ;𝑒#>$?

Γ@
A<= 𝑡, 𝜏 =A

&,*

𝐴&∗𝐴* 𝑖 𝑂 𝑗 𝑒#>$=#>%(?#=)

+



Spectral decomposition of Γ6

Ω ℕ	𝒜$(t)ℕ(0)|Ω⟩

Three-point function for matrix elements of axial current 𝒜C

Ω ℕ 𝜏 ⋯𝑒#DE=A
*

𝑛* 𝑛* 𝒜C𝑒#DE=A
&

𝑛& 𝑛& ⋯ℕ(0)|Ω⟩

A
&,*

Ω ℕ 𝑛* 	𝑒#F& ?#= 𝑛* 𝐴C 𝑛& 	𝑒#F'=	⟨𝑛&|ℕ|Ω⟩

Insert 𝑇 = 𝑒#GE= ∑& |𝑛&⟩⟨𝑛&| at each Δ𝑡 with 𝑇 𝑛& ≡ 𝑒#GE= 𝑛& = 𝑒#>$E=|𝑛&⟩

Matrix Elements𝐴2∗ 𝐴&

𝐸4, 𝐸5, …   energies of the ground & excited states 
A0, A1, …   corresponding amplitudes 



Main issues in lattice calculation
1. Statistical signal

2. Chiral-Continuum-Finite-Volume (CCFV) extrapolation

3. Excited state contributions (ESC)

a) Towers of multihadron states starting at ~1200 MeV 

b) Which 𝑁𝜋 , 𝑁𝜋𝜋,… states contribute to a given ME?

c) Fits using the spectral decomposition to connected plus 
disconnected contributions keeping up to 3 states



Signal-to-noise falls as 𝑒2 3!24.63" 7	in nucleon n-point functions

14

ØTo resolve a small mass gap
 (M1 – M0 ) requires large t 

Variance: 𝑒#A>(?

n n

𝜏

n n

𝑛 𝑛

Signal: Γ; = 	𝑒#>#?

M
e
ff
(τ
)

τ

A0 = 4.22(15)e− 10
M0 = 0.4153(21)
R1 = 0.622(44)

ΔM1 = 0.241(27)
R2 = 0.694(26)

ΔM2 = 0.510(26)
R3 = 0.522(50)

ΔM3 = 0.210(60)

FR: 2 − 20,
χ2/17 = 0.71, p = 0.80(2)

pr: 0.70(40)
pr: 0.29(5)
pr: 0.70(40)
pr: 0.60(40)
pr: 0.60(50)
pr: 0.30(25)
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Excited states in correlation functions
Challenge: To get the matrix elements in the ground state of hadrons 
(nucleons), the contributions of all excited states have to be removed. 

𝑢𝛾$𝛾8𝑑

All intermediate states with 
nucleon quantum numbers 
are suppressed only by 
𝐴!"𝑒# $!#$" %

• All states with same quantum numbers as the nucleon are allowed
• Which excited states make significant contributions to a given matrix element? 
• What are their energies in a finite box?

Towers of multihadron states
𝑁 �⃗� 𝜋 −�⃗�

𝑁 0 𝜋 �⃗� 𝜋(−�⃗�)	
𝑁 �⃗� 2𝜋 −�⃗�

⋯
+ radial excitations

Interpolating operators 
create or annihilate all 
states with the same 
quantum numbers as N



Spectral decomposition of 3-point function
𝐶A<= =

t=0                    t                     𝜏

+ ⋯

• The transition ME are large in some cases! 
• Mass gaps, Δ𝑀&, of 𝑁𝜋,𝑁𝜋𝜋,…	are small!
• Need 𝐴H, 𝑀&

Ground-state matrix element → 𝑔(
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8 10 12 14 16
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

-10 -5 0 5 10

charge jkr

𝑔!
Y,Z[\\ 𝑔!

],Z[\\ 𝑔!Y^]𝑔!
Y_],Z[\\

ratio ISO U 3pt MIXED NONREL l0 S qsq0.lta

8 10 12 14 16
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

-10 -5 0 5 10

charge jkr

ratio ISO D 3pt MIXED NONREL l0 S qsq0.lta

8 10 12 14 16
2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

-10 -5 0 5 10

charge jkr

ratio ISO S 3pt MIXED NONREL l0 S qsq0.lta

8 10 12 14 16
6

6.5

7

7.5

8

8.5

9

9.5

-10 -5 0 5 10

charge jkr

𝑔!Y_] = 𝑔!
Y_],`abb +2𝑔!

c,def`

PRL 127 (2021) 242002 .  Also See S. Park, et al., 2401.00072

Data from physical 𝑀%≈ 135	𝑀𝑒𝑉	ensemble @ 𝑎 ≈ 0.09𝑓𝑚, 	 𝑀%𝐿 = 3.9

𝑔!
c,]MgZ



“Appears” to converge as 𝜏 → ∞

Physical 𝑀% Ensemble: 𝑎 ≈ 0.09𝑓𝑚,	 𝑀%= 135	𝑀𝑒𝑉, 	 𝑀%𝐿 = 3.9

𝑔!
Y_],Z[\\

ratio ISO S 3pt MIXED NONREL l0 S qsq0.lta
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“No” convergence as 𝜏 → ∞

Excited-state contribution is large at realizable 𝝉 ≈ 𝟏. 𝟓 fm 



χPT analysis	shows	𝑵 𝒌 𝝅 −𝒌  and 𝑵 𝟎 𝝅 𝒌 𝝅 −𝒌  
states give significant contributions. 

Coupling of S to 𝝅𝝅 is large

LO NLONLO N2LO

N N
!Why disconnected 

contribution is large



𝑔8: ESC from 𝑁𝜋 / 𝑁𝜋𝜋 in N2LO χPT

The NLO and N2LO ESC can each reduce 𝜎%& at a level of 10 MeV

Estimates for the 𝑎 ≈ 0.09𝑓𝑚; 𝑀9 ≈ 135𝑀𝑒𝑉 ensemble assuming the asymptotic value is 18

a=0.09 fm, τ = 16a

ground state

NLO, |nmax|=1

N2LO, |nmax|=1

NLO, |nmax|=3

N2LO, |nmax|=3

N2LO, |nmax|=∞

-5 0 5
4

6

8

10

12

14

16

18

(t-τ/2)/a

gS

Different truncations (χPT order and �⃗�) 

a=0.09 fm, Mπ = 0.138 GeV
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N2LO χPT estimates for 𝜏 = 10,12,14,16



𝑔!Y_] = 
𝑔!
Y_],`abb

+2𝑔!
c,def`

𝑔!
c,def`

with 𝑁𝜋 / 𝑁𝜋𝜋	 (𝑀r ≈ 1.2	𝐺𝑒𝑉)without 𝑁𝜋/𝑁𝜋𝜋	 (𝑀, ≈ 1.6	𝐺𝑒𝑉)

𝜎%& = 𝑚c𝑔!Y_]  ~ 40 MeV 𝜎%& = 𝑚c𝑔!Y_]  ~ 60 MeV



List of Lattice Parameters & Statistics
• All discussion based on Clover-on-HISQ data

2pt and 
connected 3pt

disconnected 3pt
Physical pion mass ensemble

PRL 127 (2021) 242002



Last systematics in lattice calculations

3. Chiral-Continuum-Finite-Volume (CCFV) extrapolation

𝜎%& a,M% , M%L = 	𝜎%& 0,	M%= 135MeV,∞ +⋯	



Chiral-Continuum fits to 6 points

𝜎%& = 𝑑"𝑀%
" + 𝑑"s𝑀%

"𝑎 + 𝑑t
u𝑀%

t + 𝑑v𝑀%
v + 𝑑vw𝑀%

v log𝑀%
"

                              𝑑t
u: fixed to 𝜒PT prediction

Other colors 
{4&%,3*}: with 𝑁𝜋
Light gray 
{4,3*}: without 𝑁𝜋

a-dependence 
is not clear



F-H method: Chiral fit to 𝑀"

• χPT ansatz for MN similar to that for 𝜎%&
• The most constrained fit does yield a good description of the data
• The resulting uncertainty in 𝜎%& via FH method is too large with our 

data to compete with the direct method



Need to resolve excited states in F-H method also
M
e
ff
(τ
)

τ

A0 = 4.311(84)e− 10
M0 = 0.4161(11)
R1 = 0.686(52)

ΔM1 = 0.276(26)
R2 = 0.590(43)

ΔM2 = 0.511(57)
R3 = 0.622(50)

ΔM3 = 0.344(90)

FR: 2 − 24, χ2/15 = 0.96

pr: 0.70(40)
pr: 0.20(10)
pr: 1.00(90)
pr: 0.60(40)
pr: 0.80(60)
pr: 0.30(25)
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A0 = 4.01(16)e− 10
M0 = 0.4132(18)
R1 = 0.308(93)

ΔM1 = 0.1377(90)
R2 = 0.753(87)

ΔM2 = 0.271(49)
R3 = 1.091(52)

ΔM3 = 0.677(64)

FR: 2 − 24, χ2/15 = 0.88

pr: 0.40(25)
pr: 0.14(5)
pr: 0.80(40)
pr: 0.30(20)
pr: 1.00(70)
pr: 0.60(40)
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Meff M0 fit
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𝑀% = 170 MeV ensemble
𝑎 ≈ 0.091 fm
3000×320 measurements

• No plateau (ground state domination) even 
at ≈ 2 fm 

• 4-state fits with Δ𝑀, ≈ 320 and 640 MeV 
give similar 𝜒;

• For a state with Δ𝑀, ≈ 300 MeV, the 
suppression 𝑒#EK+?=0.1 only at 1.5 fm



Tension in 
F-H method.

Both with 𝑀L ≿
200 MeV data

Chiral 
extrapolation is 
different!

à Need data at 
𝑀L ≈ 135 MeV

FLAG Summary + arXiv:2105.12095

Hoferichter et al, (Phys. Lett. B 843 (2023) 138001. 𝜎)* reduced by 3.1(5) MeV between 𝜋+ and 𝜋,



Summary
• ESC large in 𝑔!Y_]  : Data show large 𝜏	dependence at 𝜏 ≈ 1.5 fm 

• χPT suggests large contribution of 𝑁𝜋	&	𝑁𝜋𝜋 states to 𝑔!Y_]

• Contribution increases as 𝑀% → 135	MeV and Δ�⃗� → 0
• Fits are consistent with coefficients predicted by χPT
• 𝜎%& 	changes from ~40 MeV to ~60 MeV on including the 𝑁𝜋  and 𝑁𝜋𝜋 

excited states
• Need more data to improve the chiral-continuum-finite-volume 

extrapolation of 𝜎%&
• Large 𝑁𝜋 contribution also seen in axial/pseudoscalar form factors.

Including  𝑁𝜋 states in analysis required for FF to satisfy PCAC relation



Extras


