All-mode Renormalization for Tensor Network with Stochastic Noise PRD107,114515(2023)

Shinji Takeda

(Kanazawa U.)

in collaboration with E. Arai, H. Ohki and M. Tomii

Field Theory Research Team Seminar @R-CCS in Kobe 2023.09.01

Contents

- Introduction of tensor network
 - Why/What's tensor network
 - Tensor renormalization group (TRG)
- All-mode renormalization
 - How to use stochastic noise in tensor decomposition
 - Key idea comes from lattice QCD
 - Numerical results

Introduction of tensor network

Why tensor networks?

- Good
 - Applicable to any models even for complex action

≈ no sign problem

- Extremely large volume (thermodynamic limit)
- High-precision is attainable in 2D system with simple internal d.o.f.
- Bad

Expensive for higher dimensional system

Why tensor networks?

• Good

Applicable to any models even for complex action

≈ no sign problem

Challenge to

- QCD + μ
- θ-term
- Lattice SUSY
- Real-time dynamics
- Chiral gauge theory

Notational rules

Rank 2 tensor (matrix)

Notational rules

Rank 2 tensor (matrix)

Rank 3 tensor

Tensor : vertex index : link

Contraction (summation) rule

Contraction (summation) rule

index connecting with a single tensor : no summation

What's tensor network?

Example: TN for square lattice

What's tensor network?

Example: TN for square lattice

A target quantity (wave function/partition function) is represented by tensor network

Two approaches in TN

	Hamiltonian approach	Lagrangian approach
target system	quantum many-body system	Classical statistical system, Path-integral rep. of quantum field theory
TN is used to express	wave function	partition function, path integral
combining with	variational method	coarse-graining (real-space renormalization group)

$$Z \equiv \int [d\phi] e^{-S[\phi]} \stackrel{?}{=} \sum_{\dots,i,j,k,l,\dots} \cdots T_{ijkl} T_{mnio} \cdots$$

Tensor renormalization group (TRG) PRL99,120601(2007)

Tensor renormalization group (TRG) PRL99,120601(2007)

Bond dimension

 T_{ijkl}

 $1 \leq i, j, \dots \leq \chi$

 \Leftrightarrow

Tensor renormalization group (TRG) PRL99,120601(2007)

$$1 \le i, j, \dots \le \chi$$

$$\chi^2 \times \chi^2 \text{ matrix}$$

$$\Leftrightarrow \quad T_{ijkl} = M_{(ij)(kl)}$$

Tensor renormalization group (TRG) PRL99,120601(2007)

 $M \in \mathbb{C}^{\chi^2 \times \chi^2}$

Singular Value Decomposition(SVD) $M_{ab} = \sum_{m} u_{am} \Lambda_m (v^{\dagger})_{mb}$ unitary matrix $\Lambda_1 \ge \Lambda_2 \ge \dots \ge 0$: singular value (non-negative)

$$\Leftrightarrow \quad T_{ijkl} = M_{(ij)(kl)}$$

Tensor renormalization group (TRG) PRL99,120601(2007)

 $M \in \mathbb{C}^{\chi^2 \times \chi^2} \, \Rightarrow \mathrm{TN}$ is sign-problem-free

Singular Value Decomposition(SVD) $M_{ab} = \sum_{m} u_{am} \Lambda_m (v^{\dagger})_{mb}$ unitary matrix $\Lambda_1 \ge \Lambda_2 \ge ... \ge 0$: singular value (non-negative)

$$\Leftrightarrow \quad T_{ijkl} = M_{(ij)(kl)}$$

SVD
$$\chi^2 = \sum_{m=1}^{\chi^2} u_{(ij)m} \Lambda_m v_{m(kl)}^{\dagger}$$

Tensor renormalization group (TRG) PRL99,120601(2007)

 $M \in \mathbb{C}^{\chi^2 \times \chi^2} \, \Rightarrow \mathrm{TN}$ is sign-problem-free

Singular Value Decomposition(SVD) $M_{ab} = \sum_{m} u_{am} \Lambda_m (v^{\dagger})_{mb}$ unitary matrix $\Lambda_1 \ge \Lambda_2 \ge \dots \ge 0$: singular value (non-negative)

$$T_{ijkl} = M_{(ij)(kl)}$$

$$\stackrel{\text{SVD}}{=} \sum_{m=1}^{\chi^2} u_{(ij)m} \Lambda_m v_{m(kl)}^{\dagger}$$

Tensor renormalization group (TRG) PRL99,120601(2007)

 $M \in \mathbb{C}^{\chi^2 \times \chi^2} \ \Rightarrow \mathrm{TN}$ is sign-problem-free

Singular Value Decomposition(SVD) $M_{ab} = \sum_{m} u_{am} \Lambda_m (v^{\dagger})_{mb}$ unitary matrix $\Lambda_1 \ge \Lambda_2 \ge ... \ge 0$: singular value (non-negative)

$$T_{ijkl} = M_{(ij)(kl)}$$

truncation D_{cut}

$$\approx \sum_{m=1} u_{(ij)m} \Lambda_m v_{m(kl)}^{\dagger}$$

 $D_{
m cut} < \chi^2$ $D_{
m cut} = \chi$: standard choice

Tensor renormalization group (TRG) PRL99,120601(2007)

 $M \in \mathbb{C}^{\chi^2 \times \chi^2} \Rightarrow \text{TN is sign-problem-free}$

Singular Value Decomposition(SVD) $M_{ab} = \sum u_{am} \Lambda_m (v^{\dagger})_{mb}$ m k 7 unitary matrix $\Lambda_1 \geq \Lambda_2 \geq \ldots \geq 0$: singular value (non-negative)

$$T_{ijkl} = M_{(ij)(kl)}$$

 $\approx \sum u_{(ij)m} \Lambda_m v_{m(kl)}^{\dagger}$ $D_{\rm cut} < \chi^2$

 $D_{\rm cut} = \chi$: standard choice

Tensor renormalization group (TRG) PRL99,120601(2007)

truncated SVD

Tensor renormalization group (TRG) PRL99,120601(2007)

truncated SVD

Tensor renormalization group (TRG) PRL99,120601(2007)

truncated SVD

Tensor renormalization group (TRG) PRL99,120601(2007)

contraction

Tensor renormalization group (TRG) PRL99,120601(2007)

Summary (so far)

- Tensor network is free of sign problem
- Key point of coarse-graining scheme is information compression based on singular value decomposition
- For Langrangian approach, improvement of coarse-graining algorithm is essential
- 4D system with simple d.o.f. is now feasible

All-mode renormalization

PRD107,114515(2023)

Lagragian approach

Periodic BC

Systematic error

- Coarse-graining algorithms for tensor network use truncated singular value decomposition to reduce computational cost
- However, the truncation introduces systematic error
 Furthermore, iterations accumulate systematic errors
- Can we reduce the systematic errors?
- Stochastic method can remove the systematic errors
 Ferris 2015

Truncated SVD

Using stochastic noise

(dimension of noise vector)

 $\eta_{sr} \in Z_N$: stochastic noise $\langle \eta_s \eta_t
angle = \delta_{st} \quad \langle \eta_s
angle = 0$

Using stochastic noise

 $N_{
m r}$: # of noise (dimension of noise vector) $\eta_{sr} \in Z_N$: stochastic noise $\langle \eta_s \eta_t
angle = \delta_{st} \quad \langle \eta_s
angle = 0$

SVD + stochastic noise

$$\begin{split} M_{ab} &= \sum_{s=1}^{D_{\mathrm{svd}}+N_{\mathrm{r}}} S_{3as}(\eta) S_{1bs}(\eta) + O\left(\frac{\Lambda_{D_{\mathrm{svd}}+1}}{\sqrt{N_{\mathrm{r}}}}\right) & D_{\mathrm{cut}} = D_{\mathrm{svd}} + N_{\mathrm{r}} \\ N_{\mathrm{r}}: \text{noise dim.} \\ \\ M & \downarrow & \downarrow & \downarrow \\ N_{\mathrm{r}}: \text{noise dim.} \\ \end{split} \\ M & \downarrow & \downarrow & \downarrow \\ M & \downarrow & \downarrow & \downarrow \\ S_{3as}(\eta) &= \begin{cases} \sqrt{\Lambda_{\mathrm{s}}} u_{as} & (1 \leq s \leq D_{\mathrm{svd}}) \\ \sum_{i=D_{\mathrm{svd}}+1}^{R} \sqrt{\frac{\Lambda_{i}}{N_{\mathrm{r}}}} u_{ai} \eta_{i-D_{\mathrm{svd}},s-D_{\mathrm{svd}}} & (D_{\mathrm{svd}}+1 \leq s \leq D_{\mathrm{svd}}+N_{\mathrm{r}}) \\ S_{1bs}(\eta) &= \begin{cases} \cdots & \text{All lower modes are included in combined with stochastic noise} \\ 1 \leq s \leq D_{\mathrm{svd}} + 1 \leq s \leq D_{\mathrm{svd}} + N_{\mathrm{r}} \end{cases} \\ \text{All lower modes are included in combined with stochastic noise} \\ \text{all modes are included In combined with stochastic noise} \\ 1 \leq s \leq D_{\mathrm{svd}} + N_{\mathrm{r}} \end{pmatrix} \\ \text{To reduce the error } O\left(\frac{\Lambda_{D_{\mathrm{svd}}+1}}{\sqrt{N_{\mathrm{r}}}}\right) \text{ we need } N_{\mathrm{r}} \to \infty \iff D_{\mathrm{cut}} \to \infty \\ \text{This is NOT practically useful} \end{cases}$$

Ensemble of noises

Ensemble of noises $\eta^{[\ell]}$ $(\ell = 1, 2, \cdots, N)$ $D_{\rm cut} = D_{\rm svd} + N_{\rm r}$

$$M_{ab} = \frac{1}{N} \sum_{\ell=1}^{N} \sum_{s=1}^{D_{\text{svd}}+N_{\text{r}}} S_{3as}(\underline{\eta^{[\ell]}}) S_{1bs}(\underline{\eta^{[\ell]}}) + O\left(\frac{\Lambda_{D_{\text{svd}}+1}}{\sqrt{N_{\text{r}}N}}\right)$$

$$Z_{V} = \lim_{N \to \infty} \frac{1}{N} \sum_{\ell=1}^{N} Z(T^{(n)[\ell]}) \quad \text{with} \quad Z(T^{(n)[\ell]}) = \sum_{i,j=1}^{D_{\text{cut}}} T^{(n)[\ell]}_{ijij}$$
$$V = 2^{n}$$

On the error

$$O\left(\frac{\Lambda_{D_{\rm svd}+1}}{\sqrt{N_{\rm r}N}}\right) \to 0 \quad \text{ for } \quad N \to \infty \quad \text{ with fixed } \quad D_{\rm cut} = D_{\rm svd} + N_{\rm r}$$

 \Rightarrow With finite D_{cut} , the decomposition becomes exact for $N \rightarrow \infty$

moreover,

No autocorrelation, Parallelizable

Ferris arXiv:1507.00767

Application to TRG

TRG \Rightarrow SVD + stochastic noise truncated SVD replace Noise ensemble method

• Position-dependent noise Ferris arXiv:1507.00767 different probability distribution

noises are generated independently for each site = position-dependent noise

TRG + Position-dependent noise

Application to TRG

- Position-dependent noise Ferris arXiv:1507.00767 different probability distribution
 - No systematic error. Only statistical error
 - $\text{Cost} : O(D_{\text{cut}}^6 N V) N: # \text{ of samples, } V: \text{ volume } \rightarrow \text{high cost!}$
- Common noise
 - Introduce even-odd correlated noise
 - $-\operatorname{Cost}: O(D_{\operatorname{cut}}^6 N \log V)$
 - New systematic error ~ $1/N_{\rm r}$

TRG + Common noise

• Ising on square lattice

•
$$T = T_c$$

• $V = 2^{50}$

- $D_{\rm cut} = D_{\rm svd} + 4 \ (N_{\rm r} = 4)$
- N = 100 samples

TRG
$$\Leftrightarrow N_r = 0$$

δf vs. Temperature

 $D_{\rm cut} = 50$ $V = 2^{30}$ N = 100 samples 1e-06 1e-07 1e-08 $\left|\delta(\bar{f}_V)\right|$ Ŧ 1e-09 $\overline{\text{TRG}} (D_{\text{svd}} = 50, N_r = 0)$ 1e-10 = D_{svd} =46, N_r=4

2.32

2.34

2.36

2.38

2.3

2.18

2.2

2.22

2.24

2.26

2.28

Temperature

- Ising on square lattice
- TRG + Common noise

Gilt-TNR + common noise

Gilt-TNR : sophisticated coarse-graining algorithm

Hauru+Delcamp+Mizera 2018

 $D_{\rm cut} = D_{\rm svd} + N_r$

Ising on square lattice

•
$$T = T_c$$

$$V = 2^{51}$$

•
$$D_{\rm cut} = D_{\rm svd} + N_{\rm r}$$

- N = 100 samples
- $\varepsilon = 8 \times 10^{-8}$: threshold parameter for Gilt

Summary

- Stochastic noise removes systematic error in tensor (matrix) decomposition at the expense of statistical errors
- Position-dependent noise is free of systematic error but expensive
- Common noise is relatively cheap and shows better accuracy and simple error scaling
- Our stochastic method is easily applicable to all truncated SVD steps in coarse-graining algorithms.

Backup slides

Flow of singular values

- Ising on square lattice
- TRG + position-dep. noise
- *n*= # of RG step
- $D_{\rm cut} = 7 + 1$
- 500 statistics

Position-dependent noise

•

Performance of common noise

Ising on square lattice

•
$$V = 2^{30}$$

•
$$D_{\text{cut}} = D_{\text{svd}} + 4$$

Systematic error for common noise

 $1/N_r$ scaling is observed

- Ising on square lattice
- TRG + Common noise
- $D_{\rm cut} = 20 + N_{\rm r}$
- *N*= 5000 statistics

Common noise results

TRG + Common noise

$$T = T_c$$

•
$$D_{\rm cut} = D_{\rm svd} + N_r$$

Noise correlation for common noise

$$\begin{split} \frac{1}{N_r^2} \left(\boldsymbol{\eta} \cdot \boldsymbol{\eta}^{\dagger} \right)_{ab} & \otimes \left(\boldsymbol{\eta} \cdot \boldsymbol{\eta}^{\dagger} \right)_{cd} = \frac{1}{N_r^2} \sum_{r_1=1}^{N_r} \eta_{ar_1} \eta_{br_1}^* \sum_{r_2=1}^{N_r} \eta_{cr_2} \eta_{dr_2}^* \\ & = \frac{N_r - 1}{N_r^2} \sum_{r_1=1}^{N_r} \eta_{ar_1} \eta_{br_1}^* \left(\delta_{cd} + \mathcal{O}(1/\sqrt{N_r}) \right) \\ & + \frac{1}{N_r^2} \sum_{r_1=1}^{N_r} \eta_{ar_1} \eta_{br_1}^* \eta_{cr_1} \eta_{dr_1}^* + \mathcal{O}(1/\sqrt{N_r}) \\ & = \delta_{ab} \delta_{cd} + \frac{1}{N_r} \delta_{ad} \delta_{cb} (1 - \delta_{ab} \delta_{cd}) + \mathcal{O}(1/\sqrt{N_r}), \end{split}$$

Tensor network rep. of \boldsymbol{Z}

depends on property of field and interaction

- Scalar field (non-compact)
 - Orthonormal basis expansion

Shimizu mod.phys.lett. A27,1250035(2012), Lay & Rundnick PRL88,057203(2002)

- Gauss Hermite quadrature Sakai et al., JHEP03(2018)141

We will see later!

- Gauge field (compact : SU(N), CP(N) etc.)
 - Character expansion : maintain symmetry, better convergence Meurice et al., PRD88,056005(2013)
- Fermion field (Dirac/Majorana)

Shimizu & Kuramashi PRD90,014508(2014), ST & Yoshimura PTEP(2015)043B01

– Grassmann number $\theta^2=0 \rightarrow$ finite sum

In principle, we can treat any fields

$$e^{\phi\theta} = 1 + \phi\theta = \sum_{n=0}^{1} (\phi\theta)^n$$

1