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Introduction of tensor network



Why tensor networks?
• Good

– Applicable to any models even for complex action


　　　≈ no sign problem


– Extremely large volume (thermodynamic limit)


– High-precision is attainable in 2D system with simple 
internal d.o.f.


• Bad

– Expensive for higher dimensional system



Why tensor networks?
• Good

– Applicable to any models even for complex action


　　　≈ no sign problem


Extremely large volume (thermodynamic limit)


High-precision is attainable in 2D system with simple 
internal d.o.f.


• Bad

– Expensive for higher dimensional system

■ QCD + μ

■ θ-term

■ Lattice SUSY

■ Real-time dynamics

■ Chiral gauge theory


Challenge to



Notational rules
Rank 2 tensor (matrix)



Notational rules
Rank 2 tensor (matrix) Rank 3 tensor

Rank 4 tensor

Tensor : vertex

index : link



Contraction (summation) rule



Contraction (summation) rule

index shared by two tensors : summation

index connecting with a single tensor : no summation



What’s tensor network?

=

Example: TN for square lattice

⇒ Tensor network



Example: TN for square lattice

What’s tensor network?

A target quantity (wave function/partition function)

is represented by tensor network

=

⇒ Tensor network



Two approaches in TN

This talk

Hamiltonian approach Lagrangian approach

target 
system

quantum many-body 
system

Classical statistical system,

Path-integral rep. of quantum 
field theory

TN is used to 
express wave function partition function, path integral

combining 
with variational method coarse-graining (real-space 

renormalization group)



Working flow of Lagrangian approach

Target model in continuum space-time

Lattice model

Lattice regularization

TN rep. of Z

MC if no sign problem

？



Working flow of Lagrangian approach

Target model in continuum space-time

Lattice model

Lattice regularization

TN rep. of Z

MC if no sign problem

？

• Non-trivial step, but

• OK for scalar, gauge, and fermion fields 

as long as the interaction is local



Working flow of Lagrangian approach

Target model in continuum space-time

Lattice model

Lattice regularization

TN rep. of Z For each model, tensor is prepared

MC if no sign problem

cost ∝   for𝜒2𝑉

Bond dimension



Working flow of Lagrangian approach

Target model in continuum space-time

Lattice model

Lattice regularization

TN rep. of Z For each model, tensor is prepared

MC if no sign problem

Coarse-graining like spin-blocking/real space renormalization group



Coarse-graining Tensor renormalization group (TRG)

PRL99,120601(2007)



⇔

Coarse-graining Tensor renormalization group (TRG)

PRL99,120601(2007)

Bond dimension



⇔

Coarse-graining Tensor renormalization group (TRG)

PRL99,120601(2007)



⇔

Coarse-graining Tensor renormalization group (TRG)

PRL99,120601(2007)

unitary matrix

: singular value（non-negative）

Singular Value Decomposition(SVD) 



⇔
SVD

Coarse-graining Tensor renormalization group (TRG)

PRL99,120601(2007)

⇒ TN is sign-problem-free

unitary matrix

: singular value（non-negative）

Singular Value Decomposition(SVD) 



⇔
SVD

Coarse-graining Tensor renormalization group (TRG)

PRL99,120601(2007)

⇒ TN is sign-problem-free

unitary matrix

: singular value（non-negative）

Singular Value Decomposition(SVD) 



⇔
truncation

Coarse-graining Tensor renormalization group (TRG)

PRL99,120601(2007)

⇒ TN is sign-problem-free

unitary matrix

: singular value（non-negative）

Singular Value Decomposition(SVD) 

: standard choice



⇔

truncation of SVD = information compression

truncation

Coarse-graining Tensor renormalization group (TRG)

PRL99,120601(2007)

⇒ TN is sign-problem-free

unitary matrix

: singular value（non-negative）

Singular Value Decomposition(SVD) 

: standard choice



truncated SVD

Coarse-graining Tensor renormalization group (TRG)

PRL99,120601(2007)



truncated SVD

Coarse-graining Tensor renormalization group (TRG)

PRL99,120601(2007)

SVD



truncated SVD

Coarse-graining Tensor renormalization group (TRG)

PRL99,120601(2007)

SVD



contraction

renormalization!

Coarse-graining Tensor renormalization group (TRG)

PRL99,120601(2007)

contractSVD



rotationrescale

SVD contract

Repeating this cycle, 

one can attain large volume

Coarse-graining Tensor renormalization group (TRG)

PRL99,120601(2007)



Summary (so far)
• Tensor network is free of sign problem

• Key point of coarse-graining scheme is information 

compression based on singular value decomposition

• For Langrangian approach, improvement of coarse-graining 

algorithm is essential

• 4D system with simple d.o.f. is now feasible



All-mode renormalization
PRD107,114515(2023)



Lagragian approach

Information compression based on 
truncated singular value decomposition

=

Coarse-graining by TRG

Periodic BC

Levin+Nave 2007



Systematic error
• Coarse-graining algorithms for tensor network use 

truncated singular value decomposition to reduce 

computational cost


• However, the truncation introduces systematic error　
Furthermore, iterations accumulate systematic errors


• Can we reduce the systematic errors?


• Stochastic method can remove the systematic errors 
Ferris 2015



Truncated SVD

⇒

low mode



Using stochastic noise

: stochastic noise : # of noise𝑁r

(dimension of noise vector)

low mode



Using stochastic noise

all lower modes are included

 : # of noise𝑁r

(dimension of noise vector)
: stochastic noise

low mode



SVD + stochastic noise

Larger modes are exactly included

All lower modes are included in 
combined with stochastic noise

To reduce the error we need 

 : noise dim.𝑁r

This is NOT practically useful

all modes are included Foley+ 2005



Ensemble of noises
Ensemble of noises

with fixed for

with

Ferris arXiv:1507.00767No autocorrelation, Parallelizable

⇒ With finite  , the decomposition becomes exact for 𝐷cut 𝑁 → ∞

On the error

moreover,



Application to TRG

• Position-dependent noise Ferris arXiv:1507.00767 different probability distribution

noises are generated independently for each site

= position-dependent noise

TRG
truncated SVD 　⇒    SVD + stochastic noise

replace Noise ensemble method



TRG + Position-dependent noise
• Ising on square lattice

•
•    (  : # of RG steps)

•
•  : # of samples

𝑇 = 𝑇𝑐
𝑉 = 2𝑛 𝑛
𝐷cut = 𝐷svd + 𝑁𝑟 = 2 + 1
𝑁

 : free energy𝑓

exact value at finite volume 
Kaufman 1949

Onsager 1944



Application to TRG

• Position-dependent noise

– No systematic error.  Only statistical error


– Cost :      → 
high cost!


• Common noise

– Introduce even-odd correlated noise


– Cost : 


– New systematic error 

𝑂(𝐷6
cut 𝑁 𝑉) 𝑁: # of samples,  𝑉: volume

𝑂(𝐷6
cut 𝑁 log𝑉 ) 

~ 1/𝑁r
(  : noise dim.)𝑁r

Ferris arXiv:1507.00767 different probability distribution



TRG + Common noise

10 15 20 25 30 35 40 45 50 55 60
Dsvd + Nr

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

TRG
fV (log<Z>)

fV (<logZ>)

fV (<logZ>) -checkerboard

• Ising on square lattice

•
•
•
•  samples

𝑇 = 𝑇𝑐
𝑉 = 250

𝐷cut = 𝐷svd + 4
𝑁 = 100

TRG ⇔ 𝑁𝑟 = 0

 : free energy𝑓

 (𝑁r = 4)



 vs. Temperature𝛿𝑓
• Ising on square lattice

• TRG + Common noise

•
•
•  samples

𝐷cut = 50
𝑉 = 230

𝑁 = 100



Gilt-TNR + common noise

5 10 15 20 25 30 35
Dsvd + Nr

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

TRG
Gilt-TNR
our result (Nr=1)
our result (Nr=4)

• Ising on square lattice

•
•
•  
•  samples

•  : threshold 

parameter for Gilt

𝑇 = 𝑇𝑐
𝑉 = 251

𝐷cut = 𝐷svd+ 𝑁r
𝑁 = 100
𝜀 = 8 × 10−8

Gilt-TNR : sophisticated coarse-graining algorithm

Hauru+Delcamp+Mizera 2018



Summary

• Stochastic noise removes systematic error in tensor 
(matrix) decomposition at the expense of statistical 
errors


• Position-dependent noise is free of systematic 
error but expensive


• Common noise is relatively cheap and shows better 
accuracy and simple error scaling


• Our stochastic method is easily applicable to all 
truncated SVD steps in coarse-graining algorithms.



Backup slides



Flow of singular values
• Ising on square lattice

• TRG + position-dep. noise

• = # of RG step

•
• 500 statistics

𝑛
𝐷cut = 7 + 1



Position-dependent noise
• Ising on square lattice

•
•
•
• = # of samples

𝑇 = 𝑇𝑐
𝑉 = 230

𝐷cut = 2 + 1
𝑁



Performance of common noise
• Ising on square lattice

•
•
•
• = # of samples

𝑇 = 𝑇𝑐
𝑉 = 230

𝐷cut = 𝐷svd + 4
𝑁



Systematic error for common noise

0 0.1 0.2 0.3 0.4 0.5
1/Nr

-2.10965257

-2.10965256

-2.10965255

-2.10965254

-2.10965253

common noise
fit

0 0.1 0.2 0.3 0.4 0.5
1/Nr

-2.10965145

-2.10965140

-2.10965135

-2.10965130

-2.10965125

-2.10965120

-2.10965115

-2.10965110

common noise
linear
quadratic
cubic

• Ising on square lattice

• TRG + Common noise

•
• = 5000 statistics

𝐷cut = 20 + 𝑁r
𝑁

 scaling is observed1/𝑁𝑟



Common noise results

0 50 100
sample

-2e-07

-1.5e-07

-1e-07

-5e-08

0

5e-08

1e-07

1.5e-07

2e-07

Dsvd=46, Nr=4
TRG (Dsvd=50, Nr=0)

0 4 8 12 16 20 24 28 32 36 40 44 48
n

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

Dsvd=50, Nr=0
Dsvd=46, Nr=4
Dsvd=34, Nr=16
Dsvd=18, Nr=32
Dsvd=10, Nr=40
Dsvd=2, Nr=48

• Ising on square lattice

• TRG + Common noise

•
•

𝑇 = 𝑇𝑐
𝐷cut = 𝐷svd + 𝑁𝑟



Noise correlation for common noise



Tensor network rep. of Z
• Scalar field (non-compact)


– Orthonormal basis expansion

Shimizu mod.phys.lett. A27,1250035(2012), Lay & Rundnick PRL88,057203(2002)

– Gauss Hermite quadrature Sakai et al., JHEP03(2018)141


• Gauge field (compact : SU(N), CP(N) etc.)


– Character expansion : maintain symmetry, better convergence   
Meurice et al., PRD88,056005(2013)


• Fermion field (Dirac/Majorana)

        Shimizu & Kuramashi PRD90,014508(2014), ST & Yoshimura PTEP(2015)043B01


– Grassmann number θ2=0 -> finite sum

depends on property of field and interaction

In principle, we can treat any fields

We will see later!


