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l. Introduction



Energy in general relativity

Einstein equation

1 U L 1 5Smatter
By — §gWR + Mgy = 26T} (@) = V=9 G ()
gravity matter k := 471G energy momentum tensor (EMT)
g,,(x): metric ds® = g, (x)dzt dz”
v, covariant derivative V' =o7  + 1,00 fou = Oy
. 1 v
I, Christoffer symbol [ = 59“ [9v8.0 + Gav,g — Japrv] —— V,gas =0
R, Reimann curvature  [V,,V,]v, = Ruva"vg
R, Riccli tensor R, = R,a" R: scalar curvature R=g¢""R,.

A: cosmological constant g :=det g,



1
RMV — §9MVR + Ag'u,/ = QKJT/“/

Bianchi identity

1
Vi (R“,, — 555}3) =0 » VMT“V — (0  covariant conservation

However what we need for a conserved chargeis  9,(v/—¢gT",) =0

: —
but in general  9,(v—9¢T",) #0  even though VHT“V — 0

What is a (conserved) energy in GR ?



(Textbook) answers

Traditional give up covariance Landau-Lifshitz, Weber, NI, Weinberg, Misner-Thorne-Wheeler, ---

Jd, [\/ —g(T" , + t”y)\ =0 modify the EMT to satisfy the conservation law. Einstein

t,, 1s not covariant (pseudo-tensor). gravitational energy ? (Einstein)

E = J d°’x,/—g(T" +1t* ) more than 2 particles, Cartesian, asymptotic flat, -
y

This violates the fundamental principle of GR.

Modern| give up a local definition of energy Wald, ---

E = / dS (quasi-local energy) < » F = / dV (W)
T— 00

Komar, Bondi, Arnowitt-Deser-Misner, Gibbons-Hawking,  No local gravitational energy ?
Brown-York

No unified definition (case by case). asymptotic behavior, subtraction

Both are not satisfactory. Alternative ?



Plan of my talk
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ll. Noether’s 2nd theorem and conserved charges in general relativity
lI.1. Noether’s 2nd theorem in general relativity
I.2. Non-covariant conserved charge: pseudo-tensor
1.3. Covariant conserved charge: Komar integral
I.4. Cautions on charges from Noether’s 2nd theorem
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ll. Noether’s 2nd theorem
and conserved charges
In general relativity

S. Aoki and T. Onogi, “Conserved non-Noether charge in general relativity:
Physical definition vs. Noether's 2nd theorem?,
arXiv:2201.09557[hep-th]..



II.1. Noether’s 2nd theorem in general relativity

NILEERE "—AHEXE IR R. Utiyama, PTP 72 (1984) 83.




Lagrangian density L=Lg+ Ly

1

Lg = %\/—g(R — 2A) Einstein-Hilbert action
Ly =+v/—g [—%guyﬁﬂgbﬁygb —Vi(g) scalar theory

Action 592/ dz L
Y

variation 464, 45 =0 —— equation of motion (EOM)

N 1
Eg = J (RW — 59" (R —24) - 2/@T“”> =0
K

By = V=g (V, V"¢ —V'(§)) =0



Invariance under “gauge” transformation

(infinitesimal) general coordinate transformation
ozt = (a')M — 2t = ¢ (x)
0¢(x) == ¢'(z) — p(x) =0
09 (%) := g1, (') = g (1) = =€ (%) gaw () — €% 0 (%) gpa(T)

Invariance  0Sq = / Az % [20u(EE 9va) — B Guv.a — EsOad) +/ d*x 0, J"[€] = 0
Q Q

(1) boundary of Q2 red) EM(x)=¢&" o(x)=¢E o5(x) =0

arbitrary choice of 2

* [Za,u (Egygua) — Egyg,uv,a — E¢8a¢] =0 d constraints

(2) arbitrary &* and (2

» 0uJ"E] =0 conserved




conserved current from Noether’s 2nd theorem
JHE = 5TV, [VIHE] = AME 4 BRE o 4+ COFPE g

0,A", =0 conserved

OuJ"[€] =0 * APy + 0,BYM =0

arbitrary & B*,% + BY,* +203CP F* =

Cﬂyaﬁ 4+ C’Byﬂa 4+ C’QVBM — 0

|

. ~ 1 1 . .
AF, = —9,B**. B P = §B[O‘V“] _ 5050[0‘,/‘]5 total derivative

These conservation equations hold for arbitrary off-shell g, ¢

without using EOM.



II.2. Non-covariant conserved charge:
pseudo-tensor

S. Aoki and T. Onogi, “Conserved non-Noether charge in general relativity:
Physical definition vs. Noether's 2nd theorem?,
arXiv:2201.09557[hep-th]..



non-covariant off-shell conserved current density

ar, = YL oRM, 4 g o], |~ g7 Th,
2K
OM = O0M, @ >y, © Xy, boundaries
oM,

0=/ dda;aMAu,,:/

M S,

» Qpseudo,v (t) = / (d*'x), A%, conserved
2t

@), - [

e

oM,
= 0 on OM,

tq




AP, = /g (T“’,/ - tMV)

FOM Bt =0 *

_1
9k

55 amB
R, + (R — 2A) + g*°T

th, - 5 Bu.a

_ gaﬁrﬂ

af,v

Einstein’s pseudo-tensor

energy of gravitational field 7

conserved energy from pseudo-tensor

Epseudo — / [dd_lx]O\/ —dg (TOO + tOO) — / [dd_zm]OkBkOO
X

0%

quasi-local expression

Aty = —0,B°



II.3. Covariant conserved charge:
Komar integral

S. Aoki and T. Onogi, “Conserved non-Noether charge in general relativity:
Physical definition vs. Noether's 2nd theorem?,
arXiv:2201.09557[hep-th]..



Covariant off-shell conserved current density

1
THE = 5 V=gV, [V 0,741 = 0
Conserved charge (Komar integral) Komar, PR113(1959)934
1
Quomanlé] = [ [ al, 716 = o [ (a2l
> 2/1 %

quasi-local expression

A different choice of ¢ gives a different conserved charge.



11.3.1 Komar energy JH[E] = irv {V[“ﬁ ]

¢ o Killing vector V.6, +V,E, =0

Isometry: metric is invariant under the general coordinate transformation by &

EKomar — l /E[ddlw],u\/?gR'uV'SV T /E[ddlx],u\/?g [2T'LLV§V T TQT&LL =+

A R

Einstein equation R —

Killing vector

V, Vel = 2ghay V67 = 2gH4 [V, Vo ]E¥ = 2RM, &Y

-

lim EKomar 7é Eﬂat

k—0




I1.3.2 Wald entropy  Swald = Qkomar[§ =t + Qu¢] Wald, PRD48 (1993)R3427

t* . stationary Killing vector p" . axial Killing vector Qg : angular velocity

11.3.3 Energy from asymptotic symmetry

Easym — QKomar [77]

n” . asymptotic time-like Killing vector(V 5, + V, n, =0 at spacial infinity).
asymptotically flat:  Poincare group ADM energy
asymptotically de Sitter:  SO(d, 1)

asymptotically Anti de Sitter: S0O(d,2)



1.4 Cautions on charges
from Noether’s 2nd theorem



The current associated with local symmetries always conserved without using
equations of motion.

Thus conservations of “energy” are merely identities and do not reflect dynamical
properties of the system.

In addition, these charges from the Noether’s 2nd theorem are easily modified by

an arbitrary total derivative, which can be added without changing equations of
motion.

L= L+0,(V=gK") el = T+ V=g [¢V, K — K1 ,¢|
pseudo-tensor non-covariant, ambiguity by total derivative
Komar integral covariant, ambiguity by total derivative and &

In « — 0 limit, they DON'T reduce to energy in the flat spacetime.



lll. Our physical definition
VS.
Noether’s 2nd theorem
In general relativity

S. Aoki and T. Onogi, “Conserved non-Noether charge in general relativity:
Physical definition vs. Noether's 2nd theorem?,
arXiv:2201.09557[hep-th]..



[ll.T Our proposal for
conserved non-Noether charge

S. Aoki, T. Onogi and S. Yokoyama,
“Charge conservation, Entropy, and Gravitation”,
Int. J. Mod. Phys. A36 (2021)2150201, arXiv:2010.07660[gr-qgc].



construct covariantly conserved current from EMT  J¥ :=T# ¢* v, 7", =0

condition [Vﬂﬂ‘ =TV, (" = OJ solution ¢* always exists

@ V' = (V/LTMV)CV + 1",V ("
=0

conserved charge [Q[C] :/E[dxd_l]u‘v _gT“vCVJ covariant

() Va6 = VEgTuT ) = 0

1
Vi Jt = \/——798”(\/ —gJ")  holds for an arbitrary vector



[1l.2. Energy conservation by symmetry

S. Aoki, T. Onogi and S. Yokoyama,
“Conserved charge in general relativity”,
Int. J. Mod. Phys. A36 (2021) 2150098, arXiv:2005.13233[gr-gc].



Lie derivative with vector & Zeg,, =V, E +V, &,

Killing vector V, & +V,§, =0 ——  Symmetry (isometry) in GR

1
take (¢ =& —— ™,V (" = ETW( V.i$ +V,E)=0

energy E = / [dx® 1), /—gT*",&" gv : "time-like™ Killing vector
by

This energy is conserved as a charge from Noether’'s 1st theorem for a symmetry
generated by & acting on a fixed background metric g,

This gives a covariant and universal definition of a total energy.
In «x — 0, It reduces to the standard one in the flat spacetime.



E = / [dz® 1), /—gT",&" Conserved energy with a Killing vector
b

This definition has been found In some literature:

1. V. Fock, TheTheory of Space, Time and Gravitation (Pergamon Press, New York 1959)

2. A. Tautman, Kings Collage lecture notes on general relativity,

mimeographed note (unpublished), May-June 1958; Gen. Res. Grav. 34 (2002), 721-762,
Fock’s book was cited.

3. A. Tautman’s lecture notes was cited by Komar in PRD127(1962)1411.

However, this definition was forgotten in major textbooks (e.g. Landau-Lifshitz)
except a few.

4. R. Wald, General Relativity (The University of Chicago Press, Chicago, 1984),
p.286, footnote 3.

See also Hawking Ellis, lecture notes by Blau; Shiromizu, Sekiguchi (Japanese).

No applications. Let's try using this.



l1.2.1 Vacuum energy

1 2A7r?
i ds? = — dz®)? + dr? 4+ r?dQ)? =1-
Metric S f(r)(dz”) F(r) romrddig_o f(r) (d—2)(d—1)
1
- Ry — §9WR + Agu =0
“time-like” Killing vector & = - §;
by definition EY3 =0
on the other hand
vac __ rvac L QAQd—Q > d—9 = ( A=0
pseudo_EKomar__(d_Q)/i/O drr { — —A X 00 A#O
27_‘_d,gl




l1.2.1 Schwarzschild black hole energy

Metric  ds? = — (1 + u)dt? — 2udrdr + (1 — w)dr? + rzdﬂg_z
Eddington-Finkelstein coordinates

2AF?

u(r) := ou(r) — d-2d-1

Su(r) := — 2GMO(r) 6(r) with 6(0) = 0 handles singularity at »r =0
rd-3

constant r surface is always space-like even inside the horizon

1
@ normal vector n, = ——7 0y, n,nt = —1 time-like

— U



A = 0 Kruskal-like coordinate

r constant surface
normal to n,

"y normal vector




2G M 2A7r?
"time-like Killing vector g = —of e =—(1+u) = 3 T - 2)(7;1 1 1

Remarks 1. Killing vector becomes space-like inside the horizon

2. In dS space, Killing vector also becomes space-like outside
the cosmological horizon.

Energy of black hole

EBH — —/ Cld'_lilﬁ \/ —gTTT
T:fix

1
R,uy — §g'u]/R + Ag’uy — 87TGdT/“/

T, =0atr#0

EMT of black hole 7



EMT for black hole

d—2 0, (r¢=35u) (d—2)M 6(r)

T _ T d—3 .
e ™= T", r2ou(r) = —2GMO(r)
i _ 1 0?(r?35u) 1 0,6()
" 16nG rd-3 81 rd-3
1. This result is know at d=4 in the distributional approach O(r) = (A = 0)

Balasin-Nachbagauer, Class. Quant. Grav. 10 (1993) 2271.

2. EMT is well-defined in the distributional sense without a product of § functions

c.f. Geroch-Traschen, Conf. Proc. C 861214 (1986) 138.

3. black hole has non-perfect fluid EMT at r =0

— Dblack hole is not a vacuum solution to the Einstein equation

cf. Coulomb potential by a point charge is NOT a vacuum solution to Maxwell eaq.

V2<l>=o r#0 —o» V2<l>o<5(x)

r r



energy of black hole

Egur =~ / A"t —gT"; = (d = 2)a— / N drd, (MO(r)) = (d = 2)

8T 0 1

M

cf. pseudo/Komar(ADM) energy

d—3)Qy_
B0 = Bl = TN 4 B
T
— EIP()(EImar o EIV(E?)Cmar _ 2(d T 3)
EBH d— 2

our

=1 only at d=4



[1.3. Energy conservation without symmetry

S. Aoki, T. Onogi and S. Yokoyama,
“Charge conservation, Entropy, and Gravitation”,
Int. J. Mod. Phys. A36 (2021)2150201, arXiv:2010.07660[gr-qgc].



If &# = -8 Is not a Killing vector but the metric satisfies

TH,V & = —TH, T =0

E = _/ d¥ov/—g T gives a conserved energy without symmetry.
(o)



Gravitational collapse for thick light shell

gudrtdr” = —(1+ w)dr® — 2udrdr + (1 — w)dr® + r*g;;dz"dz’ Eddington-Finkelstein
( MO(r), T+r > A, I Schwarzschild
m(r, +7r :
u(r,7) = — T(d_;-), m(r,7) = ¢ MO(r)F (TA ) ,0<7+7r>A Il Light shell
T+r <A, I1T Minkowski

Inll, & = — 6 Is not Killing,

but 7#,V,&" = — T,I* = 0.

[ll. Mink Ki
e o (@d=2 (), (d=2) [(P), 2w),
07 H6rG  rd—2 " 16nG rd—2 r
d—2)(u), .
o _ =@, _ o



Conserved energy  E(r) = —/dd_lx V=gT% = d 162)?‘2 /Oo dr [m(r,7)],, Vi_g := /dd—% V7,
n 0

e(r)

3)

A
- \d hd 2)
. \\C r . -

S e ——

b\\\ THr=" b . K

a\ T+r=20 ¢
_ A—T _
1) r<0  Er) ==\ 126):2%_2 /_ ar 0, (0F) = féfévd—? — £, light-shell

0,(0F) = 6(r)F + O,F > E(r) = P [F (%) + {F(l) —F (%) H = Fio,
BH light-shell

3) T > A E(T) = Etot/ d?“é(’]") — Etot BH
0



(d—2)Qqs

Eour —
ST

M

cf. energy from Noether’s 2nd theorem

(d —3)Qu_s

Eond =
2nd A

M + E503



[1.4. Conservation charge
In the absence of energy conservation

S. Aoki, T. Onogi and S. Yokoyama,
“Charge conservation, Entropy, and Gravitation”,
Int. J. Mod. Phys. A36 (2021)2150201, arXiv:2010.07660[gr-qgc].



A solution ¢* to 7%,V (¥ =0

: : . : dxt
Introduce a parameter 5 to define a time direction as v# := ) .

1st order linear PDE

Af(z) ==T", (x)v"(z), B(z):=T",(x)0"(x)+ T, ()7 0" (7)
If an initial value p(x°,"x") is given at some x"

—> A solution exists (unless A%x) identically vanishes).

For a spherically symmetric system, a solution is known as a Kodama vector.
Kodama’80

There exists a generalized conserved charge without symmetry in GR.



Homogeneous and Isotropic expanding Universe
ds* = —(dz°)* + a*(2")gs;da’ dx? Freedman-Lemaitre-Robertson-Walker metric

Rij = (d — 2)kg; k = 1(sphere), 0(flat), -1(hyperbolic)

EMT (perfect fluid) — T% = —p&°), T'. = P&, T = T, = 0

conservation V,T%, =0 —— j4(d=1D(p+P)Z=0
a
Energy E’) :=— [a’d_lx —gT% =V, _a™p, V, = [dd_lx\/g

E a P
— > —=—d-1)——#0 not conserved
E ap

THV,C =0 ==pat  ———s T f =TT = pf— (d = DPEp =0

charge S(x¥) = Jdd_lx \/—8(=T B =V, ja®'pp

E

/i aP Pa
—> —=— 4 —=—d-1)—+[d-1)——=0 conserved |
S E f a p p a



Physical interpretation of the generalized energy

charge density energy density volume density
s(x%) = e(x*)B") e(x") = p(r(x") p(x%) = a(x%)!
_ ds _ de ap [ de dv
ﬁ_ﬁﬁ_l_eﬁ_ ﬁ""Pﬁ p - Tds = de + Pdv

st law of thermodynamics

1
_/ S entropy ﬁ=? inverse temperature

c.f. Gravity is an entropic force (emergent gravity) Jacobson'95, Verlinde'11

Entropy of the Universe is conserved during its expansion.

' Pa . .
b = (d - 1)—ﬁ > (0 —> Temperature of the Universe decreases as it expands,
a
P SO as to conserve the total entropy.



Noether charge from 2nd theorem

pseudo-tensor A% = —”;g {ZROO + gOOTgO,a — gaﬁrgﬁ,o} = (

2
——  Eiuie =0
. 1
Komar integral JH[E] = E\/—gvy[v[ﬂgv]] et = ~y(z%, )k

boundary condition at r = r (spatial infinity/boundary)

lim 7972y/1 — kr20,~(z%,7) = 0

Q B =70
EFLRW _ /dd—liO(x) _ §R2ad_3(560)7“d_2\/1 - k?“2ar’}/(£€0,7°) — 0

Both are conserved but physically trivial |



V. Summary and discussion



Summary

Conserved charges from Noether’s 2nd theorem are unphysical.

pseudo-tensor non-covariant, ambiguity by total derivative

Komar integral  covariant, ambiguity by total derivative and &

In x — 0 limit, they DON'T reduce to energy in the flat spacetime.

We have proposed a conserved charge without symmetry (hnon-Noether charge),
iIn general relativity, which can be identified as entropy.

Thus, entropy IS a source of gravity_ c.f. Jacobson’95, Verlinde’l 1, * gravity is an entropic force”.

A total entropy in the whole system is always conserved, as nothing can escape
from a censorship of gravity. TRl LCRS X3

At the same time, (local) temperature can be defined so as to conserve entropy
In a gravitational system.



Discussions (my personal view)

Since our entropy is defined from EMT, gravitational fields with 7, , =0 can not
carry entropy. Thus entropy Is a quantity associated with matters.

1
R’uy — §9W/R -+ Ag’u,/ = ZI{TNV

If T,,=0in a system at an initial x°, it remains so at late x° .

Further studies

initial temperature of matter How can we determine it from EMT 7

binary stars How do they loose “energy” to merge 7

colliding gravitational waves How do they become BH 7



Quantum gravity

Gravitational fields classically carry no energy/entropy.

No exchange of energy/entropy between matters and gravitational fields.
Option 1

No quantum gravity.  Quantum matters and classical gravity.

Option 2
Quantum gravity: graviton without observed )on-shell) energy/entropy.

condition ?  {pure gravity | T,,|pure gravity) = 0



