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Introduction

QCD phase transition is important for cosmology:
Axiom abundance etc.

/Most radical scenario: [Witten,1984] \

If the phase transition is first order, the dark matter might
be produced purely by QCD phase transition.
&Several other conditions need to be satisfied.) /

The dark matter might be explained by the standard model!
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Introduction

Lattice simulations suggest that QCD phase transition
IS cross-over (i.e. no definite phase transition).

But it is not completely settled yet, especially
in the limit of small quark masses.

Therefore, it is desirable to study it by methods which
do not rely on numerical simulations.
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Introduction

A rough version of my claim
(I will explain more precise technical result later.)

a N

e Small quark mass approximation is good,
e Large N expansion is good,

then

k e QCD phase transition may be naturally first ordey
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Introduction

Both small quark mass approximation and
large N expansion are gualitatively very good
in QCD at zero temperature.

e Chiral perturbation theory,...

e Most mesons as gg (rather than ggqq), OZI rule,

e Simulation for pure Yang-Mills, AdS/CFT,...
(N.= 3 ~ o0)

C

Crossover phase transition may be in tension with those
good concepts of QCD and the argument | discuss later.
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't Hooft anomaly

't Hooft anomaly matching

/ UV: gauge fields + fermions with \
global symmetry F

lconfinement

IR: 77?7

\ Anomaly of F in UV = Anomaly of F in IR /
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't Hooft anomaly in QCD

't Hooft anomaly matching in QCD at zero temperature

In QCD, there exist perturbative triangle anomalies of
chiral symmetry  SU(Ny)r x SU(Ny)r

/ dr. : left-handed quarks, rotated by SU () L\
qr :right-handed quarks, rotated by SU(Ny)r

qL,R SU(Ny)L,R

SU(Nf)L.r qL R

dI..R

K ’ SU(Nf)L,R /
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't Hooft anomaly in QCD

UV:

IR:

The quarks have the 't Hooft anomaly

l confinement

If there is no chiral fermion,
the chiral symmetry must be spontaneously broken.
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't Hooft anomaly in QCD

't Hooft anomaly matching gives an important relation
between the two most important concepts in QCD:

Confinement —> Chiral symmetry
breaking

How about finite temperature?
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't Hooft anomaly in QCD

Finite temperature?

spacetime: R* — R® x S! S' : Wick-rotated
time direction

Unfortunately, the perturbative anomaly vanishes on R* :

é;l](pr)l%]{

St reduction) 0
f;lf(fo)l%}{

11/48




Anomaly at finite temperature

| will argue the existence of a subtler anomaly
at finite temperature if we include a small imaginary
chemical potential.

Confinement ) . Chiral symmetry
breaking

Anomaly at
finite temperature
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A problem in QCD

Confinement ) , Chiral symmetry
breaking

We want to study this relation at finite temperature.

However, a well-known problem is that “confinement” is
not well-defined in finite temperature QCD because
dynamical quarks can screen color fluxes.
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Pure Yang-Mills

Let us recall how to define confinement in pure Yang-Mills.

Finite temperature: 7 = tre " «—— R’ x §!

B =T""' :inverse temperature

< Polyakov loop: W = trP exp(zj{ A, dz") >
Sl

Wilson loop wrapping on the S*
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Pure Yang-Mills

Intuitively, the Polyakov loop behaves as

W ~ exp(—SE,)

E, :energy of a single probe quark

/Confinement - By —00 W =0

Qeconfinement - By <oo W #0

\___/
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Order parameter

So the Polyakov loop can be regarded as an
order parameter of confinement in pure-Yang-Mills.

How about QCD with dynamical quarks?

17/48



QCD

In QCD, the probe quark energy E, is always finite.

(g
Bound state £, < o
W
probe dynamical
quark anti-quark
Q q

The Polyakov loop W cannot be used to define
confinement phase. Always W # 0
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Imaginary chemical potential

To define confinement rigorously,
| slightly change the problem.

/ trexp(—0H) — trexp(—F8H + itupB) \

B :baryon number charge
k up - baryon imaginary chemical potential /

This changes the thermodynamics, but | will argue that
the effect of the imaginary chemical potential is subleading
in the large . expansion.
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Imaginary chemical potential

| take

(MB — W) [Roberge-Weiss,1986]

All gauge invariant composites have integer B € Z
Mesons: B =0 Baryons: B =1

However, quarks have fractional baryon numbers.
Quarks: B =1/N,

real for gauge invariant composites

exp(imB) = {

imaginary for colored quarks
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Criterion for confinement

-

W ~ exp(—BE, +inmB)

~

Q (g
WT T\
probe probe dynamical
quark quark anti-quark
( q
Im(W) # 0 Im(W) = 0
\deconfinement confinement

/
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Z » symmetry for confinement

W =1trP exp(i% A, dxt)
Sl

By flipping the direction of integration on S*, we get
W —- W=

This is a Z;symmetry.

The order parameter of this Z- is precisely Im(W)

Zo : Im(W) — —Im(W)
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Definition of confinement

We can summarize the above discussion as follows.

e There exists a Z, symmetry (flipping the S! direction)

e The imaginary part of the Polyakov loop Im(W)
IS charged under the Z-

e Confinement and deconfinement are distinguished by
Deconfinement: Im(W) #0 Zs broken
Confinement: Im(W)=0 Z, unbroken
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Remark on imaginary chemical

The effect of imaginary chemical potential is very
suppressed in the large N expansion:

effect of up Ny

total free energy N 3

This follows from the fact that
the baryon charge of quarks is 1/N,

Therefore, the situation at 4y = 7z should be similar
to up = 0 as far as large N expansion is
gualitatively good.
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Large N limit

At least for pure Yang-Mills, 3 ~ oo

Pressure
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Symmetry and Anomaly

Massless QCD at finite temperature with imaginary
chemical potential B = 7™ has (at least) two symmetries:

o Chiral symmetry SU(Ny¢)r x SU(Ny)r
e /s symmetry

ﬁ?esult : (derivation later) \

There exists a mixed 't Hooft anomaly between
\ chiral symmetry and Zs symmetry. /

This is a parity anomaly in 3-dimensions.
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Symmetry and Anomaly

Confinement | Anomaly | chiral symmetry
(Z, symmetry) | breaking

ﬁ?esult : (derivation later) \

There exists a mixed 't Hooft anomaly between
K chiral symmetry and Zs symmetry. /

This is a parity anomaly in 3-dimensions.
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Implications to phase transition

Let me discuss the implications of the anomaly to
QCD phase transition.

1" . temperature
A

Z2 broken
(deconfinement)

2?7?

)

1
N

b

chiral broken
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Implications to phase transition

Two critical temperatures:

Teniral : critical temperature for chiral symmetry

Taeconfine : critical temperature for Zo symmetry

Let us consider possible scenarios. Either

(1) Tdeconﬁne > Tchiral

(2) Tdeconﬁne < Tchiral

(3) Tdeconﬁne — L chiral
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Scenario 1

Cscenario 1. Tdeconﬁne > Tchiral)

1" :temperature

A

| Zs broken

Tdeconﬁne_

} Both symm. unbroken

1 Tchiral
chiral broken

We need complicated massless degrees of freedom
to match the anomaly.
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Scenario 2

Cscenario 2. Tdeconﬁne < Tchiral)
T

A

Z5 broken
(deconfinement)

Tchiral

—1

| Both symm. broken

Tdeconﬁne

chiral broken §

Chiral symmetry breaking (gg condensation)
happens in deconfinement phase.
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Scenario 3

Cscenario 3. Tdeconﬁne — L chiral )

1" :temperature

A

| Z broken
| (deconfinement)

Tchiral

Tdeconﬁne

chiral broken

It may be natural if the phase transition is first order
to avoid complicated d.o.f. at the critical temperature,
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Natural scenario?

There are many logical possibilities, but
a first order transition at a single critical temperature
may be the simplest (most natural) scenario.

Otherwise, the 't Hooft anomaly requires either
of the following:

(1) Complicated massless d.o.f. for anomaly matching
(2) gg condensation in deconfinement phase
(3) Something more complicated

For more details, please see [KY,2019].
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Implication for real QCD

Suppose the phase transition is first order for

m, = 0, Up =T

Then it is expected to remain first order for

as far as
m, <K A, I/N. < 1

1/N.

ﬂ\
2
order” | . my
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Reduction from 4 to 3 dim.

Thermodynamics is described by compactification

spacetime: R* — R’ x S*

In the absence of gauge fields,
fermions have anti-periodic boundary condition.

Uz, 74+ 6)=—V(x,T)

T : coordinate of S*
3 : circumference of S*
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Boundary condition

Gauge fields effectively changes the boundary condition.

U = Pexp(i;I{Aud:L‘“)

: Wilson line of gauge fields around S

G\ a gauge in which locally A, =0, \
Uz, 74+ 0)=-UY(z, 1)

\_ )

38/48



Boundary condition

The gauge field A consists of

Ac  :dynamical color SU(N,)gauge field
Ap :background baryon U(1)g gauge field

Imaginary baryon chemical potential :

,UB:%AB
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Boundary condition

, 1
U:Pexp(z%AC | N,

— ¢'hB/Ne p exp(i%AC)

TAp)

The determinant of U Is

det U = '#B
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Boundary condition

Focus attention to the case pup =7
detU p— ei’uB — —1

If U preserves the Z, symmetry of flipping S*,

U = diag(—1,---,—1,+1,--- ,+1)
Pl P—ed
K N, — K

detU = (-1)* = -1 : Kis odd.
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Boundary condition

K U(z, 7+ 0)=-U¥(z, 1) \

U =diag(—1,---,—1,+1,---,+1)
p— p—(
N AR

Among N. color components,

K components: periodic condition
N. — K components: anti-periodic condition

This means that K = odd fermions are massless in 3-dim.
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Massless fermion in 3-dim.

U= (Ur,Vgr) in 4-dim.

v

/K massless ¥ = (Yr,¥r) in 3-dim. \

Y1 : fundamental of SU(N¢)L
Yr :fundamental of SU(Ny)r

\_ /

KK modes are irrelevant for anomalies.

dimensional reduction
on S!
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Parity anomaly in 3-dim.

The following fact is known in 3-dim. : parity anomaly

gauge field, the parity transformation

Q anomalous for odd K .

ﬁthere IS K massless fermion coupled to an SU(Nf)\

r — —T (3-dim. Euclidean sense)

/

In other words, there is a mixed anomaly between
SU(Ny) and Parity
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Parity anomaly in 3-dim.

In our case:

K massless ¥ = (Yr,%¥Rr) in 3-dim.

Y1 : fundamental of SU(N¢)r
Yr :fundamental of SU(N¢)r

Kisoddfor up=m

Each chiral symmetry SU(N¢); r has parity anomaly.
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Parity anomaly in 3-dim.

Parity £ — — Iin 3d comes from Lorentz symmetry in 4d
" — —z* which flips the S'-direction.

This is the Z,-symmetry which | used for the
definition of confinement.

SUNp) X SUNy)g | &—| Z,-symmetry
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Summary

 There exists a subtle 't Hooft anomaly in finite
temperature QCD when an imaginary chemical
potential is introduced.

AnOmaly SU(Nf)L X SU(Nf)R

7,5 symmetr —
2>) / Chiral symmetry

Confinement

breaking

e A first order transition may be the most natural
scenario of QCD phase transition if large N
expansion and small quark mass approximation

are qualitatively good.
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