
ABC of modern HPC for LQCD
1. Modern CPU Architecture for LQCD

Issaku Kanamori (R-CCS)
Dec. 10, 2021 @ R-CCS

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 2 / 25

Outline

1. Motivation

2. Data access: memory hierarchy, cache, prefetch

3. SIMD: data layout

4. Pipeline

5. Summary, or tips for performance tunings

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 3 / 25

Motivation
● Lattice QCD simulation uses large computational resources

 performance is also important
● ambitious targets large lattice, fine lattice, high stats., light mass, etc.

● competition cross check is also important, but...

● finite time, money, power efficient use of computer

● Optimization of the simulation code is needed
● not everybody’s job: we also need people to analyze the data
● but it’s better to know what is behind the optimization

● which machine? is the performance reasonable? how much it can be
improved? what’s in the discussion for the next machine?

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 4 / 25

References
● A64FX: https://github.com/fujitsu/A64FX

 especally, A64FX_Microarchitecture_Manual_en_1.6.pdf there

● textbook of computer architecture:
 David A. Patterson and John L. Hennessy, “Computer Organization and Design”
 my version is a Japanese translation of the 5th edition (2014, Elsevier)
 コンピュータの構成と設計第 5 版 上・下 日経 BP 社 （ 2014 ）
 the latest is the 6th edition (2020, Morgan Kaufmann) [Japanese translation: 2021]

https://github.com/fujitsu/A64FX

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 5 / 25

Data access
● time scale of the CPU core: cycle ~ 10-9 sec.

 Fugaku (2GHz): 1/(2x109) = 0.5x10-9 sec.
● main memory: O(100) cycles to access

 arithmetic is O(1) cycle, memory is too slow (high latency)
 Fugaku: 271-289 cycles
 theoretical peak of single core of Fugaku: 8640 floating point operations in 270 cycles
 8 (SIMD) x 2 (FMA) x 2 (pipeline) x 270 (cycle) = 8640
 Spending ~1/300 of computation time without computing? It is a big loss of opportunity!

● cache: “faster” (but smaller) memory between the CPU and the main
memory
 CPU, L1 cache, L2 cache, L3 cache, main memory
 last level cache

 Fugaku has no L3 cache so L2 is the last level cache

CPUmemory

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 6 / 25

Cache memory
● L2 cache (and L3 cache): lower latency, recently used data is left
● L1 cache: much lower latency (but size is much smaller)

Fugaku

● to hide the latency, data can be prefetched
 hardware prefetch,
 software prefetch (by compiler), manual prefetch

● (this is to see the typical time scale; prefetch tunings should be the last
step of the optimization)

main memory L2 cache L1 cache

latency (cycle) 271-289 45-56 5-11

size 32 GiB/cpu 8 MiB/CMG
(32 MiB/cpu)

16KiB/core
(768 KiB/cpu)

// sketch of L2 prefetch
for(i=0; i<N; i++){
 a[i]+=b[i];
 load (a[i+10], b[i+10]) to L2 (prefetch)
}

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 7 / 25

Cache line size
● size of data is read to cache simultaneously: cache line size

– Fugaku: 256 bytes (= 4 x 512 bits)
 continuous 256 bytes data is simultaneously read to the cache

– Discontinuous memory access wastes the memory band width
● 4 x 64 bytes data from single cache line: 256 bytes of read
● random access of 4 x 64 bytes date: 4 x 256 bytes of read

read to cache but not
used: 256-64 bytes

64 bytes used out of 256 bytes

cache line size

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 8 / 25

Memory band width and B/F
● Flop: count multiplication and summation (does not count)

 ex: 6 Flop

 8 Flop
Memory access: 1 double precision number is 8 byte

 ex: load: 48 bytes (a,b,c,d,x,y), store 16 bytes (c,d)
 64 bytes of memory access for 8 Flop
 byte-per-flop (B/F) is 8 cf. inner product in CG solver: load of (a,b,x,y), B/F=4

● B/F of recent machines is <=0.5 (sometimes <<0.5)
 memory bandwidth can be a bottleneck
 Fugaku: 0.33, Intel KNL: ~0.1 cf. FLOPS:

 Flop per second

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 9 / 25

B/F in LQCD QCD is memory bandwidth determining

It depends on the details of the implementation
● Wilson Dirac operator: B/F = 1.12 (Dirac rep.)

– 1368 Flop / site
– 1536 Byte / site

● Clover Dirac operator: B/F = 0.94 (Dirac rep.)
– 1944 Flop / site
– 1824 Byte / site

● Domainwall Dirac operator: B/F = 0.72 (Shamir, Ls=8)
– 11520 Flop / site
– 8256 Byte / site

Fugaku: B/F=0.33
KNL: B/F ~ 0.15

significantly smaller than
multiplication of the Dirac
operatoar.

since the peak
performance /node is roughly
the same, a naive estimate of
performace/node of LQCD is
 Fugaku ~ 2 x KNL

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 10 / 25

Roofline model
● from the B/F ratio, one can predict the performance (if the memory

access is the bottle neck)
● ex.

 Wilson mult [Fugaku]
 (0.33/1.12) x 3072
 = 900 GFlops /node

operation
density (F/B)

performance
(FLOPS)

theoretical
peak

limit due to
memory b.w.

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 11 / 25

SIMD
● To increase the performance of one processor

– increase frequency : stopped at 2-3 GHz heat

– increase number of cores (~ bundle several small CPUs into 1 processor):

 typical laptop: 2 cores, Fugaku: 48 (+2 or 4) cores, KNL: 64-68 cores
 memory/cache coherence to keep the consistency of the data in memory
 thread paralelization

– increase the data size processed simultaneously
 Single Instruction Multiple Data (SIMD)

cpu
core core

corecore

y

x

x+y

+ +

x1+y1

applies the same instruction (+) to
several numbers at once
Fugaku: (512bit)
 8 double / 16 float / 32 half prec.x2+y2 x3+y3 x4+y4

y1 y2 y3 y4

x1 x2 x3 x4

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 12 / 25

SIMD register

x1+y1 x2+y2 x3+y3 x4+y4

y1 y2 y3 y4

x1 x2 x3 x4 floating point
unit (FPU)

register 1

register 2

register 3

register:
● a piece of small memory in the core
● input/output of the FPU must be data in register (some can be in memory with Intel AVX-512)

1. load data from memory to register
2.arithmetics in FPU
3.store data from register to memory

● usually holds only 1 variable
● SIMD register: can holds several variables
● Fugaku has 32 registers for floating point operation for each core

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 13 / 25

memory

Data layout for SIMD

x1+y1 x2+y2 x3+y3 x4+y4

y1 y2 y3 y4

x1 x2 x3 x4 floating point
unit (FPU)

register 1

register 2

register 3

1. load data from memory to register
2.arithmetics in FPU
3.store data from register to memory

x1 x2 x3 x4 x5 x6 x7 ...

efficient
● continuous in the memory
● address is multiple of the register size (aligned)

not alignedx1 x2 x3 x4

x1

x2 x3 x4 not
continuous

(much) less efficient

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 14 / 25

Data layout for QCD
● std::complex<double> psi[site][spin][color]; // not good (array of structure)

in the meory:

● std::complex<double> psi[spin][color][site]; // better (structure of array)

a=1 a=2 a=3

spin=1 spin=2 spin=3 spin=4

a=1 a=2 a=3 a=1 a=2 a=3 a=1 a=2 a=3 a=1 a=2 a=3

spin=1 spin=2 spin=3 spin=4

a=1 a=2 a=3 a=1 a=2 a=3 a=1 a=2 a=3

site=0 site=1

single
instruction ???

site
 =0

site
 =1

site
 =2

site
 =3

site
 =4

site
 =5

site
 =0

site
 =1

site
 =2

site
 =3

site
 =4

site
 =5

site
 =0

site
 =1

site
 =2

site
 =3

site
 =4

site
 =5

site
 =0

site
 =1

site
 =0

site
 =1

site
 =0

site
 =1

a=1 a=2 a=3 a=1

spin=1 spin=2can easily fit to a
single instruction!

site
 =0

site
 =1

site
 =2

site
 =3

site
 =0

site
 =1

site
 =0

site
 =1

site
 =0

site
 =1

site
 =2

site
 =3

site
 =0

site
 =1

site
 =0

site
 =1

U(x=0,1,2,3)11 psi(x=0,1,2,3)1

x

for(spin){
 for(b=1,2,3){
 for(x){ psi’[spin][b][x] = 0; // SIMD vectorized}
 for(a=1,2,3){
 for(x){ // SIMD vectorized
 psi’[spin][b][x]+=U[b][a]*psi[spin][a][x];
}}}

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 15 / 25

Data layout for QCD
● std::complex<double> psi[site_out][spin][color][site_in]; // best

 site = (SIMD length) * site_out + site_in (array of structure of array)

site
 =0

site
 =1

site
 =2

site
 =3

site
 =0

site
 =1

site
 =2

site
 =3

site
 =0

site
 =1

site
 =2

site
 =3

site
 =0

site
 =1

site
 =0

site
 =1

a=1 a=2 a=3

spin=1 spin=2can easily fit to a
single instruction!

site
 =0

site
 =1

site
 =2

site
 =3

site
 =0

site
 =1

site
 =0

site
 =1

site
 =0

site
 =1

site
 =2

site
 =3

site
 =0

site
 =1

site
 =0

site
 =1

U(x=0,1,2,3)11 psi(x=0,1,2,3)1

x
for(site_out){
 for(spin){
 for(b=1,2,3){
 for(site_in){ psi’[spin][b][x] = 0; // SIMD vectorized }
 for(a=1,2,3){
 for(site_in){ // SIMD vectorized
 psi’[spin][b][x]+=U[b][a]*psi[spin][a][x];
}}}}

site
 =0

site
 =1

site
 =0

site
 =1

site
 =0

site
 =1

a=1

site
 =0

site
 =1

site
 =6

site
 =7

site
 =4

site
 =5

site
 =0

site
 =1

site
 =4

site
 =5

a=1 a=2

spin=1

site_out=0 site_out=1

● local volume must be multiple of the SIMD length
● above assumes (re,im) of complex number is the most inner

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 16 / 25

SIMD width
● Intel

– SSE, SSE2, SSE3 : 128 bits (= double x 2)
– AVX, AVX2 : 256 bits (= double x 4)
– AVX-512 : 512 bits (= double x8)
– different instructions for each SIMD width

● A64FX (Fugaku)
– Scalable Vector Extension with 512 bits
– SVE: the same instruction work for different SVE length (up to 2048 bits)

 mask operations for each lane in the SIMD registor

– (using instructions for fixed SVE length can be faster... cf. Grid with gcc)

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 17 / 25

Miscellaneous about SIMD
● Fused Multiple and Add (FMA) is available: ax+y in 1 instruction
● Optimized QCD code usually uses intrinsics for SIMD variables
● Compiler may automatically generate SIMDized binary, if the data

structure is proper (& simple) and the compiler clever enough
● on Fugaku, putting the real part and imaginary part of complex

numbers to different SIMD registers (left) is faster

● Way of packing site differs code to code
QWS: 1-dim, Bridge++: 2-dim tiling, Grid: to sub domains

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 18 / 25

Latency and pipeline
● each instruction takes several cycles (latency) [Fugaku]

1. load data from memory to register [8-11 cycles from L1 cache] intel 8

2. do some arithmetics [9 cycles for FMADD (ax+y)] intel 4-6

3. store data to memory [NA]
● c=ax+y >~ 20 cycles

load a to z0

load x to z1

z3=z0*z1+z2 store z3 to c

load y to z2

time

~20
cycles

2(FMA) x 8(SIMD)
FLOP in 19 cycles
(not 8x3+9 =33) loads are

pipelined

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 19 / 25

Pipeline
● for(i) { c[i]=a*x[i]+y[i]; }

load x[0] to z1

time

load a to z0

z3=z0*z1+z2 store z3 to c[0]

load y[0] to z2

load x[1] to z4

load y[1] to z5

z6=z0*z4+z5 store z6 to c[1]

load x[2] to z7

load y[2] to z8

z9=z0*z7+z8 store z9 to c[2]

1 set: load x 2, FMA x 1, store x 1
 if there are enough registers, 1 FMA in 4 cycles*

* the figure assumes load can be issued
simultaneously with FMA or store so
1 FMA in 2 cycles

i=0

i=1

i=2

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 20 / 25

Enough Registers?

● each register is occupied ~20 cycles (registers for c[i] are occupied less, though)

● each set uses 3 registers (x[i], y[i], c[i])
● If FMA is issued every 2 cycles, we need 10 sets (= 30 registers)
● If FMA is issued every cycle, we need 20 sets (= 60 registers)
● Fugaku: 32 registers so every 2 cycles at most for this loop
● More complicated loop body: more register hungry

 the complicated loop body itself may cause making pipeline difficult
 (loop fission technique) for(i){

 f(i);
 g(i);
}

// loop fission
for(i){ f(i); }
for(i){ g(i); }

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 21 / 25

Register spill
● limited number of registers:

 x=0.0; // register is assigned for x
 a1=b1*a0; a2=b2*a1; // several registers for these varialbes
 // Oh, no register is left;
 (store x to memory (L1 cache)) register spill !

 x+=a10; // !!! x is not in the register, need to load x from the memory

● even loading from L1 cache, it causes a significant penalty in the
performance

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 22 / 25

Out of order
● order of execution can be reordered

 z0=a[0];
 z1=b[0];
 z2=2*z0; // need to wait till z0 is ready
 z3=4*z1; // need to wait till z1 is ready

load a[0] to z0

z3=4*z1

z2=2*z0
load b[0] to z1 z1 is ready,

this one first

z0 is comes late,
this one later

 time

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 23 / 25

Summary, or Tips for tuning: 1
● Data access: bandwidth

– LQCD is memory bandwidth limited application
 B/F of Dirac op. mult ~ 1 >> typical CPUs
 (B/F of Fugaku ~ 0.3 is rather large nowadays)

– Once data is loaded to the cache, reuse it as much as possible
 loop tiling, cache blocking

● Data access: latency
– Main memory is far away: O(100) cycles
– data prefetch

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 24 / 25

● SIMD
– Without SIMD, the theoretical peak performance would be 1/8 (double

prec.) or 1/16 (single prec.)
– use SIMD friendly data layout: array of structure of array
– single perc. floating operation is x2 faster (half prec. x4 faster) than

double precision. Use mixed prec. algorithm

Summary, or Tips for tuning: 2

2021.12.10 I.Kanamori ABC of modern HPC for LQCD: 1 25 / 25

● Out-of-Order, Pipeline etc.
– Each instruction has latency, ~10 cycles on Fugaku (larger than intel)

– Execution order can be reordered to reduce waiting time of data
– Loop fission (or fusion), loop unrolling for pipeline execution

Summary, or Tips for tuning: 3

