Most charming dibaryon near unitarity

Takumi Doi

(RIKEN Nishina Center / iTHEMS)

2021/12/01

Seminar @ R-CCS / Field Theory Research Team (on-line)

The Odyssey from Quarks to Universe

directly based on QCD

What kind of particle can exist in nature?

What kind of dense matter can exist in nature?

Nuclear Forces: Foundation of nuclear physics

Neutron Stars

Super Novae

Various applications

Nuclear Forces play crucial roles

- Yet, no clear connection to QCD so far

Phen. NN potentials: #params = $30 \sim 40$ $\leftarrow \rightarrow$ QCD: #inputs = 4 : quark masses (m_u, m_d, m_s) & coupling α_s

Nuclear Forces → Baryon Forces (incl. Hyperons)

Neutron Number

Nuclear/Hyperon Forces -> Charmed Forces

Heavy quarks: New doorway to the mysteries of QCD

Many new exotic particles being reported!

e.g., Zc(3900) from HAL LQCD → threshold cusp Y. Ikeda et al. (HAL), PRL117(2016)242001

Hadrons to Atomic nuclei from Lattice QCD (HAL QCD Collaboration)

Y. Akahoshi, S. Aoki, K. Murakami, H. Nemura (YITP) T. Aoyama (KEK) T. Doi, T. Hatsuda, T. Miyamoto, T. Sugiura (RIKEN)

T. M. Doi, N. Ishii, K. Sasaki (Osaka Univ.)

F. Etminan (Univ. of Birjand)

Y. Ikeda (Kyushu Univ.)

T. Inoue (Nihon Univ.)

Y. Lyu (Peking Univ.)

Y. Lyu, H. Tong et al., PRL127(2021)072003

H. Tong (Tianjin Normal Univ.)

「20XX年宇宙の旅」 from Quarks to Universe

Lattice QCD First-principles calculation of QCD

 $Z = \int dU dq d\bar{q} \ e^{-S_E}$

- Well-defined reguralized system
- Gauge-invariance manifest
- Fully-Nonperturbative
- DoF ~ $10^9 \rightarrow$ Monte-Carlo w/ Euclid time

Inputs:

- quark masses m_q
- coupling constant $\alpha_s = g^2/4\pi$

Summary by Kronfeld, arXiv:1203.1204

Interactions on the Lattice

- Luscher's finite volume method
 - Phase shift & B.E. from temporal correlation in finite V

M.Luscher, CMP104(1986)177 CMP105(1986)153 NPB354(1991)531

HAL QCD method

- "Potential" from spacial (& temporal) correlation
- Phase shift & B.E. by solving Schrodinger eq in infinite V

Ishii-Aoki-Hatsuda, PRL99(2007)022001, PTP123(2010)89 HAL QCD Coll., PTEP2012(2012)01A105

Luscher's formula: Scatterings on the lattice

Consider Schrodinger eq at asymptotic region

 $(\nabla^2 + k^2)\psi_k(r) = mV_k(r)\psi_k(r)$ $V_k(r) = 0 \text{ for } r > R$

- (periodic) Boundary Condition in finite V
 → constraint on energies of the system
- Energy E and phase shift (at E) are related

$$E = 2\sqrt{m^2 + k^2} \qquad (\text{QFT: } \psi_k(r) \to \text{NBS w.f.})$$

$$k \cot \delta_{\mathbf{E}} = \frac{2}{\sqrt{\pi L}} Z_{00}(1; q^2), \quad q = \frac{kL}{2\pi}$$

$$Z_{00}(s; q^2) = \frac{1}{\sqrt{4\pi}} \sum_{\mathbf{n} \in \mathbf{Z}^3} \frac{1}{(\mathbf{n}^2 - q^2)^s}$$

Large V expansion

$$\Delta E = E - 2m = -\frac{4\pi \mathbf{a}}{mL^3} \left[1 + c_1 \frac{a}{L} + c_2 \left(\frac{a}{L}\right)^2 + \mathcal{O}(\frac{1}{L^3}) \right]$$

$$c_1, c_2: \text{ geometric constants}$$

a: scattering length

Examples of Luscher's formula

 Effective Range Expansion (ERE)
 k cot δ(k) = ¹/_a + ¹/₂ r k² + · · ·
 - "a" : scattering length, "r" : effective range

Unbound : 1/a > 0Bound : 1/a < 0

Unitary limit (side remarks)

• Effective Range Expansion (ERE)

$$k \cot \delta(k) = \frac{1}{\mathbf{a}} + \frac{1}{2} \mathbf{r} k^2 + \cdots$$

In the limit of a = infinity \rightarrow Just at the boundary of bound/unbound (more precisely, r/a = 0 limit)

Phase shifts (S-wave) at low energies become $\delta_0 = \pi/2$ Scattering cross section $\sigma = \frac{4\pi}{k^2} \sin^2 \delta_0$ takes maximal value

Physics becomes independent of details of potential only "a" controls the physics

Very active studies in various fields, e.g., cold atoms

As a dibaryon system, NN is known to be close to the unitary limit: r/a (dineutron) = 0.15, r/a (deuteron) = -0.32

[HAL QCD method]

- "Potential" defined through phase shifts (S-matrix)
- Nambu-Bethe-Salpeter (NBS) wave function

 $\psi(\vec{r}) = \langle 0 | N(\vec{x} + \vec{r}) N(\vec{x}) | N(k) N(-k); W \rangle$

$$(\nabla^2 + k^2)\psi(\vec{r}) = 0, \quad r > R \qquad W = 2\sqrt{m^2 + k^2}$$

– Wave function $\leftarrow \rightarrow$ phase shifts

$$\psi(r) \simeq A \frac{\sin(kr - l\pi/2 + \delta(k))}{kr}$$

(below inelastic threshold)

Extended to multi-particle systems

 M.Luscher, NPB354(1991)531
 Ishizuka, Pos LAT2009 (2009) 119

 C.-J.Lin et al., NPB619(2001)467
 Aoki-Hatsuda-Ishii PTP123(2010)89

 CP-PACS Coll., PRD71(2005)094504
 S.Aoki et al., PRD88(2013)014036

E E4

E3

E2

E1

E٥

"Potential" as a representation of S-matrix

Consider the wave function at "interacting region"

$$(\nabla^2 + k^2)\psi(\mathbf{r}) = m \int d\mathbf{r'} U(\mathbf{r}, \mathbf{r'})\psi(\mathbf{r'}), \quad \mathbf{r} < R$$

- U(r,r'): faithful to the phase shift by construction
 - U(r,r'): NOT an observable, but well defined
 - U(r,r'): E-independent, while non-local in general
 - "Proof of Existence": Explicit form can be given as

$$oxed{U(m{r},m{r}')} = rac{1}{m} \sum_{m{n,n'}}^{m{n_{ ext{th}}}} (
abla^2_{m{r}} + k_n^2) \psi_n(m{r}) \mathcal{N}_{nn'}^{-1} \psi_{n'}^*(m{r}') \quad \mathcal{N}_{nn'} = \int dm{r} \psi_n^*(m{r}) \psi_{n'}(m{r})$$

- Non-locality → derivative expansion Okubo-Marshak(1958)

$$U(\vec{r}, \vec{r'}) = \begin{bmatrix} V_c(r) + S_{12}V_T(r) + \vec{L} \cdot \vec{S}V_{LS}(r) + \mathcal{O}(\nabla^2) \end{bmatrix} \delta(\vec{r} - \vec{r'})$$

LO LO NLO NNLO

Aoki-Hatsuda-Ishii PTP123(2010)89 Check on convergence: K.Murano et al., PTP125(2011)1225 13

HAL QCD method

-20 L

100

200

 T_{lab} [MeV]

300

400

2

2.5

0.5

1

1.5

0

The Challenge in multi-baryons on the lattice

• Signal / Noise issue

Parisi ('84), Lepage ('89)

– G.S. saturation by t $\rightarrow \infty$ required in LQCD

$$G(r,t) = \langle 0 | \mathcal{O}(r,t) \overline{\mathcal{O}}(0) | 0 | \rangle = \sum_{n} \alpha_{n} \psi_{n}(r) e^{-E_{n}t} \xrightarrow[t \to \infty]{} \alpha_{0} \psi_{0}(r) e^{-E_{0}t}$$

each (dressed) quark propagator carries info of pions, nucleons, ... $- \qquad \sim \exp(-1/2 \mathbf{m}_{\pi} \mathbf{t}) + \exp(-1/3 \mathbf{m}_{N} \mathbf{t}) + \cdots$

a la D. Kaplan (via A. Walker-Loud)

<u>pion</u>

<u>quark</u>

signal from the lowest (=dominant) mode $\frac{\text{Signal}}{\text{Noise}} \sim \frac{\langle \pi(t)\pi(0) \rangle}{\sqrt{\langle \pi\pi(t)\pi\pi(0) \rangle}} \sim \frac{\exp(-\mathbf{m}_{\pi}\mathbf{t})}{\sqrt{\exp(-2\mathbf{m}_{\pi}\mathbf{t})}} \sim \text{const.}$

nucleon

small signal after the cancellation of dominant modes

$$\frac{\text{Signal}}{\text{Noise}} \sim \frac{\langle N^{\mathbf{A}}(t)\bar{N}^{\mathbf{A}}(0)\rangle}{\sqrt{\langle |N^{\mathbf{A}}(t)\bar{N}^{\mathbf{A}}(0)|^{2}\rangle}} \sim \frac{\exp(-\mathbf{A}\mathbf{m}_{\mathbf{N}}\mathbf{t})}{\sqrt{\exp(-3\mathbf{A}\mathbf{m}_{\pi}\mathbf{t})}}$$
$$\rightarrow \exp[-\mathbf{A}(\mathbf{m}_{\mathbf{N}}-\mathbf{3}/2\mathbf{m}_{\pi})\mathbf{t}]$$

(A: mass number)

The Challenge in multi-baryons on the lattice

Existence of elastic scatt. states

- → (almost) No Excitation Energy
- ➔ LQCD method based on G.S. saturation impossible

Signal/Noise issue

 $S/N \sim \exp[-\mathbf{A} imes (\mathbf{m_N} - \mathbf{3}/\mathbf{2m}_\pi) imes \mathbf{t}]$ Parisi ('84), Lepage('89)

L=8fm @ physical point $(E_1 - E_0) \simeq 25 \text{MeV} \Longrightarrow t > 10 \text{fm}$ $S/N \sim 10^{-32}$

<u>Naïve plateau fitting at t ~ 1fm is unreliable ("mirage" of true signal)</u>

T. Iritani et al. (HAL) JHEP1610(2016)101 T. Iritani et al. (HAL) PRD96(2017)034521

Time-dependent HAL method

N.Ishii et al. (HAL QCD Coll.) PLB712(2012)437

Coupled Channel formalism

←→ above inelastic threshold

potential

E-indep of potential U(r,r') \rightarrow (excited) scatt states share the same U(r,r')They are not contaminations, but signals

Original (t-indep) HAL method

 $G_{NN}(\vec{r},t) = \langle 0|N(\vec{r},t)N(\vec{0},t)\overline{\mathcal{J}_{\rm Src}(t_0)}|0\rangle$ $R(\mathbf{r},t) \equiv G_{NN}(\mathbf{r},t)/G_N(t)^2 = \sum A_{W_i} \psi_{W_i}(\mathbf{r}) e^{-(W_i - 2m)t}$ ← Many states contribute $\int d\mathbf{r}' U(\mathbf{r}, \mathbf{r}') \underline{\psi}_{W_0}(\mathbf{r}') = (\underline{E}_{W_0} - H_0) \underline{\psi}_{W_0}(\mathbf{r})$ $\int d\boldsymbol{r}' \boldsymbol{U}(\boldsymbol{r}, \boldsymbol{r}') \underline{\psi}_{W_1}(\boldsymbol{r}') = (\underline{E}_{W_1} - H_0) \underline{\psi}_{W_1}(\boldsymbol{r})$

New t-dep HAL method

All equations can be combined as

 $\int d\mathbf{r}' \mathbf{U}(\mathbf{r},\mathbf{r}') \underline{R}(\mathbf{r}',t) = \left(-\frac{\partial}{\partial t} + \frac{1}{4m}\frac{\partial^2}{\partial t^2} - H_0\right) \underline{R}(\mathbf{r},t)$ Inelastic ΝΝπ Elastic G.S. saturation -> "Elastic state" saturation NN

[Exponential Improvement]

The Challenge in multi-baryons on the lattice

Existence of elastic scatt. states

- → (almost) No Excitation Energy
- → LQCD method based on
 G.S. saturation impossible

Signal/Noise issue

 $S/N \sim \exp[-\mathbf{A} imes (\mathbf{m_N} - \mathbf{3}/\mathbf{2m_\pi}) imes \mathbf{t}]$ Parisi ('84), Lepage('89)

	HAL QCD method	Direct method
Ground state	Signal	Signal
Excited states (elastic)	Signal	Noise
Excited states (inelastic)	Noise	Noise

c.f. Direct method [= Plateau fitting w/ GS saturation + Luscher's formula]

Reliability test of LQCD methods

T. Iritani et al. (HAL) JHEP10(2016)101, PRD96(2017)034521, PRD99(2019)014514, JHE03(2019)007

NN @ heavy quark masses

HAL method (HAL) :unboundDirect method (PACS-CS (Yamazaki et al.)/NPL/CalLat):boundSemi-improved calc w/ Luscher's formula (Mainz2019) :unboundVariational calc w/ Luscher's formula (CalLat2020) :unboundVariational calc w/ Luscher's formula (NPL2021) :(unbound)

HAL QCD pot = Luscher's formula w/ Eigenstate projection ≠ Direct method w/ naïve plateau fitting

Computational Challenge

• Enormous comput. cost for multi-baryon correlators

Wick contraction (permutations)

 $\sim [(\frac{3}{2}A)!]^2$ (A: mass number)

– color/spinor contractions

$$\sim 6^A \cdot 4^A$$
 or $6^A \cdot 2^A$

See also T. Yamazaki et al., PRD81(2010)111504

- Unified Contraction Algorithm (UCA)

 $\Pi^{2N} \simeq \langle qqqqqq(t)\bar{q}(\boldsymbol{\xi}_1')\bar{q}(\boldsymbol{\xi}_2')\bar{q}(\boldsymbol{\xi}_3')\bar{q}(\boldsymbol{\xi}_3')\bar{q}(\boldsymbol{\xi}_5')\bar{q}(\boldsymbol{\xi}_6')(t_0)\rangle \times \operatorname{Coeff}^{2N}(\boldsymbol{\xi}_1',\cdots,\boldsymbol{\xi}_6')$

Permuted Sum

Drastic Speedup

imes 192 for ${}^{3}\mathrm{H}/{}^{3}\mathrm{He}$, imes 20736 for ${}^{4}\mathrm{He}$, $imes 10^{11}$ for ${}^{8}\mathrm{Be}$ (x add'l. speedup)

Sum over color/spinor unified list

- <u>Baryon Forces from LQCD</u>
- Exponentially better S/N
- <u>Coupled channel systems</u>

Ishii-Aoki-Hatsuda (2007)

Ishii et al. (2012)

Aoki et al. (2011,13)

[Theory] = HAL QCD method

Baryon Interactions near the Physical Point

[Hardware]

- = K-computer [11 PFlops]
 - + HOKUSAI [(1+2.6) PFlops] @ RIKEN + HA-PACS [1 PFlops] @ Tsukuba

[Software]

- = Unified Contraction Algorithm
- Exponential speedup Doi-Endres (2013)

 - $^{3}\text{H}/^{3}\text{He}$: ×192

 - ${}^{4}\text{He}$: $\times 20736$
 - ⁸Be : $\times 10^{11}$

Lattice QCD Setup

- Nf = 2 + 1 gauge configs
 - clover fermion + Iwasaki gauge w/ stout smearing
 - V=(8.1fm)⁴, a=0.085fm (1/a = 2.3 GeV)
 - m(pi) ~= 146 MeV, m(K) ~= 525 MeV
 - #traj ~= 2000 generated

 $M\pi = 146 MeV$

L=8fm

(Quenched) Charm quark w/ RHQ action

Y. Namekawa (PACS), PoS LAT2016, 125

- Nuclear/Hyperon forces + <u>Charmed forces</u> in S, D-waves
 - Wall quark source \rightarrow LO potential in the derivative expansion

Candidates of di-baryons

Quark Pauli principle provides important guideline

M.Oka et al., NPA464(1987)700, T. Inoue et al. (HAL), NPA881(2012)28
10 x 10 =
$$(28)$$
 + 27 + (10^*) + 35
 $\Omega\Omega$ (J=0) $\Delta\Delta$ (J=3)
Zhang et al. (97) Dyson-Xuong (64)
Kamae-Fujita (77)
Oka-Yazaki ('80)
8 x 10 = 35 + (8) + 10 + 27
N Ω (J=2) Goldman et al. ('87)
Oka ('88)
8 x 8 = (27) + 8s + (1) + (10^*) + 10 + 8s
dineutron, $\Xi\Xi$ etc. H-dibaryon Deuteron
(J=0) (J=0) (J=1)

S. Gongyo et al. (HAL Coll.), PRL120(2018)212001

S. Gongyo et al. (HAL Coll.), PRL120(2018)212001

(Coulomb: Ω^{-} treated as a point particle)

Conservative estimate at exact phys. pt.

 $m_{\pi=}146 \text{ MeV} \rightarrow 135 \text{ MeV}, m_{\Omega}= 1712 \text{MeV} \rightarrow 1672 \text{ MeV}$

conservative estimate: only change the mass of kinetic term $(B_{\Omega\Omega}^{(\text{QCD})}, B_{\Omega\Omega}^{(\text{QCD+Coulomb})}) = (1.6(6) \text{MeV}, 0.7(5) \text{MeV})$ $\rightarrow (1.3(5) \text{MeV}, 0.5(5) \text{MeV})$ These changes are within errors

 $\underline{\Omega}_{ccc}\underline{\Omega}_{ccc}$ system (¹S₀)

What happens if we replace strange quark with charm quark?

Y. Lyu, H. Tong et al., PRL127(2021)072003

c.f.	LHC: Ω_c, Ξ_{cc}	LHCb, PRL118('17), PRL119 ('17)	
	LQCD: Ω_{ccc}	Briceno et al. ('12), PACS-CS Coll. ('13), Z.S.Brown et al. ('14), C. Alexandrou et al. ('14), K. U. Can et al. ('15)	
	LQCD: $\Omega_{c}\Omega_{cc}$	P. Junnarkar et al., PRL123(2019)162003	
	Quark model: $\Omega_{ccc}\Omega_{ccc}$	H. X. Huang et al., arXiv:2011.00513	

Lattice QCD Setup

• Nf = 2 + 1 gauge configs

PACS Coll., PoS LAT2015, 075

- clover fermion + Iwasaki gauge w/ stout smearing near physical point
- V=(8.1fm)⁴, a=0.085fm (1/a = 2.3 GeV), m(pi) ~= 146 MeV, m(K) ~= 525 MeV
- Relativistic heavy quark (RHQ) action for charm quark
 - remove LO and NLO cutoff error in charm mass \rightarrow remaining error $\mathcal{O}(\alpha_s^2 a \Lambda_{\text{QCD}}, (a \Lambda_{\text{QCD}})^2)$
 - RHQ parameters determined by dispersion relation and mass of 1S charmonium (Interpolation of two sets of params)
 Y. Namekawa (PACS), PoS LAT2016, 125
- Statistics : 896 meas = 112 conf x 4 src x 2 (fw/bw)

_	$(m_{\eta_c} + 3m_{J/\Psi})/4$ [MeV]	$m_{\Omega_{ccc}}$ [MeV]
Set 1	3096.6(0.3)	4837.3(0.7)
Set 2	3051.4(0.3)	4770.2(0.7)
Interpolation	3068.5(0.3)	4795.6(0.7)
Experimental	3068.5(0.1)	

28

Attraction + (weak) repulsive core Pauli-allowed + one-gluon exchange at small r

(more studies later)

Comparison of potentials

Scattering parameters, binding energy and root-mean-square distance

$$a_{0} = 1.57(8)_{\text{sta.}} {\binom{+12}{-4}}_{\text{sys.}} \text{fm}, \qquad r_{\text{eff}} = 0.57(2)_{\text{sta.}} {\binom{+1}{-0}}_{\text{sys.}} \text{fm}$$
$$B = 5.68(77)_{\text{sta.}} {\binom{+46}{-102}}_{\text{sys.}} \text{MeV}, \quad \sqrt{\langle r^{2} \rangle} = 1.13(6)_{\text{sta.}} {\binom{+8}{-3}}_{\text{sys.}} \text{fm}$$

Effect of Coulomb repulsion

QCD + Coulomb $V^{\text{QCD}} \to V^{\text{QCD}} + V^{\text{Coulomb}}, \quad V^{\text{Coulomb}} = \frac{4\alpha_e}{r}F(r)$

F(r) represents effects of charge distribution of Ω_{ccc}^{++}

Dibaryons near unitary limit

Systematic errors

- Finite cutoff error
 - RHQ action for c-quark, non-perturbative O(a)-improvement for uds-quarks
 - → Remaining error is $\mathcal{O}(\alpha_s^2 a \Lambda_{\text{QCD}}, (a \Lambda_{\text{QCD}})^2)$
 - \rightarrow expected to be only O(1)% error w/ 1/a=2.333GeV
- Errors in sea quark sector
 - Light sea quarks slightly heavy, (m(pi), m(K)) ~= (146, 525) MeV \rightarrow expected to be small since they are rather irrelevant for $\Omega_{ccc}\Omega_{ccc}$ (N.B.the range of potential is < 1fm, light quark dof irrelevant)
 - − Charm quark loop is neglected (quenched)
 → suppressed by the heavy charm mass, typically O(1) %
- Another confirmation about these points
 - Our Ω_{ccc} mass is consistent with or has ~1% deviation at most from: Nf=2+1, phys point w/ finite a, Nf=2+1 w/ chiral & continuum extrapolation, Nf=2+1+1 w/ chial and continuum extrapolation

Briceno et al. ('12), PACS-CS Coll. ('13), Z.S.Brown et al. ('14), C. Alexandrou et al. ('14)

• Truncation err in derivative expansion in potential?

Systematic error in derivative expansion

Non-locality of U(r,r') \leftarrow derivative expansion $U(r,r') = \sum_{n} V_n(r) \nabla^n \delta(r - r')$ Expansion w.r.t. ∇/Λ , $(\Lambda \simeq \Lambda_{QCD}, \Delta)$ $U(r,r') = \begin{bmatrix} V_c(r) + S_{12}V_T(r) + L \cdot SV_{LS}(r) + \mathcal{O}(\nabla^2) \end{bmatrix} \delta(r - r')$ LO LO NLO NNLO

For phase shifts at energy region close to (far from) region which correlator couples to, truncation err of the expansion is expected to be small (large)

For $\Omega\Omega$, $\Omega_{ccc}\Omega_{ccc}$ (and many other cases), we calculate at LO t-dep of potential is examined \rightarrow if stable, small sys err Better way to examine this systematics?

c.f. Explicit calc at N2LO T. Iritani et al. (HAL), PRD99(2019)014514

New method using FV spectrum w/ HAL pot

T. Iritani et al. (HAL), JHEP03(2019)007

- FV spectrum from temporal corr (w/ Luscher's formula)
 - No issue on the derivative expansion of potential
 - Naïve plateau fitting is unreliable ("pseudo-plateau issue")

T. Iritani et al., (HAL) ('16, '17, '19, '19)

See Mainz('19,'21), CalLat('21) for variational study

[Utilize HAL pot to overcome the pseudo-plateau issue]

- Construct optimized op for each FV eigen state by HAL pot
 → optimized temporal corr for each FV eigen state
- Consistency check between
 (1) FV spectrum from optimized temporal corr
 (2) FV spectrum from HAL QCD pot
 - If consistent \rightarrow sys err in HAL pot is well under control

New method using FV spectrum w/ HAL pot

Eigen w.f. can be also used to analyze non-optimized temporal corr

HAL QCD Potential

If we solve Schrodinger equation in infinite V, systems are bound

$$B^{(\text{QCD})} = 1.6(0.6) \begin{pmatrix} +0.7\\ -0.6 \end{pmatrix} \text{ MeV}$$
$$\sqrt{\langle r^2 \rangle}^{(\text{QCD})} = 3.3(0.5) \begin{pmatrix} +0.8\\ -0.3 \end{pmatrix} \text{ fm}$$

 $B^{(\text{QCD})} = 5.68(0.77) \begin{pmatrix} +0.46\\ -1.02 \end{pmatrix} \text{ MeV}$ $\sqrt{\langle r^2 \rangle}^{(\text{QCD})} = 1.13(0.06) \begin{pmatrix} +0.08\\ -0.03 \end{pmatrix} \text{ fm}$

Eigen wave functions and energies in finite V

Comparison of FV spectrum (effective energy shift)

(usual one in direct method)

→ Significant deviation from the correct ΔE of g.s.

Decomposition of correlator

In the HAL QCD method,

the following R-corr is used to obtain the potential

$$R(\mathbf{r},t) = \langle 0|\mathrm{T}[B(\mathbf{r},t)B(\mathbf{0},t)\overline{\mathcal{J}_{\mathrm{src}}(0)}]|0\rangle/(G_{2\mathrm{pt}}(t))^{2}$$
$$= \sum_{n} a_{n}\psi_{n}(\mathbf{r})e^{-\Delta E_{n}t}$$

Since we know ψ_n , ΔE_n from FV eigenmodes, a_n can be determined

In the direct method,

the following (non-optimized) temporal corr is usually used

$$R(\mathbf{r},t) = \sum_{\mathbf{r}} R(\mathbf{r},t) = \sum_{n} \frac{b_n}{b_n} e^{-\Delta E_n t} b_n = \sum_{\mathbf{r}} a_n \psi_n(\mathbf{r})$$

← Each baryon op @ sink is projected to zero-momentum

Decomposition of correlator

Both of R(r,t) and R(t): G.S. dominant Both of R(r,t) and R(t): 1st. dominant

Potential can be reliably extracted regardless whether R-corr is dominated by G.S. or 1st excited state

Decomposition params can be also compared w/ output from variational study

Candidates of di-baryons

Quark Pauli principle provides important guideline

M.Oka et al., NPA464(1987)700, T. Inoue et al. (HAL), NPA881(2012)28
10 x 10 =
$$(28)$$
 + 27 + (10^*) + 35
 $\Omega\Omega$ (J=0) $\Delta\Delta$ (J=3)
Zhang et al. (97) Dyson-Xuong (64)
Kamae-Fujita (77)
Oka-Yazaki ('80)
8 x 10 = 35 + (8) + 10 + 27
N Ω (J=2) Goldman et al. ('87)
Oka ('88)
8 x 8 = (27) + 8s + (1) + (10^*) + 10 + 8s
dineutron, $\Xi\Xi$ etc. H-dibaryon Deuteron
(J=0) (J=0) (J=1)

T. Iritani et al. (HAL Coll.), PLB792(2019)284

$\Lambda\Lambda$, NE (effective) 2x2 coupled channel analysis

$\Lambda\Lambda$, NE 2x2 coupled channel analysis

 $(N.B. N\Xi = 1rep 50\%, 27rep 30\% in SU(3))$

How/Where can we examine these exotic states / interactions ?

I already experimentally(?) observe one at Haneda/Tokyo Airport !

Baryon-Baryon correlation in HIC

BB-correlation ←→ BB- (final state) interaction

Ratio of correlation between small/large source size is useful to mask Coulomb effect

K. Morita et al., PRC94(2016)031901K. Morita et al., PRC102(2020)015201

Fig. from K. Morita

ALICE Coll., PLB797(2019)134822

11 PFlops

440 PFlops

2019	2020	2021	2022	2030s
Therefore and the second secon	YN, YY, (YNN) Exotic hyper-nuclei		J-PARC I HIAF (2	ExHEF (2028(?)-) 024-)
LIGO KAGRA	GW in NS mer NS radius	ger → E	oS	
RIBF	3NF (I=1/2, 3/2)		FRIB (2022-)	
	r-process in NS merger		FAIR	(2025(?)-)
LHC/RHIC	Baryon correlation			
	Exotic hadrons	Lŀ	LHC RUN3 (2022-24)	
Belle II	Exotic hadrons	_		
K-computer	CRIKEN		Fugaku	>

<u>Summary</u>

- The 1st LQCD for Baryon Interactions near the phys. point
 - m(pi) ~= 146 MeV, L ~= 8fm, 1/a ~= 2.3GeV
 - Nuclear/Hyperon forces and Charmed forces in P=(+) channel
- Di-baryon families predicted near unitarity!
 - The most charming dibaryon $\Omega_{\text{ccc}}\Omega_{\text{ccc}}$ and most strange dibaryon $\Omega\Omega$
 - (Quasi-) dibaryon N Ω and remnant of H-dibaryon as N Ξ virtual state
- New method to quantify sys err in derivative expansion
 - Clear evidence that HAL potential can be reliably extracted regardless correlator is dominated by G.S. or excited states
- Fugaku (2021-)
 - Baryon forces on the physical point
 - Dibaryons, Hypernuclei, charmed systems, bottomed systems
 - Future: LS-forces, P=(-) channel, 3-baryon forces, etc., & EoS
 Resonances & Exotics