Nucleon structure with lattice QCD

Ryutaro TSUJI (DI, Tohoku U.) for PACS Collaboration

In collaboration with: Y. Aoki, K.-I. Ishikawa, Y. Kuramashi, S. Sasaki, E. Shintani and T. Yamazaki

R UNIVERSE

GPPU

NO WARDORG

Introduction

- Many body problem with QCD
- Nucleon structure study
- Parton Distributions
- The conventional studies and our works

Nuclear physics & Nucleon structure

NULEAR PHYSICS

Quantum Many Body Prob. Blocks -> Nucleon(point) Int. -> Nuclear f. + Coulomb f.

However, Nucleon has structure
 NUCLEON STRUCTURE
 Quantum Many Body Prob.
 Blocks -> Quarks & Gluons
 Int. -> QCD

The STRUCTURE is NOT trivial itself

WHAT & HOW

Nucleon has STRUCTURE

QUARK & GLUON pic.

- ? Spin crisis
- ? Origin of mass
- ? Momentum & helicity fractions

 $\Lambda_{\rm QCD} \sim O(10^2) \ ({\rm MeV})$

O Magnetic moment O Mass gap O Chiral SSB Is the properties of Nucleon interpretable in terms of the dynamics of quark & gluon?

High Energy Nucleon

Perturbation dose NOT work

CONSTITUENT QUARK pic. Low Energy Nucleon

Non perturbative analysis(ab initio) = Lattice QCD

Parton Distributions

GTMD
$$W(x, \vec{k}_T, \Delta) \xrightarrow{\Delta^+ \to 0}$$
 Wigner $W(x, \vec{k}_T, \vec{r}_T)$
 $\Delta = P_{\text{ini.}} - P_{\text{fin.}}$

Quantum phase-space distributions

Parton Distributions

Transverse Momentum Dependent Parton Distribution

e.g.) GPD and Nucleon tomography slide from H.-W. Lin @QCD Evolution Workshop 2021

Parton Distributions

◆ Elastic scattering

 → Nucleon's SPATIAL dis.

 Proton radius puzzle

 Nucleon transversity
 Quark EDM e.t.c.

◆ Deep inelastic scattering

 → Partons' MOMENTUM/HEL
 -CITY dis. inside nucleon

 Proton spin crisis, SSA,
 Gluon saturation e.t.c.

Parton Distributions

Transverse Momentum Dependent Parton Distribution

Parton Distributions

Transverse Momentum Dependent Parton Distribution

Form Factor

• Elastic scattering \rightarrow Nucleon's SPATIAL dis.

Proton radius puzzle Nucleon transversity Quark EDM e.t.c.

Our works

Paper

- K.-I. Ishikawa et al., Phys. Rev. D98 (2018) 074510 [1807.03974].
- E.Shintani et al., Phys. Rev. D99 (2019) 014510 [1811.07292]; (Erratum; Phys. Rev. D102 (2020) 019902.)
- N.Tsukamoto et al., PoS Lattice2019 (2020) 132 [1912.00654].
- K.-l. lshikawa et al., arXiv:2107.07085 (2021). e.t.c.

Talk

• R.T. et al., "Nucleon axial, tensor and scalar charges using lattice QCD with physical quark masses", JPS2021年秋季大会 e.t.c.

Parton Distributions

Transverse Momentum Dependent Parton Distribution

Form Factor

◆ Elastic scattering

 → Nucleon's SPATIAL dis.

 Proton radius puzzle

 Nucleon transversity
 Quark EDM e.t.c.

Parton Distribution Function

◆ Deep inelastic scattering
 → Partons' MOMENTUM/HEL
 -CITY dis. inside nucleon
 Proton spin crisis, SSA, Pickup
 Gluon saturation e.t.c.

Nuclear physics (Quantum many body problem)

Single Spin Asymmetry(SSA)

e.g.) $p + p \uparrow \rightarrow \pi_0 + X$ process (Polarized pp collision)

Single Spin Asymmetry = Spin Asymmetry stemming from SINGLE particle

Nuclear physics (Quantum many body problem)

Mechanisms of SSA -roughly

The mechanisms are classified by their kinematical scale.

(1) $\Lambda_{\rm QCD} \leq P_{\perp} \ll \sqrt{Q^2} \rightarrow P_{\perp} \sim {\rm Partons'} \ k_{\perp} \sim \Lambda_{\rm QCD} \leq M_N$

- Transverse Momentum Dependent PDFs (TMD PDFs) : Non perturbative generation of SSA (No α_s/Q suppression)
- $\sigma \sim \sum_{ab} f_{a,T}^{\perp}(x, \underline{k_{\perp}}, \mu_F) \otimes \hat{\sigma}^{\gamma^*, a \to b}(x, Q, \mu_F, \mu_D) \otimes D_{h/b}(z, \underline{k'_{\perp}}, \mu_D)$ $(2) \Lambda_{\text{QCD}} \ll P_{\perp} \sim \sqrt{Q^2} \rightarrow \text{Factorize with } P_{\perp}$
 - Twist3 matrix effects : Hadron spin flip through gluon ($O(\Lambda_{\rm QCD}/Q, M_N/Q)$) effects)

Both mechanisms WORK!

2 Twist3

schematically

1) TMD

Nuclear physics (Quantum many body problem)

SSA and lattice contributions

TMD PDF is essential but difficult to obtain with experiments.

Nucleon structure with lattice QCD

After 2011, lattice can approach Parton Distributions directly. However, can lattice overcome experimental precision/accuracy?

 \rightarrow **VBENCHMARK** calculations, indirect one, are also needed

	Matrix element	ts Feature	Experiments/Remark
~	ЯА	Nucleon axial charge	$g_A^{exp.} = 1.2756(13)$
	gs	Direct Dark Matter detection $\langle N \psi 1 \overline{\psi} N \rangle$	ON Both isoscalar and isovector
	g⊤	Oth moment of Colins fur $\langle N \psi \sigma_{\mu\nu} \overline{\psi} N \rangle$	are needed for practical use IC.
~	$\langle x \rangle_{u-d}$	Ist moment of unp. PDF	$\langle x \rangle_{u-d}^{\text{PDF4LHC}} = 0.155(5)$
~	$\langle x \rangle_{\Delta u - \Delta d}$	Ist moment of pol. PDF	$\langle x \rangle_{\Delta u - \Delta d}^{\text{BENCHMARK}} = 0.199(16)$

Conventional studies -isovector

High-precision & High-accuracy = Purpose of PACS(this work)

Lattice QCD & Assessment of error

- Lattice QCD
- Major systematic uncertainties
- Methods for assessing the uncertainties

Calculation strategy

Our targets :

Non-perturbative information of nucleon

 \rightarrow Calculate them in Lattice QCD

- Depend on the renormalization
 - \rightarrow Need the renormalization constants additionally

Therefore:

(Renormalized value)

= (Bare matrix element) × (Renormalization constant)

 \rightarrow Evaluate both the bare matrix elements and the renorm -alization constants with high accuracy in Lattice QCD

High accuracy in Lattice QCD(ab initio cal.)?

13

Lattice QCD and its accuracy

Path integration of QCD = High-dimensional integrals $\langle O \rangle = \frac{1}{Z} \int \mathscr{D} [U] \mathscr{D} [\overline{\psi}] \mathscr{D} [\psi] O [U, \overline{\psi}, \psi] e^{-J_{\text{QCD}}[U, \overline{\psi}, \psi]}$

→ Estimate stochastically = Monte Carlo integration (Importance sampling)

High accuracy in Lattice QCD means

I. Statistically improved \rightarrow All-mode-averaging

- 2. Fewer systematic uncertainties
 - \rightarrow Eliminate^[2] some by Set-ups, but NOT enough

14

Assess the residual systematic uncertainties

Residual systematic uncertainties					
	① : (Bare matrix element) \times ② : (Renormalization constant)				
Both	Both have systematic uncertainties, and we mainly focus on				
Parts	Systematic uncertainty	Origin			
1	Excited state contamination	• Nucleon's excited states e.g. $\langle N(t)N(0)^{\dagger} \rangle = \sum_{i} a_{i} e^{-E_{i}t}$			
2	Perturbative truncation Non-perturbative effects - Fitting functions/range	• Chiral S.S.B • Gluon condensation e.g. $Z_{O}^{\overline{\text{MS}}}(2 \text{ GeV}) \supset \frac{m_{val}^2}{p^2}, \frac{\langle q\bar{q} \rangle^2}{p^6}, \frac{\langle A_{\mu} \rangle^2}{p^2}$			

Problem : How can we assess systematic uncertainties?

All excited states appearing in the ratio depend on t_{sep}

→ Calculate the ratio for several t_{sep} and gaze t_{sep} independence = confirm no excited states contamination → Average after the ground state saturation

2 Non-perturbative effect

 \rightarrow Ideally, $Z^{\overline{\text{MS}}}(2 \text{ GeV})$ is independent of matching scale: μ

Skip how we can calculate the renormalization constants on lattice for saving time here.

FIT and systematic error

Matching scale dependence stems from :

- IR : Non-perturbative effect
- UV : Discretization error

 \rightarrow Extract scale-free renormalization constants by FIT

 $\rightarrow Z_O^{\overline{\text{MS}}}(2 \text{ GeV}) = \frac{c_{-1}}{(a\mu)^2} + c_0 + \sum_i c_i (a\mu)^{2i}$

FIT TYPE	IR	* UV	* FIT range
IR-pole ansatz	Pole term	Polynomial	1 (GeV) < μ
IR-truncated ansatz	Truncation		2 (GeV) $\leq \mu$

Discrepancies between FIT types \sim Evaluation of FIT ansatz \rightarrow appropriate the discrepancies to the systematic error

* Each order of polynomial and FIT range is suit for the most stable FIT. And also supported by RMS error analysis.

Numerical results

- Nucleon matrix elements
- Renormalization constants
- Renormalized quark momentum/helicity fraction

Simulation details - PACS configuration				
		128 ⁴ lattice	64 ⁴ lattice	
	Lattice size	[ای] 128 ⁴	64 ⁴ [2]	
	Lattice spacing	~ 0.084 fm		
	Pion mass	135 MeV	139 MeV _[3]	
	Spatial vol.	$\sim (10.8 \text{ fm})^3$	$\sim (5.4 \text{ fm})^3$	
Eli	Eliminate 2 systematic uncertainties Finite size effect Chiral extrapolation $g_A^{128^4} = 1.273(24)_{sta.}(5)_{sys.}(9)_{ren.}$			
	Highest precisio	on of $g_A^{[I]}$ g_A^{-}	- 1.2730(13)	

 [1] E. Shintani et al., Phys. Rev. D 99, 014510(2019) [2] K.-I. Ishikawa et al., Phys. Rev. D 99, 014504(2019) The stout-smeared O(a) improved Wilson fermions and Iwasaki gauge action.
 [3] Finite volume-size effect

Nucleon axial charge g_A

Renormalization and systematic error

RI/MOM and RI/SMOM

Scalar operator = suffer from chiral symmetry breaking strongly = Z_S depends on how we treat IR strongly

Extract constant with

- Pole + quadratic using IR data
- Quadratic truncating IR data

The discrepancy are

~6 % for MOM ~2 % for SMOM

Sys. err. is under control with improved scheme

C. Sturm, Y. Aoki, N. H. Christ, T. Izubuchi, C. T. C. Sachrajda and A, Soni, Phys. Rev. D 80, 014501 (2009). 23

Scalar channel

Renormalized scalar couplings

[FLAG2019] Aoki. S et al., Eur. Phys. J. C. 80, 113 (2020).
[PNDME2018] R. Guputa et al., Phys. Rev. D98 (2018) 034503.
[PNDME2016] T. Bhattacharya et al., Phys. Rev. D94 (2016) 054508.
[ETMC2020] C. Alexandrou et al., Phys. Rev. D102 (2020) 054517.
[LHPC2019] N. Hasan et al., Phys. Rev. D99 (2019) 114505.

[Mainz2018] K. Ottnad et al., in Proceedings, Lattice2018.
[JLQCD2018] N. Yamanaka et al., Phys. Rev. D98 (2018) 054516.
[RQCD2014] G. S. Bali et al., Phys. Rev. D91 (2015) 054501.
[Pheno,] M. Gonzalez-Alonso et al., Phys. Lett 112 (2014) 04501.

24

Tensor channel

Renormalized tensor couplings

[FLAG2019] Aoki. S et al., Eur. Phys. J. C. 80, 113 (2020).
[XQCD2020] D. Horkel et al., arXiv:2002.06699v1 (2020).
[PNDME2018] R. Guputa et al., Phys. Rev. D98 (2018) 034503.
[PNDME2016] T. Bhattacharya et al., Phys. Rev. D94 (2016) 054508.
[ETMC2020] C. Alexandrou et al., Phys. Rev. D102 (2020) 054517.

[LHPC2019] N. Hasan et al., Phys. Rev. D99 (2019) 114505.
[Mainz2018] K. Ottnad et al., in Proceedings, Lattice2018.
[JLQCD2018] N. Yamanaka et al., Phys. Rev. D98 (2018) 054516.
[RQCD2014] G. S. Bali et al., Phys. Rev. D91 (2015) 054501.

Simulation details -PACS10 configuration[1][2]

P.R.D 99, 014510(2019)

Lattice size	128 ⁴ تا	160 ⁴ [2]
Spacial volume	$\sim (10.8 \text{ fm})^3$	$\sim (10.3 \text{ fm})^3$
Pion mass	135 MeV	135 MeV
Nucleon mass	~ 0.942 GeV	~ 0.939 GeV
tsink-tsrc /a	10, 12, 14, 16	16,19
Lattice spacing	~ 0.084 fm	~ 0.064 fm
	[1] E. Shintani et al., Phys. Rev. D 99, 014510(2019) [2] E. Shintani and Y.Kuramashi, Phys.Rev. D 100, 034517(2019)	

The stout-smeared O(a) improved Wilson fermions and Iwasaki gauge action.

Running

Excited state contamination

Discrepancy between two fitting type, correlated or uncorrelated, indicate they don't have enough statistics.

Approach the continuum limit g_A / g_V and $\langle x \rangle_{u-d} / \langle x \rangle_{\Delta u - \Delta d}$ are consistent with experiments. 0.1 $\langle x \rangle_{u-d}^{\text{bare}}$ $\langle x \rangle_{\Delta u-\Delta d}^{\text{bare}}$ 0.075 H Lattice spacing (fm) 0.05 128⁴, t_{sep}>1 fm, 1.27(3) 128⁴, t_{sep}>1.2 fm, 0.74(4) \diamond 160⁴, t_{sep}~1.2 fm, 0.81(6)^{+0.12}_{-0.0} 160⁴, t_{sep}>1 fm, 1.26(2) experiment+phen., 0.779(78) PDG(2020), 1.2756(13) 0.025 g_A^{bare} bare 0 1.2 1.3 1.1 0.5 0.9 1.4 0.6 0.7 0.8 1.1

28

Summary and perspectives

- Conclusion of this talk
- Future works

Summary and Perspectives

High-precision and high-accuracy determination:

 ${}^{*}g_{S} = 0.927(139)_{sta.}(11)_{sys.}$ and $g_{T} = 1.055(23)_{sta.}(25)_{sys.}$

 \rightarrow Lattice QCD is able to predict quantities associated with quantum many body correlation.

Approach continuum limit with high-precision and high-accuracy

*We can also use these for searching the physics beyond the Standard Model (Intensity frontier).