
Grid Python Toolkit (GPT)

Christoph Lehner
(Uni Regensburg & Brookhaven National Laboratory)

https://github.com/lehner/gpt

September 22, 2021 - RIKEN CCS Seminar

https://github.com/lehner/gpt

Grid Python Toolkit (GPT)

https://github.com/lehner/gpt

I A toolkit for lattice QCD
and related theories as
well as QIS (a parallel
digital quantum
computing simulator) and
Machine Learning

I Python frontend, C++
backend

I Built on Grid data
parallelism (MPI,
OpenMP, SIMD, and
SIMT)

Initial commit Feb. 2020, 47k lines of C++/Python, >1400 commits so far, 12 contributors
1 / 37

https://github.com/lehner/gpt

Guiding principles:

I Performance Portability
common Grid-based framework for current and future (exascale)

architectures

I Modularity / Composability
build up from modular high-performance components, several layers

of composability, “composition over parametrization”

2 / 37

The Grid data parallelism paradigm

https://github.com/paboyle/Grid

3 / 37

https://github.com/paboyle/Grid

Start with a vector vx ∈ O with x ∈ L and a d-dimensional Cartesian
lattice L. Examples below have d = 1 and L = {0, . . . , 7}.

In lattice QCD, L makes up a space-time grid and v will be
fermionic/bosonic fields.

For a dense state QC simulator of N qubits, |L| = 2N , O = C, and we
first consider a canonical mapping of a state such as

Ψ = v 000︸︷︷︸
=0

|000〉+ v 001︸︷︷︸
=1

|001〉+ . . . + v111︸︷︷︸
=7

|111〉 . (1)

4 / 37

High-performance building block: small stencil operators

Common in lattice QCD: local operators with a small stencil (examples:
Dirac matrix, ∆ operator)

For such transformations, only knowledge of a few neighbors is needed.

5 / 37

High-performance building block: site-local operators

Examples: (bi-)linear combinations of vectors, Rφ gate

Definition: Rφ(v0|0〉+ v1|1〉) = v0|0〉+ v1e
iφ|1〉

6 / 37

High-performance building block: reductions

Examples: inner product in lattice QCD, probability of measurement

7 / 37

For all these operations, the following data grouping preserves locality:

Such a group can be combined to a single SIMD word or mapped on a
(fastest moving) thread index for coalesced memory access in SIMT
architectures (Grid’s SIMD/SIMT paradigm):

s0 ≡
(
v0
v4

)
, s1 ≡

(
v1
v5

)
, s2 ≡

(
v2
v6

)
, s3 ≡

(
v3
v7

)
(2)

Size of lattice of s reduces depending on SIMD word size.

8 / 37

Example: derivative on periodic lattice

The 8 operations

v ′i = vi+1 mod 8 − vi (3)

with i ∈ {0, 1, . . . , 7} turn into 4 operations on SIMD words

s ′j = sj+1 − sj (4)

with j ∈ {0, 1, 2, 3} and border permutation

s4 ≡
(
v4
v0

)
. (5)

Check:

s0 ≡
(
v0
v4

)
, s1 ≡

(
v1
v5

)
, s2 ≡

(
v2
v6

)
, s3 ≡

(
v3
v7

)

9 / 37

MPI parallelism

Here we allow for a d-dimensional Cartesian partition of the lattice L:

10 / 37

Challenge for Lattice QCD: small stencil operations

Only communication between neighboring nodes needed. Communication
burden generally suppressed by surface to volume ratio.

11 / 37

Challenge for dense state QC simulator

Hadamard and CNOT gates can be mapped to site-local operations on
original field and bit-flipped (Xi) fields, see later.

Non-locality therefore strongly depends on which Xi . . .

Operations may be maximally non-local!

12 / 37

Challenge for dense state QC simulator

Hadamard and CNOT gates can be mapped to site-local operations on
original field and bit-flipped (Xi) fields, see later.

Non-locality therefore strongly depends on which Xi . . .

Operations may be maximally non-local!

12 / 37

Challenge for dense state QC simulator

Hadamard and CNOT gates can be mapped to site-local operations on
original field and bit-flipped (Xi) fields, see later.

Non-locality therefore strongly depends on which Xi . . .

Operations may be maximally non-local!

12 / 37

Dynamic qubit mapping

This problem can be mitigated (see also, e.g., JUQCS) by making qubit
mapping dynamic. Example: order b2b1b0 → b0b1b2

Subsequent X2 gates now maximally local!

Smart grouping of gates in circuit and relatively infrequent memory
layout changes can lead to significant speed up.

13 / 37

GPT - layout and dependencies

14 / 37

Python script / Jupyter notebook

gpt (Python)
• Defines data types and objects (group structures etc.)

• Expression engine (linear algebra)

• Algorithms (Solver, Eigensystem, . . .)

• File formats

• Stencils / global data transfers

• QCD, QIS, ML subsystems

cgpt (Python library written in C++)
• Global data transfer system (gpt creates pattern, cgpt optimizes

data movement plan)

• Virtual lattices (tensors built from multiple Grid tensors)

• Optimized blocking, linear algebra, and Dirac operators

• Vectorized ranlux-like pRNG (parallel seed through
3xSHA256)

Grid Eigen FFTW
15 / 37

The QCD module

16 / 37

Example: Load QCD gauge configuration and test unitarity

Here: expression first parsed to a tree in Python (gpt), forwarded
as abstract expression to C++ library (cgpt) for evaluation

17 / 37

Example: create a pion propagator on a random gauge field

18 / 37

Example: solvers are modular and can be mixed

General design principle: use modularity of python code instead of
large number of parameters to configure solvers/algorithms;
Python can also be used in configuration files

19 / 37

Further example: Multi-Grid solver

20 / 37

All algorithms implemented in Python – Example: Euler-Langevin
stochastig DGL integrator

21 / 37

Implemented algorithms:

I BiCGSTAB, CG, CAGCR, FGCR, FGMRES, MR solvers

I Multi-grid, split-grid, mixed-precision, and defect-correcting
solver combinations

I Coarse and fine-grid deflation

I Arnoldi, implicitly restarted Lanczos, power iteration

I Chebyshev polynomials

I All-to-all vector generation

I SAP and even-odd preconditioners

I Gradient descent and non-linear CG optimizers

I Runge-Kutta integrators, Wilson flow

I Fourier acceleration

I Coulomb and Landau gauge fixing

I Domain-wall–overlap transformation and MADWF

I Symplectic integrators (leapfrog, OMF2, and OMF4)

I Markov: Metropolis, heatbath, Langevin, HMC in progress

22 / 37

Implemented fermion actions:

I Domain-wall fermions: Mobius and zMobius

I Wilson-clover fermions both isotropic and anisotropic
(RHQ/Fermilab actions); Open boundary conditions available

Example: stout-smeared heavy-quark Mobius DWF

23 / 37

Performance

24 / 37

Benchmark results committed to github

https://github.com/lehner/gpt/tree/master/benchmarks/

reference

Results available for GPU and CPU architectures. In the following, focus
on Juwels booster (NVIDIA A100) and QPace4 (A64FX, same as
Fugaku).

25 / 37

https://github.com/lehner/gpt/tree/master/benchmarks/reference
https://github.com/lehner/gpt/tree/master/benchmarks/reference

Juwels Booster (node has 4× A100-40GB): Single-node
domain-wall fermion /D operator

Compare to HBM bandwidth of 1,555 GB/s per GPU

26 / 37

QPace4 (node has one A64FX): Single-node domain-wall fermion
/D operator

Compare to HBM bandwidth of 1,000 GB/s per A64FX

27 / 37

Juwels Booster (node has 4× A100-40GB): Single-node site-local
matrix products

Compare to HBM bandwidth of 1,555 GB/s per GPU

28 / 37

Juwels Booster (node has 4× A100-40GB): Inner product
(reduction)

Compare to HBM bandwidth of 1,555 GB/s per GPU

29 / 37

Performance summary

Machine Operation Performance Bandwidth

Booster /D 12 TF/s 7.8 TB/s
Booster ColorMatrix × 5.2 TB/s
Booster SpinColorMatrix × 5.1 TB/s
Booster SpinColorVector 〈·, ·〉 4.8 TB/s
QPace4 /D 0.95 TF/s 0.68 TB/s
SuperMUC-NG /D 0.72 TF/s 0.51 TB/s

Single-node SP performance of Wilson /D and linear algebra on Juwels Booster (4xA100, HBM BW 1.6 TB/s per

A100), Qpace4 (A64FX, HBM BW of 1 TB/s per node), and the SuperMUC-NG (Skylake 8174). The /D

performance is inherited from Grid, the linear algebra performance is based on cgpt.

30 / 37

Status of project

31 / 37

Production use:

I GPT is used right now:

I on Summit/Booster and CPU based clusters for RBC/UKQCD
lattice QCD (g-2) production running

I on QPACE4, KNL, and Skylake machines
(BNL/Stampede2/SuperMUC-NG) for DWF B physics
projects (collaboration with Stefan Meinel)

I for a Wilson-Clover baryon charm physics run on Booster (PI:
Collins)

I DWF-projects-specific code is fully tuned,
Wilson-Clover-specific code still being optimized

32 / 37

The machine learning module

33 / 37

Example: train simple feed-forward network

34 / 37

The quantum computing module

35 / 37

Example: create and measure a 5-qubit bell state

36 / 37

How to use GPT?

https://github.com/lehner/gpt

The docker images are automatically generated for each version
that passes the CI interface.

CI currently has test coverage of 96%, running on each pushed
commit.

37 / 37

https://github.com/lehner/gpt

More details - The QIS module

Example: create and measure a 5-qubit bell state

Universal set of gates implemented; dynamic memory layout

Implementation of a universal set of gates

Need:

I A bit flipped vector Ψi ≡ XiΨ (i.e. a NOT gate Xi)

I A projector P
(1)
i to the subspace with qubit i in |1〉 state (and

the corresponding P
(0)
i = 1− P

(1)
i)

Then:

R
(i)
φ = P

(0)
i + e iφP

(1)
i , (6)

H(i) =
1√
2

(
P
(0)
i (Xi + 1) + P

(1)
i (Xi − 1)

)
, (7)

CNOT(i ,j) =
1√
2

(
P
(1)
i Xj + P

(0)
i

)
. (8)

Implementation of R
(i)
φ

R
(i)
φ = P

(0)
i + e iφP

(1)
i (9)

Implementation of H(i)

H(i) =
1√
2

(
P
(0)
i (Xi + 1) + P

(1)
i (Xi − 1)

)
(10)

Implementation of CNOT(i ,j)

CNOT(i ,j) =
1√
2

(
P
(1)
i Xj + P

(0)
i

)
(11)

Probability

Probability to measure qubit i in |1〉 is a reduction:

