Grid Python Toolkit (GPT)

Christoph Lehner (Uni Regensburg & Brookhaven National Laboratory)

https://github.com/lehner/gpt

September 22, 2021 - RIKEN CCS Seminar

Grid Python Toolkit (GPT)

https://github.com/lehner/gpt

 A toolkit for lattice QCD and related theories as well as QIS (a parallel digital quantum computing simulator) and Machine Learning

- Python frontend, C++ backend
- Built on Grid data parallelism (MPI, OpenMP, SIMD, and SIMT)

Guiding principles:

Performance Portability

common Grid-based framework for current and future (exascale) architectures

Modularity / Composability

build up from modular high-performance components, several layers of composability, "composition over parametrization"

The Grid data parallelism paradigm

https://github.com/paboyle/Grid

Start with a vector $v_x \in O$ with $x \in L$ and a *d*-dimensional Cartesian lattice *L*. Examples below have d = 1 and $L = \{0, ..., 7\}$.

In lattice QCD, L makes up a space-time grid and v will be fermionic/bosonic fields.

For a dense state QC simulator of N qubits, $|L| = 2^N$, $O = \mathbb{C}$, and we first consider a canonical mapping of a state such as

$$\Psi = v_{\underbrace{000}}_{=0} |000\rangle + v_{\underbrace{001}}_{=1} |001\rangle + \ldots + v_{\underbrace{111}}_{=7} |111\rangle.$$
(1)

High-performance building block: small stencil operators

Common in lattice QCD: local operators with a small stencil (examples: Dirac matrix, Δ operator)

For such transformations, only knowledge of a few neighbors is needed.

High-performance building block: site-local operators

Examples: (bi-)linear combinations of vectors, R_{ϕ} gate

Definition: $R_{\phi}(v_0|0\rangle + v_1|1\rangle) = v_0|0\rangle + v_1e^{i\phi}|1\rangle$

High-performance building block: reductions

Examples: inner product in lattice QCD, probability of measurement

For all these operations, the following data grouping preserves locality:

Such a group can be combined to a single SIMD word or mapped on a (fastest moving) thread index for coalesced memory access in SIMT architectures (Grid's SIMD/SIMT paradigm):

$$s_0 \equiv \begin{pmatrix} v_0 \\ v_4 \end{pmatrix}$$
, $s_1 \equiv \begin{pmatrix} v_1 \\ v_5 \end{pmatrix}$, $s_2 \equiv \begin{pmatrix} v_2 \\ v_6 \end{pmatrix}$, $s_3 \equiv \begin{pmatrix} v_3 \\ v_7 \end{pmatrix}$ (2)

Size of lattice of *s* reduces depending on SIMD word size.

Example: derivative on periodic lattice

The 8 operations

$$v'_i = v_{i+1 \mod 8} - v_i$$
 (3)

with $i \in \{0, 1, \dots, 7\}$ turn into 4 operations on SIMD words

$$s_j' = s_{j+1} - s_j \tag{4}$$

with $j \in \{0, 1, 2, 3\}$ and border permutation

$$s_4 \equiv \begin{pmatrix} v_4 \\ v_0 \end{pmatrix} \,. \tag{5}$$

Check:

$$s_0 \equiv \begin{pmatrix} v_0 \\ v_4 \end{pmatrix} \,, \qquad \qquad s_1 \equiv \begin{pmatrix} v_1 \\ v_5 \end{pmatrix} \,, \qquad \qquad s_2 \equiv \begin{pmatrix} v_2 \\ v_6 \end{pmatrix} \,, \qquad \qquad s_3 \equiv \begin{pmatrix} v_3 \\ v_7 \end{pmatrix}$$

MPI parallelism

Here we allow for a *d*-dimensional Cartesian partition of the lattice *L*:

Challenge for Lattice QCD: small stencil operations

Only communication between neighboring nodes needed. Communication burden generally suppressed by surface to volume ratio.

Challenge for dense state QC simulator

Hadamard and CNOT gates can be mapped to site-local operations on original field and bit-flipped (X_i) fields, see later.

Non-locality therefore strongly depends on which $X_i \dots$

Operations may be maximally non-local!

Challenge for dense state QC simulator

Hadamard and CNOT gates can be mapped to site-local operations on original field and bit-flipped (X_i) fields, see later.

Non-locality therefore strongly depends on which $X_i \dots$

Operations may be maximally non-local!

Challenge for dense state QC simulator

Hadamard and CNOT gates can be mapped to site-local operations on original field and bit-flipped (X_i) fields, see later.

Non-locality therefore strongly depends on which $X_i \dots$

Operations may be maximally non-local!

Dynamic qubit mapping

This problem can be mitigated (see also, e.g., JUQCS) by making qubit mapping dynamic. Example: order $b_2b_1b_0 \rightarrow b_0b_1b_2$

Subsequent X_2 gates now maximally local!

Smart grouping of gates in circuit and relatively infrequent memory layout changes can lead to significant speed up.

GPT - layout and dependencies

Python script / Jupyter notebook

gpt (Python)

- Defines data types and objects (group structures etc.)
- Expression engine (linear algebra)
- Algorithms (Solver, Eigensystem, ...)
- · File formats
- · Stencils / global data transfers
- QCD, QIS, ML subsystems

cgpt (Python library written in C++)

- Global data transfer system (gpt creates pattern, cgpt optimizes data movement plan)
- Virtual lattices (tensors built from multiple Grid tensors)
- Optimized blocking, linear algebra, and Dirac operators
- Vectorized ranlux-like pRNG (parallel seed through 3xSHA256)

The QCD module

Example: Load QCD gauge configuration and test unitarity

Here: expression first parsed to a tree in Python (gpt), forwarded as abstract expression to C++ library (cgpt) for evaluation

Example: create a pion propagator on a random gauge field

```
# double-precision 8^4 arid
qrid = q.qrid([8,8,8,8], q.double)
# pRNG
rng = g.random("seed text")
# random gauge field
U = q.qcd.qauge.random(grid, rnq)
# Mobius domain-wall fermion
fermion = g.gcd.fermion.mobius(U, mass=0.1, M5=1.8, b=1.0, c=0.0, Ls=24,
                               boundary phases=[1,1,1,-1])
# Short-cuts
inv = g.algorithms.inverter
pc = q.qcd.fermion.preconditioner
# even-odd-preconditioned CG solver
slv 5d = inv.preconditioned(pc.eo2 ne(), inv.cg(eps = 1e-4, maxiter = 1000))
# Abstract fermion propagator using this solver
fermion propagator = fermion.propagator(slv 5d)
# Create point source
src = q.mspincolor(U[0].grid)
g.create.point(src. [0, 0, 0, 0])
# Solve propagator on 12 spin-color components
prop = q(fermion propagator * src)
# Pion correlator
q.message(q.slice(q.trace(prop * q.adj(prop)), 3))
```

Example: solvers are modular and can be mixed

General design principle: use modularity of python code instead of large number of parameters to configure solvers/algorithms; Python can also be used in configuration files

```
# Create an coarse-grid deflated, even-odd preconditioned CG inverter
# (eig is a previously loaded multi-grid eigensystem)
sloppy_light_inverter = g.algorithms.inverter.preconditioned(
    q.gcd.fermion.preconditioner.eo1 ne(parity=q.odd),
   q.algorithms.inverter.sequence(
        g.algorithms.inverter.coarse_deflate(
            eig[1],
            eia[0].
            eig[2],
            block=200,
        ),
        q.algorithms.inverter.split(
            g.algorithms.inverter.cg({"eps": 1e-8, "maxiter": 200}),
            mpi_split=[1,1,1,1],
        ).
   ),
```

Further example: Multi-Grid solver

```
def find near null vectors(w, cgrid):
    slv = i.fgmres(eps=1e-3, maxiter=50, restartlen=25, checkres=False)(w)
    basis = g.orthonormalize(
        rng.cnormal([g.lattice(w.grid[0], w.otype[0]) for i in range(30)])
    null = g.lattice(basis[0])
    null[:] = 0
    for h in basis:
        slv(b, null)
    g.gcd.fermion.coarse.split chiral(basis)
    bm = q.block.map(cgrid, basis)
    bm.orthonormalize()
    bm.check orthogonality()
    return basis
mg_setup_3lvl = i.multi_grid_setup(
    block_size=[[2, 2, 2, 2], [2, 1, 1, 1]], projector=find_near_null_vectors
)
wrapper solver = i.fgmres(
    {"eps": 1e-1, "maxiter": 10, "restartlen": 5, "checkres": False}
smooth_solver = i.fgmres(
    {"eps": 1e-14, "maxiter": 8, "restartlen": 4, "checkres": False}
coarsest solver = i.fgmres(
    {"eps": 5e-2, "maxiter": 50, "restartlen": 25, "checkres": False}
mg 3lvl kcycle = i.sequence(
     i.coarse grid(
        wrapper_solver.modified(
             prec=i.sequence(
                 i, coarse grid(coarsest solver, *mg setup 3lvl[1]), smooth solver
         ),
         *mg setup 3lvl[0].
     ),
     smooth solver.
```

All algorithms implemented in Python – Example: Euler-Langevin stochastig DGL integrator

```
21
22
     class langevin_euler:
         @g.params_convention(epsilon=0.01)
         def __init__(self, rng, params):
24
             self.rng = rng
26
             self.eps = params["epsilon"]
28
        def call (self, fields, action):
29
             qr = action.gradient(fields, fields)
30
             for d, f in zip(qr, fields):
31
                 f @= q.group.compose(
32
                     -d * self.eps
33
                     + self.rng.normal element(g,lattice(d)) * (self.eps * 2.0) ** 0.5.
                     f.
34
35
                 )
36
```

Implemented algorithms:

- ▶ BiCGSTAB, CG, CAGCR, FGCR, FGMRES, MR solvers
- Multi-grid, split-grid, mixed-precision, and defect-correcting solver combinations
- Coarse and fine-grid deflation
- Arnoldi, implicitly restarted Lanczos, power iteration
- Chebyshev polynomials
- All-to-all vector generation
- SAP and even-odd preconditioners
- Gradient descent and non-linear CG optimizers
- Runge-Kutta integrators, Wilson flow
- Fourier acceleration
- Coulomb and Landau gauge fixing
- Domain-wall–overlap transformation and MADWF
- Symplectic integrators (leapfrog, OMF2, and OMF4)
- Markov: Metropolis, heatbath, Langevin, HMC in progress

Implemented fermion actions:

- Domain-wall fermions: Mobius and zMobius
- Wilson-clover fermions both isotropic and anisotropic (RHQ/Fermilab actions); Open boundary conditions available

Example: stout-smeared heavy-quark Mobius DWF

```
# load configuration
U = g.load(config)
qrid = U[0].qrid
# smeared gauge link
U \text{ stout} = U
for n in ranae(3):
    U_stout = a.acd.aauae.smear.stout(U_stout, rho=0.1)
fermion_exact = g.qcd.fermion.mobius(U_stout,{
    "mass": 0.6.
    "M5": 1.0,
    "b": 1.5.
    "c": 0.5.
    "Ls": 12,
    "boundary_phases": [1.0, 1.0, 1.0, -1.0],
})
```

Performance

Benchmark results committed to github https://github.com/lehner/gpt/tree/master/benchmarks/ reference

Results available for GPU and CPU architectures. In the following, focus on Juwels booster (NVIDIA A100) and QPace4 (A64FX, same as Fugaku).

Juwels Booster (node has $4 \times A100-40$ GB): Single-node domain-wall fermion D operator

```
Initialized GPT
   Copyright (C) 2020 Christoph Lehner
GPT ·
        1.543473 s :
                 : DWF Dslash Benchmark with
                     fdimensions : [64, 32, 32, 32]
                     precision : single
                     Ls
                               : 12
        7.958636 s : 1000 applications of Dhop
GPT :
                     Time to complete
                                         : 2.93 s
                     Total performance
                                         : 11325.46 GFlops/s
                 :
                     Effective memory bandwidth : 7824.86 GB/s
GPT :
        7.959499 s :
                 : DWE Dslash Benchmark with
                     fdimensions : [64, 32, 32, 32]
                 .
                     precision : double
                 :
                     Ls
                            : 12
        17.420620 s : 1000 applications of Dhop
GPT :
                     Time to complete
                                          : 5.78 s
                     Total performance
                                         : 5749.77 GElops/s
                     Effective memory bandwidth : 7945.14 GB/s
Finalized GPT
```

Compare to HBM bandwidth of 1,555 GB/s per GPU

QPace4 (node has one A64FX): Single-node domain-wall fermion $D \hspace{-1.5mm}/$ operator

```
Initialized GPT
   Copyright (C) 2020 Christoph Lehner
GPT :
        0.265714 s :
                 : DWF Dslash Benchmark with
                     fdimensions : [24, 24, 24, 24]
                     precision : single
                            : 8
                     LS
        20.218240 s : 1000 applications of Dhop
GPT :
                     Time to complete
                 ÷.,
                                       : 3.67 s
                     Total performance
                                      : 954.90 GFlops/s
                     Effective memory bandwidth : 677.11 GB/s
GPT :
        20.218842 s :
                 : DWF Dslash Benchmark with
                     fdimensions : [24, 24, 24, 24]
                     precision : double
                     Ls
                               : 8
        45.245379 s : 1000 applications of Dhop
GPT :
                     Time to complete
                                      : 7.36 s
                     Total performance
                                         : 475.80 GFlops/s
                     Effective memory bandwidth : 674.77 GB/s
Finalized GPT
```

Compare to HBM bandwidth of 1,000 GB/s per A64FX

Juwels Booster (node has $4 \times$ A100-40GB): Single-node site-local matrix products

Initialized GPT Copyright (C) 2020 Christoph Lebner			GPT :	62.262581 s :	atrix Multiply Reachmark with	
copyright to, core on interopy conten					fdimensions . [49 49 49	1281
GPT -	1 599357 # 1				Tuthenstons : [40, 40, 40,	120]
011.	· Matrix Multiply Reportently with				precision : double	
	Addression (40, 40, 40, 40, 40, 40, 40, 40, 40, 40,	1201				
	: Tuimensions : [40, 40, 40,	126)	GPT :	72.003471 s : 1	0 matrix_multiply	
	: precision : single			:	Object type	: ot_matrix_color(3)
	1			1	Time to complete	: 0.012 s
GPT :	10.985099 s : 10 matrix_multiply				Effective memory bandwidth	: 5264.01 GB/s
	: Object type	: ot_matrix_color(3)		4		
	: Time to complete	: 0.0058 s	GPT :	78.174681 s : 1	0 matrix_multiply	
	: Effective memory bandwidth	: 5271.36 GB/s			Object type	: ot_matrix_spin(4)
	1			4	Time to complete	: 0.02 s
GPT :	16.689329 s : 10 matrix_multiply			:	Effective memory bandwidth	: 5439.91 GB/s
	: Object type	: ot_matrix_spin(4)		:		
	: Time to complete	: 0.01 s	GPT :	128.232979 s : 1	0 matrix_multiply	
	: Effective memory bandwidth	: 5333.21 GB/s		:	Object type	: ot_matrix_spin_color(4,3)
	:			:	Time to complete	: 0.22 s
GPT :	62.092583 s : 10 matrix_multiply			:	Effective memory bandwidth	: 4416.45 GB/s
	: Object type	: ot_matrix_spin_color(4,3)		:		
	: Time to complete	: 0.097 s				
	: Effective memory bandwidth	: 5057.37 GB/s	Finalized GPT			
	1					

Compare to HBM bandwidth of 1,555 GB/s per GPU

Juwels Booster (node has $4 \times A100-40GB$): Inner product (reduction)

:	28.406798 s : 100	rank_inner_product	
	:	Object type	: ot_vector_singlet(12)
	:	Block	: 4 × 4
	:	Data resides in	: accelerator
	:	Performed on	: accelerator
	:	Time to complete	: 0.13 s
	:	Effective memory bandwidth	: 4827.16 GB/s
	:		
	:	rip: timing: unprofiled	= 0.000000e+00 s (= 0.00 %)
	: ri;	o: timing: rip: view	= 9.706020e-04 s (= 0.70 %)
	: rij	o: timing: rip: loop	= 1.369879e-01 s (= 99.30 %)
	: rij	o: timing: total	= 1.379585e-01 s (= 100.00 %)

GPT

Compare to HBM bandwidth of 1,555 GB/s per GPU

Performance summary

Machine	Operation	Performance	Bandwidth
Booster	$ ot\!$	12 TF/s	7.8 TB/s
Booster	ColorMatrix $ imes$		5.2 TB/s
Booster	${\sf SpinColorMatrix}\ \times$		5.1 TB/s
Booster	SpinColorVector $\langle \cdot, \cdot angle$		4.8 TB/s
QPace4	$ ot\!$	0.95 TF/s	0.68 TB/s
SuperMUC-NG	$ ot\!$	0.72 TF/s	0.51 TB/s

Single-node SP performance of Wilson D and linear algebra on Juwels Booster (4xA100, HBM BW 1.6 TB/s per A100), Qpace4 (A64FX, HBM BW of 1 TB/s per node), and the SuperMUC-NG (Skylake 8174). The D performance is inherited from Grid, the linear algebra performance is based on cgpt.

Status of project

Production use:

- ► GPT is used right now:
 - on Summit/Booster and CPU based clusters for RBC/UKQCD lattice QCD (g-2) production running
 - on QPACE4, KNL, and Skylake machines (BNL/Stampede2/SuperMUC-NG) for DWF B physics projects (collaboration with Stefan Meinel)
 - for a Wilson-Clover baryon charm physics run on Booster (PI: Collins)
- DWF-projects-specific code is fully tuned, Wilson-Clover-specific code still being optimized

The machine learning module

Example: train simple feed-forward network

```
In []: import gpt as g
grid = g.grid([4, 4, 4], g.double)
rng = g.random("test")
# network and training data
n = g.ml.network.feed_forward([g.ml.layer.nearest_neighbor(grid)] * 2)
training_input = [rng.uniform_real(g.complex(grid)) for i in range(2)]
training_output = [rng.uniform_real(g.complex(grid)) for i in range(2)]
# cost functional
c = n.cost(training_input, training_output)
# train network
W = n.random_weights(rng)
gd = g.algorithms.optimize.gradient_descent
gd(maxiter=4000, eps=1e-4, step=0.2)(c)(W, W)
```

The quantum computing module

Example: create and measure a 5-qubit bell state

```
import gpt as g
from apt.gis.gate import *
rng = g.random("qis_test")
# initial state with 5 qubits. stored in double-precision
st = g.gis.backends.dvnamic.state(rng. 5. precision=g.double)
g.message("Initial state:\n".st)
# prepare Bell-type state
st = (H(0) | CNOT(0,1) | CNOT(0,2) | CNOT(0,3) | CNOT(0,4)) * st
g.message("Bell-type state:\n",st)
# measure
st = M() * st
q.message("After single measurement:\n",st)
q.message("Classically measured bits:\n",st.classical bit)
GPT :
          197.943668 s : Initial state:
                           + (1+0j) |00000>
GPT :
          197.949198 s : Bell-type state:
                       : + (0.7071067811865475+0j) |00000>
                       : + (0.7071067811865475+0j) |11111>
GPT :
          197.951478 s : After single measurement:
                       : + (1+0j) |11111>
GPT :
          197.952545 s : Classically measured bits:
                       : [1, 1, 1, 1, 1]
```

How to use GPT?

https://github.com/lehner/gpt

Quick Start

The fastest way to try GPT is to install Docker, start a Jupyter notebook server with the latest GPT version by running

docker run --rm -p 8888:8888 gptdev/notebook

and then open the shown link http://127.0.0.1:8888/?token=<token> in a browser. You should see the tutorials folder pre-installed.

The docker images are automatically generated for each version that passes the CI interface.

CI currently has test coverage of 96%, running on each pushed commit.

More details - The QIS module

Example: create and measure a 5-qubit bell state

```
import opt as q
from gpt.gis.gate import *
rng = g.random("gis test")
# initial state with 5 aubits. stored in double-precision
st = q.qis.backends.dynamic.state(rnq, 5, precision=q.double)
q.message("Initial state:\n".st)
# prepare Bell-type state
st = (H(0) | CNOT(0,1) | CNOT(0,2) | CNOT(0,3) | CNOT(0,4)) * st
g.message("Bell-type state:\n".st)
# measure
st = M() * st
q.message("After single measurement:\n",st)
g.message("Classically measured bits:\n",st.classical bit)
GPT :
          197.943668 s : Initial state:
                      : + (1+0j) |00000>
GPT :
        197.949198 s : Bell-type state:
                       : + (0.7071067811865475+0i) |00000>
                       : + (0.7071067811865475+0j) |11111>
GPT :
          197.951478 s : After single measurement:
                       : + (1+0i) |11111>
GPT :
         197.952545 s : Classically measured bits:
                       : [1, 1, 1, 1, 1]
```

Universal set of gates implemented; dynamic memory layout

Implementation of a universal set of gates

Need:

- A bit flipped vector $\Psi_i \equiv X_i \Psi$ (i.e. a NOT gate X_i)
- A projector P⁽¹⁾_i to the subspace with qubit i in |1⟩ state (and the corresponding P⁽⁰⁾_i = 1 − P⁽¹⁾_i)

Then:

$$R_{\phi}^{(i)} = P_i^{(0)} + e^{i\phi} P_i^{(1)}, \qquad (6)$$

$$H^{(i)} = \frac{1}{\sqrt{2}} \left(P_i^{(0)}(X_i + 1) + P_i^{(1)}(X_i - 1) \right) , \qquad (7)$$

$$CNOT^{(i,j)} = \frac{1}{\sqrt{2}} \left(P_i^{(1)} X_j + P_i^{(0)} \right) \,. \tag{8}$$

Implementation of $R_{\phi}^{(i)}$

$$R_{\phi}^{(i)} = P_i^{(0)} + e^{i\phi} P_i^{(1)}$$
(9)

```
def R_z(self, i, phi):
    phase_one = np.exp(1j * phi)
    g.bilinear_combination(
        [self.lattice],
        [
            self.bit_map.zero_mask[self.bit_permutation[i]],
            self.bit_map.one_mask[self.bit_permutation[i]],
        ],
        [self.lattice],
        [[1.0, phase_one]],
        [[0, 1]],
        [[0, 0]],
        )
)
```

Implementation of $H^{(i)}$

$$H^{(i)} = \frac{1}{\sqrt{2}} \left(P_i^{(0)}(X_i + 1) + P_i^{(1)}(X_i - 1) \right)$$
(10)

```
def H(self, i):
    bf1 = self.bit_flipped_lattice(i)
    nrm = 1.0 / 2.0 ** 0.5
    g.bilinear_combination(
        [self.lattice],
        [
            self.bit_map.zero_mask[self.bit_permutation[i]],
            self.bit_map.one_mask[self.bit_permutation[i]],
            ],
            [self.lattice, bf1],
            [[nrm, nrm, -nrm, nrm]],
            [[0, 0, 1, 1]],
            [[0, 1, 0, 1]],
            ]),
```

Implementation of $CNOT^{(i,j)}$

$$CNOT^{(i,j)} = \frac{1}{\sqrt{2}} \left(P_i^{(1)} X_j + P_i^{(0)} \right)$$
(11)

```
def CNOT(self, control, target):
    assert control != target
    bfl = self.bit_flipped_lattice(target)
    g.bilinear_combination(
        [self.lattice],
        [
            self.bit_map.zero_mask[self.bit_permutation[control]],
        self.bit_map.one_mask[self.bit_permutation[control]],
        [,
        [self.lattice, bfl],
        [[1.0, 1.0]],
        [[0, 1]],
        [[0, 1]],
        [[0, 1]],
        [[0, 1]],
        ]
```

Probability

Probability to measure qubit *i* in $|1\rangle$ is a reduction:

```
def probability(self, i):
    return g.norm2(self.lattice * self.bit_map.one_mask[self.bit_permutation[i]])
```