

Correlated Dirac Eigenvalues and Axial Anomaly in Chiral Symmetric QCD

Yu Zhang R-CCS

based on PRL 126 (2021) 082001 & in collaboration with H.-T. Ding, S.-T. Li, S. Mukherjee, A. Tomiya and X.-D. Wang

July 7, 2021

Outline

- Motivation
- $\Im \partial^n \rho / \partial^n m_l \& C_{n+1}$ and $U_A(1)$ symmetry
- Lattice Setup
- Results
- Summary & Conclusions

Symmetries of QCD

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu}_a F^a_{\mu\nu} + \sum_{q \in u, d, s, c, b, t} \bar{q} [i\gamma^\mu (\partial_\mu - igA_\mu) - m_q] q$$

$$SU_L(N_f) \times SU_R(N_f) \times U_V(1) \times U_A(1)$$
 $(m_q = 0)$

 \overleftrightarrow

 $\stackrel{\frown}{\simeq}$

$SU_L(N_f) \times SU_R(N_f)$ chiral symmetry

- SSB in the vacuum: $SU_L(N_f) \times SU_R(N_f) \rightarrow SU_V(N_f)$
- Sestored at $T \ge T_c$

$U_A(1)$ symmetry

Broken on the quantum level due to ABJ anomaly

$$\partial_{\mu}j_{5}^{\mu} = \frac{g^{2}N_{f}}{16\pi^{2}}F_{a}^{\mu\nu}\tilde{F}_{\mu\nu}^{a} \neq 0 \quad (\tilde{F}_{\mu\nu}^{a} \equiv \frac{1}{2}\epsilon_{\mu\nu\lambda\rho}F_{a}^{\lambda\rho})$$

U_A(1) symmetry & Chiral phase transition

The nature of chiral phase transition depends on how axial anomaly manifest itself at T~T_c?

Signatures of symmetry restorations

Susceptibilities defined as integrated two point correlation functions of the local operators, e.g. $\chi_{\pi} = \int d^4x \langle \pi^i(x)\pi^i(0) \rangle$ HotQCD PRD 86 (2012) 094503

$$SU_{L}(2) \times SU_{R}(2) \qquad \qquad U_{A}(1)$$

$$\begin{cases} \chi_{\pi} = \chi_{\sigma} \longrightarrow \chi_{\pi} - \chi_{\delta} = \chi_{\text{disc}} \end{cases} \begin{pmatrix} \chi_{\pi} = \chi_{\delta} \longrightarrow \chi_{\pi} - \chi_{\delta} = \chi_{\text{disc}} = 0 \\ \chi_{\sigma} = \chi_{\eta} \end{pmatrix} \chi_{\pi} - \chi_{\delta} = \chi_{\text{disc}} = 0$$

$$\chi_{\rm disc} = \frac{T}{V} \int d^4x \left\langle [\bar{\psi}(x)\psi(x) - \langle \bar{\psi}(x)\psi(x)\rangle]^2 \right\rangle$$

Status of lattice studies on axial anomaly

HotQCD, Phys.Rev.D 100 (2019) 094510

At T \leq T_{pc} for physical pion mass axial anomaly remains manifested in $\chi_{\pi} - \chi_{\delta}$

See similar conclusions obtained using chiral fermions: HotQCD, PRL 113(2014) 082001, PRD 89 (2014) 054514 JLQCD, arXiv:2011.01499,...

What happens in the chiral limit?

Status of lattice studies on axial anomaly

L. Mazur et al., arXiv:1811.08222

Remains manifested for m_{π} =110 MeV at T<1.1T_c

See similar conclusions from Ohno et al., PoS Lattice 2012 (2012) 095, Dick et al., PRD 91(2015) 094504,...

JLQCD, PRD 103 (2021) 074506

Seems to disappear at T≥220 MeV

See similar conclusions from Chiu et al., PoS Lattice 2013 (2014) 165, Tomiya et al.,[JLQCD] PRD 96 (2017) 034509,...

The fate of $U_A(1)$ still unsettled due to the lack of continuum and chiral extrapolations

Signatures of symmetry restorations in p

$$\langle \bar{\psi}\psi\rangle = \int_0^\infty \mathrm{d}\lambda \frac{4m_l\rho}{\lambda^2 + m_l^2} \qquad \qquad \chi_\pi - \chi_\delta = \int_0^\infty \mathrm{d}\lambda \frac{8m_l^2\rho}{(\lambda^2 + m_l^2)^2}$$

 \Im Restoration of SU_L(2)×SU_R(2) symmetry :

* $\rho(0) = 0$ as from Banks-casher relation: $\lim_{m_l \to 0} \langle \bar{\psi} \psi \rangle = \pi \rho(0)$ * Partition function is an even function in m_l due to the Z(2) subgroup

Summetry Effective restoration of $U_A(1)$ symmetry :

• A sizable gap in the near-zero modes, i.e. $\rho(\lambda < \lambda_c) = 0$ Cohen, nucl-th/980106 • If ρ is analytic in m_l^2 and λ , $U_A(1)$ breaking is absent in up to 6 point correlation functions of π and δ Aoki, Fukaya and Taniguchi, PRD 86 (2012) 114512 Possible behaviors of ρ making $SU_L(2) \times SU_R(2)$ restored but not $U_A(1)$

 \Im Dilute instanton gas approximation $\rho \sim m^2 \delta(\lambda)$ will lead to U_A(1) breaking even in the chiral limit Gross, Yaffe & Pisarski, RMP 81'

EQCD: At high T for the physical m_l , the T dependence of χ_t follows dilute instanton gas approximation prediction See a recent review, Lombardo & Trunin,

IJMPA 35 (2020) 2030010

Due to $\rho \sim m^2 \delta(\lambda)$? what happens for $m_l \to 0$?

Microscopic origin in p

 β =4.30, *T*=220MeV, *L*=32(2.4fm)

JLQCD, PRD 103 (2021) 074506

No clear gap

Solution As m_l gets smaller, the infrared enhancement seems disappeared, at $m_l < 0.01$ mass dependence can be hardly seen

Novel relation: quark mass derivative of p & C_{n+1}

Eigenvalue spectrum for (2+1)-flavor QCD:

$$\rho(\lambda, m_l) = \frac{T}{VZ[U]} \int D[U] e^{-S_G[U]} \det[\mathcal{D}[U] + m_s] \times \left(\det[\mathcal{D}[U] + m_l]\right)^2 \rho_U(\lambda)$$

Eigenvalue spectrum for a given configuration: $\rho_U(\lambda) = \sum_j \delta(\lambda - \lambda_j)$

Partition function: $Z[U] = \int D[U]e^{-S_G[U]} \det[D[U] + m_s] \times (\det[D[U] + m_l])^2$

$$\det[\mathcal{D}[U] + m_l] = \prod_j (+i\lambda_j + m_l)(-i\lambda_j + m_l) = \exp\left(\int_0^\infty d\lambda \rho_U(\lambda) \ln[\lambda^2 + m_l^2]\right)$$

$$\frac{V}{T}\frac{\partial\rho}{m_l} = \int_0^\infty \mathrm{d}\lambda_2 \frac{4m_l C_2}{\lambda_2^2 + m_l^2}$$

 $C_2(\lambda,\lambda_2) = \langle \rho_U(\lambda)\rho_U(\lambda_2) \rangle - \langle \rho_U(\lambda) \rangle \langle \rho_U(\lambda_2) \rangle$

Novel relation: light quark mass derivative of ρ and C_{n+1}

$$\frac{V}{T}\frac{\partial^2 \rho}{m_l^2} = \int_0^\infty \mathrm{d}\lambda_2 \frac{4(\lambda_2^2 - m_l^2)C_2}{(\lambda_2^2 + m_l^2)^2} + \int_0^\infty \mathrm{d}\lambda_2 \mathrm{d}\lambda_3 \frac{(4m_l)^2 C_3}{(\lambda_2^2 + m_l^2)(\lambda_3^2 + m_l^2)}$$

•••

••• •••

$$C_n(\lambda_1, ..., \lambda_n; m_l) = \left\langle \prod_{i=1}^n \left[\rho_U(\lambda_i) - \left\langle \rho_U(\lambda_i) \right\rangle \right] \right\rangle$$

Signatures of symmetry restorations in p

Chiral symmetry restoration: $\chi_{\pi} - \chi_{\delta} = \chi_{\text{disc}}$

$$\chi_{\pi} - \chi_{\delta} = \int_{0}^{\infty} d\lambda \frac{8m_{l}^{2}\rho}{(\lambda^{2} + m_{l}^{2})^{2}}$$

$$\chi_{\text{disc}} = \int_{0}^{\infty} d\lambda \frac{4m_{l}\partial\rho/\partial m_{l}}{\lambda^{2} + m_{l}^{2}}$$

$$\chi_{\text{disc}} = \int_{0}^{\infty} d\lambda \frac{4m_{l}\partial\rho/\partial m_{l}}{\lambda^{2} + m_{l}^{2}}$$

$$\chi_{\text{form}} \pi : \bar{q}\gamma_{5}\frac{\tau}{2}q \xrightarrow{\tau} \sigma : \bar{q}q \quad \chi_{\text{con}} + \chi_{\text{disc}}$$

$$U_{A}(1) \xrightarrow{\tau} U_{A}(1)$$

$$\chi_{\text{con}} \delta : \bar{q}\frac{\tau}{2}q \xrightarrow{\tau} g \xrightarrow{\tau} \eta : \bar{q}\gamma_{5}q \quad \chi_{5,\text{con}} - \chi_{5,\text{disc}}$$
Toublan and Verbaarschot, NPB603 (2001) 343
HotQCD PRD 86 (2012) 094503
Kanazawa & Yamamoto, JHEP 01 (2016) 141

CII (a) $\sim CII$ (b)

If eigenvalues are uncorrelated, they obey the Poisson statistics:

$$C_n^{\text{Po}}(\lambda_1, ..., \lambda_n) = \delta(\lambda_1 - \lambda_2) ... \delta(\lambda_n - \lambda_{n-1}) \langle \rho_U(\lambda_1) \rangle + \mathcal{O}(1/N)$$
$$\left(\frac{\partial \rho}{\partial m_l}\right)^{\text{Po}} = \frac{4m_l \rho}{\lambda^2 + m_l^2} - \frac{V \rho}{TN} \langle \bar{\psi}\psi \rangle \quad \square \searrow \quad \chi_{\text{disc}}^{\text{Po}} = 2(\chi_\pi - \chi_\delta)$$

Non-Poisson correlation among eigenvalues are needed for chiral symmetry restoration if $\chi_{\pi} - \chi_{\delta} \neq 0$

Kanazawa & Yamamoto, JHEP 01 (2016) 141

Lattice Setup

- At temperature T=205 MeV (1.6 T_c)
- HISQ/tree action

₽ Nf = 2+1:

- ✓ N_τ=8, 12, 16 (a=0.12,0.08,0.06 fm)
- ✓ m_s^{phy}/m_l = 20, 27, 40, 80, 160 (m_π =160, 140, 110, 80, 55 MeV)
- $\boxed{2} \quad 4 \le N_s/N_t \le 9$

H.-T. Ding, S.-T. Li, A. Tomiya, S. Mukherjee, X.-D. Wang, Y. Zhang* PRL 126 (2021) 082001

Mode number and Complete p

Converges to the exact count

Mass dependence can be hardly observed from ρ directly

Utilize the Chebyshev filtering technique combined with a stochastic estimate of the mode number

Giusti and Luscher, JHEP03(2009)013, Patella PRD86(2012)025006, Cossu et al., PTEP 2016(2016)093B06 Fodor et al., arXiv:1605.08091, de Forcrand & Jäger, arXiv: 1710.07305, YuZhang, Lattice19', arXiv:2001.05217

1st and 2nd mass derivative of ρ on N_T =8 lattices

H.-T. Ding, S.-T. Li, A. Tomiya, S. Mukherjee, X.-D. Wang, Y. Zhang* PRL 126 (2021) 082001

2nd and 3rd mass derivative of ρ: volume and a dependences

Quark mass derivatives of p

Non-Poisson correlations

$$\Delta_n^{\rm Po} = m_l^{n-2} [\partial^n \rho / \partial m_l^n - (\partial^n \rho / \partial m_l^n)^{\rm Po}]$$

Repulsive non-Poisson correlation at small λ range gives rise to the $\rho(\lambda \to 0)$ peak

Quantities related to p

 $\langle ar{\psi} \psi
angle$ be reproduced very well from ho

Quantities related to 1^{st} and 2^{nd} mass derivative of ρ

1st and 2nd mass derivative of ρ can successfully reproduce directly measured χ_{disc} and χ_2

UV divergence of chiral condensate

Full p is needed for reproduction of chiral condensate

Infrared contribution to two $U_A(1)$ measures

Only infrared part of ρ and $\partial \rho / \partial m_l$ are needed for the reproduction

SU_L(2)xSU_R(2) symmetry restoration

	χ^2/dof	
Ν _τ	Linear fits	Quadratic fits
8	0.43	13972.7
12	4.4	1504.0
16	0.1	198.5

Due to the restoration of Z(2) subgroup of $SU_{L}(2) \times SU_{R}(2)$ symmetry, partition function is even function of m_{I}

 $\langle \bar{\psi}\psi \rangle \propto m_l \text{ as } m_l \to 0$ $\chi_{\rm disc} \propto m_l^2 \, {\rm as} \, m_l \to 0$

should equal to χ_{disa} in chiral symmetric QCD $\chi_{\pi} - \chi_{\delta}$ 140 $\sqrt[\infty]{} m_\pi [{\rm MeV}]$ 1º 16 5 8 19 140 $\sqrt{8} m_{\pi} [MeV]$ 16 53 8 $m_s^2(\chi_\pi - \chi_\delta)/T_c^4$ $m_s^2 \chi_{\rm disc}/T_c^4$ 14 +14 1212 $N_{\tau}=16$ 10108 8 6 6 M 4 4 $\mathbf{2}$ $\mathbf{2}$ Ξ Ξ 0 $0 \square$ 0.0025 0 0.0005 0.001 0.0015 0.002 0.003 0.0005 0.001 0.0015 0.002 0.0025 0 0.003 $(m_l/m_s)^2$ $(m_l/m_s)^2$ $\stackrel{>}{\gg}$ Linear in m_l^2 at $m_\pi \lesssim 140$ MeV

Linear fits for $m_{\pi} \lesssim 140$ MeV data at each N_t yield values at m_l=0:

Ν _τ	$m_s^2 \chi_{disc}/T_c^4$	$\frac{m_{\rm s}^2(\chi_{\pi}-\chi_{\delta})/T_{\rm c}^4}{}$
8	0.0030(7)	0.05(1)
12	0.47(8)	0.6(2)
16	1.9(1)	2.8(1)

In the chiral symmetric phase, $\chi_{\pi} - \chi_{\delta}$ should equal to χ_{disc} at m_I=0

Continuum extrapolations are crucial!

Continuum and chiral extrapolations

Joint fit: simultaneous fits Continuum: $c_0 + c_1/N_{\tau}^2 + c_2/N_{\tau}^4$ Chiral: quadratic in quark mass

> Value at $N_{\tau} \rightarrow \infty$ and $m \rightarrow 0$: 8.0 \pm 2.4

Sequential fit: first continuum and then chiral extrapolations Continuum: quadratic in 1/N_τ with N_τ=12&16 Chiral: quadratic in quark mass

Value at N $_{\tau} \rightarrow \infty$ and m $\rightarrow 0$: 6.1 ± 1.9

Continuum and chiral extrapolations

Axial anomaly remains manifested in the two $U_A(1)$ measures even in the chiral limit at 2-3 sigma level for T~1.6T_c

Summary & Conclusions

 \checkmark We established novel relations between $\partial^n \rho / \partial^n m_l \& C_{n+1}$

In N_f=2+1 QCD at T~1.6T_c

Summary & Conclusions

Our study suggests:

- ▶ At T≥1.6T_c the microscopic origin of axial anomaly is driven by the weakly interacting instanton gas motivated $\rho(\lambda \rightarrow 0, m_l \rightarrow 0) \propto m_l^2 \delta(\lambda)$
- ▶ N_f=2+1 QCD: 2nd order chiral phase transition belongs to 3-d O(4)

Outlook:

The methodology would be useful for other discretization schemes

Backup

Calculation of eigenvalue spectrum

- Commonly used method: Lanczos algorithm to calculate the individual lowlying eigenvalues
- Here we utilized the Chebyshev filtering technique combined with a stochastic estimate of the mode number

31

Cossu et al.,arXiv:1601.074

2^{nd} mass derivative of ρ

Time history of the topological charge

Poisson distribution

$$C_{2}(\lambda,\lambda') = \langle \rho_{u}(\lambda)\rho_{u}(\lambda')\rangle - \langle \rho_{u}(\lambda)\rangle\langle \rho_{u}(\lambda')\rangle$$

$$= \left(\frac{1}{V}\right)^{2} \left\langle \sum_{k=1}^{N} \delta(\lambda - \lambda_{k}) \sum_{l=1}^{N} \delta(\lambda' - \lambda_{l}) \right\rangle - \langle \rho_{u}(\lambda)\rangle\langle \rho_{u}(\lambda')\rangle$$

$$= \left(\frac{1}{V}\right)^{2} \left\langle \sum_{k=1}^{N} \delta(\lambda - \lambda_{k})\delta(\lambda' - \lambda_{k}) \right\rangle + \left(\frac{1}{V}\right)^{2} \left\langle \sum_{k=1}^{N} \delta(\lambda - \lambda_{k}) \sum_{l \neq k} \delta(\lambda' - \lambda_{l}) \right\rangle - \langle \rho_{u}(\lambda)\rangle\langle \rho_{u}(\lambda')\rangle^{(1)}$$

$$= \frac{1}{V} \langle \rho_{u}(\lambda)\rangle\delta(\lambda - \lambda') + \left(\frac{1}{V}\right)^{2} \left\langle \sum_{k=1}^{N} \delta(\lambda - \lambda_{k}) \right\rangle \left\langle \sum_{l \neq k} \delta(\lambda' - \lambda_{l}) \right\rangle - \langle \rho_{u}(\lambda)\rangle\langle \rho_{u}(\lambda')\rangle^{(1)}$$

$$\frac{1}{V} \left\langle \sum_{l \neq k} \delta(\lambda' - \lambda_l) \right\rangle = \frac{N-1}{N} \langle \rho_u(\lambda') \rangle \qquad (N = V/2)$$

$$C_2(\lambda,\lambda') = \frac{1}{V} \langle \rho_u(\lambda) \rangle \delta(\lambda - \lambda') - \frac{1}{N} \langle \rho_u(\lambda) \rangle \langle \rho_u(\lambda') \rangle$$

Zero mode contribution vanishes in the thermodynamical limit

Volume dependence of two $U_A(1)$ measures

Volume dependences is very small

FIG. 8: The same as Fig. 7 but the fourth root is taken and normalized by T. The data suggest that the topological susceptibility near the chiral limit is suppressed to the level of < 10 MeV as $\chi_t^{1/4}/T \sim m$.

Aoki et al., [JLQCD], arXiv:2011.01499

Quark mass dependence of $m_l^{-1}(\partial \rho / \partial m_l)$

Quark mass dependence of $\partial^2 \rho / \partial m_i^2$

