Direct CP violation and the ΔI = 1/2 rule in K → ππ decay from the Standard Model

Masaaki Tomii (University of Connecticut) PRD102,054509 (RBC & UKQCD Collaborations) Co-authors: R. Abbott, T. Blum, P.A. Boyle, M. Bruno, N.H. Christ, D. Hoying, C. Jung, C. Kelly, C. Lehner, R.D. Mawhinney, D.J. Murphy, C.T. Sachrajda, A. Soni, T. Wang

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Peter Boyle (Edinburgh) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christopher Kelly Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

UC Boulder

Oliver Witzel

<u>CERN</u> Mattia Bruno

Columbia University

Ryan Abbot Norman Christ Duo Guo Bob Mawhinney Bigeng Wang Tianle Wang Yidi Zhao

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu Masaaki Tomii

Edinburgh University

Luigi Del Debbio Felix Erben Vera Gülpers Tadeusz Janowski Julia Kettle Michael Marshall Fionn Ó hÓgáin Antonin Portelli **Tobias Tsang** Andrew Yong Azusa Yamaguchi

<u>University of Connecticut</u>

UAM Madrid Julien Frison

<u>University of Liverpool</u>

Nicolas Garron

<u>MIT</u> David Murphy

<u>Peking University</u> Xu Feng

<u>University of Regensburg</u> Christoph Lehner (BNL)

<u>University of Southampton</u>

Nils Asmussen Jonathan Flynn Ryan Hill Andreas Jüttner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

Introduction

- CP violation & $\Delta I = 1/2$ rule in K $\rightarrow \pi\pi$
- Lattice approach
- Previous RBC/UKQCD result in 2015
- $K \rightarrow \pi\pi$ matrix elements
- **Operator renormalization**
- On going projects

Contents

CP violation in $K \rightarrow \pi\pi$

- $K_L \rightarrow \pi \pi$ invalid in CP limit
- CP violated in reality

- 2 important measures ε ' & ε of CP violation
 - Re $(\epsilon'/\epsilon)_{exp} = 16.6(2.3) \times 10^{-4}$
 - Can it be explained by the SM?
- Key to understanding matter/anti-matter asymmetry

I = 0 & I = 2 decay modes

- $\langle (\pi\pi)_{\mathbf{I}=0} | = \sqrt{1/3} \langle \pi^0 \pi^0 | + \sqrt{2/3} \langle \pi^+ \pi^- |, \langle (\pi\pi)_{\mathbf{I}=2}^{\mathbf{I}_3=0} | = -\sqrt{2/3} \langle \pi^0 \pi^0 | + \sqrt{1/3} \langle \pi^+ \pi^- |$
- Isospin-definite amplitudes $A_{\rm I} = \langle (\pi\pi)_{\rm I} | {\rm H}_{\rm W} | {\rm K} \rangle$
- Convenient decomposition especially for isospin symmetric calculation
- A₂ precisely calculated (PRL108 (2012) 141601, PRD91 (2015) 074502)
 - ▶ 2 lattice spacings: 2.36 GeV, 1.73 GeV \rightarrow continuum limit taken
 - $Re A_2 = 1.50(4)_{stat}(14)_{sys} \times 10^{-8} \text{ GeV}, Im A_2 = -6.99(20)_{stat}(84)_{sys} \times 10^{-13} \text{ GeV}$ cf: (Re A₂)_{exp} = 1.479(4) × 10⁻⁸ GeV
- ε': needs both of A₀ & A₂

Experimental fact

 $\frac{\text{Re }A_0}{\text{Re }A_2} = 22.45(6) \text{ : large suppression of } \Delta I = 3/2 \text{ (A}_2\text{) mode}$

- Estimation at LO pQCD: Re $A_0 = 2$ Re A_2
- Extra factor x10 coming from full QCD or BSM?

The $\Delta I = 1/2$ rule

Approach to weak processes

- Large scale separation
 - Weak interactions: $m_W = 80$ GeV, $m_Z = 91$ GeV
 - QCD scale: $\Lambda_{QCD} \approx 300 \text{ MeV}$
- Low-energy effective theory
 - contributions from heavy particles: effective interactions

- Lattice calculation of $M_i^{lat} = \langle out | O_i^{lat} | in \rangle$
 - can involve all contributions from QCD
- Renormalization
 - Non-perturbatively $O_i^{lat} \rightarrow O_i^{R}(\mu)$,
 - Perturbatively

Lattice calculation of MEs

Wilson coefficients Information of t, W, Z, …

Calculated by pQCD

$$R(\mu)O_i^R(\mu)$$

Effective operators (e.g. 4-Fermi) Composed of light particles MEs calculated by lattice QCD

$$\mathsf{M}^{\mathsf{lat}}_{\mathsf{i}} \to \mathsf{M}^{\mathsf{R}}_{\mathsf{i}}(\mu)$$

 $w_i^{\overline{MS}}(\mu) \rightarrow w_i^{R}(\mu)$

$\Delta S = 1$ effective operators

• $(\bar{s}q)_{V-A}(\bar{q}'q'')_{V\pm A} = \bar{s}\gamma_{\mu}(1-\gamma_5)q'\cdot\bar{q}'\gamma_{\mu}(1\pm\gamma_5)q''$ • α, β : color indices

$$Q_{1} = (\bar{s}_{\alpha}u_{\beta})_{V-A} (\bar{u}_{\beta}d_{\alpha})_{V-A} ,$$

$$Q_{2} = (\bar{s}u)_{V-A} (\bar{u}d)_{V-A} ,$$

$$Q_{3} = (\bar{s}u)_{V-A} \sum_{q} (\bar{q}q)_{V-A} ,$$

$$Q_{4} = (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q} (\bar{q}_{\beta}q_{\alpha})_{V-A} ,$$

$$Q_{5} = (\bar{s}d)_{V-A} \sum_{q} (\bar{q}q)_{V+A} ,$$

$$Q_{6} = (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q} (\bar{q}_{\beta}q_{\alpha})_{V+A} ,$$

$$Q_{7} = \frac{3}{2} (\bar{s}d)_{V-A} \sum_{q} e_{q} (\bar{q}q)_{V+A} ,$$

$$Q_{8} = \frac{3}{2} (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q} e_{q} (\bar{q}q)_{V+A} ,$$

$$Q_{9} = \frac{3}{2} (\bar{s}d)_{V-A} \sum_{q} e_{q} (\bar{q}q)_{V-A} ,$$

$$Q_{10} = \frac{3}{2} (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q} e_{q} (\bar{q}_{\beta}q_{\alpha})_{V-A} ,$$

-current operators

- $(\bar{s}_{\alpha}c_{\beta})_{V-A}(\bar{c}_{\beta}d_{\alpha})_{V-A} \& Q_{2}^{c} = (\bar{s}c)_{V-A}(\bar{c}d)_{V-A}$
- when $n_f \ge 4$

enguin operators

over q runs for all active quarks

guin operators

ε' calculation

Isospin-limit formula $\operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right) = \operatorname{Re}\left\{\frac{\mathrm{i}\omega \mathrm{e}^{\mathrm{i}\delta_{2}-\delta_{0}}}{\sqrt{2}\epsilon} \left[\frac{\operatorname{Im}A_{2}}{\operatorname{Re}A_{2}}\right]\right\}$

Lellouch-Lüscher finite volume correction

$$A_{I} = \underbrace{F}_{2}^{G_{F}} V_{us}^{*} V_{ud} \sum_{i,j} \underbrace{[z_{i}(\mu) + \tau y_{i}(\mu)]}_{i,j} Z_{ij}(\mu) \langle (\pi \pi)_{I} | Q_{j}^{lat} | K \rangle$$

$$\underbrace{IQCD}_{I}$$

$$\underbrace{IQCD}_{I}$$

- F & δ_{I} extracted from $\pi\pi$ scattering study
 - 2pt function $\langle O_{\pi\pi}(\vec{p},t)O_{\pi\pi}(\vec{p},0)^{\dagger}\rangle$
 - Lüscher's method [Commun.Math.Phys. 219 (2001) 31] (RBC/UKQCD is preparing a companion paper on this calculation)

$\pi\pi$ phase shifts

$$-\frac{\mathrm{Im}\,\mathsf{A}_0}{\mathrm{Re}\,\mathsf{A}_0}\Big]\Big\}\qquad\qquad(\omega=\mathrm{Re}\,\mathsf{A}_2/\mathrm{Re}\,\mathsf{A}_0)$$

Renormalization matrix

First result for c' in 2015

- Z. Bai et al, (RBC/UKQCD) PRL115(2015) 21, 212001
- Simulation parameters
 - 32³ x 64 (2+1 Möbius domain-wall fermions)
 - near physical pion & kaon: $m_{\pi} = 143.1(2.0)$ MeV, $m_{K} = 490.6(2.2)$ MeV
 - Iattice cutoff: 1.3784(68) GeV
 - 216 configurations
- Re A₀ & Im A₀: large statistical & systematic errors
- ⊳ ε'

disconnected diagrams Truncation of pQCD (small renormalization scale)

11

This work

- Same gauge ensemble but...
 - ► 216 \rightarrow 741 configurations (864 \rightarrow 5,864 MD time)
 - Multiple $\pi\pi$ operators \rightarrow Excited-state contaminations well managed
 - Renormalization scale nonperturbatively lifted up by step scaling

 -> significant reduction of systematic error

Computational resources

Main resource

- Cori @ NERSC (National Energy) Research Scientific Computing Center)
- 430 M NERSC hours (~core hours)

Supplemental

 BlueGene/Q (BNL), Hokusai (RIKEN), Mira (Argonne), KEKSC 1540 (KEK), DiRAC (Edinburgh), Blue Waters (Illinois)

Contents

✓ Introduction

• $K \rightarrow \pi\pi$ matrix elements

- Extracting on-shell kinematics
- ππ scattering phase shift & ππ puzzle
- K → ππ
- **Operator renormalization**
- On going projects

What's needed for $K \rightarrow \pi\pi$ MEs

Euclidean correlation function (0-momentum case)

$$\int d^{3}x_{\pi\pi} d^{3}x_{K} \langle O_{\pi\pi}(t_{\pi\pi},\vec{x}_{\pi\pi})H_{V} \rangle$$

zero-momentum projection ($e^{P} = I$)

$$= \sum_{\underline{\mathsf{m}},\underline{\mathsf{n}}} \langle 0|O_{\pi\pi}|\pi\pi, \mathsf{m}\rangle \frac{1}{2\mathsf{E}_{\pi\pi,\mathsf{m}}} \langle \pi\pi, \mathsf{m}|\mathsf{H}_{\mathsf{W}}|\mathsf{K}, \mathsf{n}\rangle \frac{1}{2\mathsf{E}_{\mathsf{K},\mathsf{n}}} \langle \mathsf{K}, \mathsf{n}|O_{\mathsf{K}}^{\dagger}|0\rangle e^{-\mathsf{m}_{\pi\pi,\mathsf{m}}(\mathsf{t}_{\pi\pi}-\mathsf{t})} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}(\mathsf{t}-\mathsf{t}_{\mathsf{K}})} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}(\mathsf{t}-\mathsf{t}_{\mathsf{K}})} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}}} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}} e$$

all possible zero-(total)momentum states that have the same quantum numbers as $O_{\pi\pi}/O_{K}$

If the lightest state is interesting... look at large $t_{\pi\pi}$ - t & t - t_K:

$$\rightarrow \langle 0|O_{\pi\pi}|\pi\pi,0\rangle \frac{1}{2\mathsf{E}_{\pi\pi,0}} \langle \pi\pi,0|\mathsf{H}_{\mathsf{W}}|\mathsf{K},0\rangle \frac{1}{2\mathsf{E}_{\mathsf{K},0}} \langle \mathsf{K},0|O_{\mathsf{K}}^{\dagger}|0\rangle \mathsf{e}^{-\mathsf{m}_{\pi\pi,0}(\mathsf{t}_{\pi\pi}-\mathsf{t})} \mathsf{e}^{-\mathsf{m}_{\mathsf{K},0}(\mathsf{t}-\mathsf{t}_{\mathsf{K}})}$$

 $W(t, \vec{0})O_{K}(t_{K}, \vec{x}_{K})^{\dagger}$

Κ

What's needed for $K \rightarrow \pi\pi$ MEs

Euclidean correlation function (0-momentum case)

$$\int d^{3}x_{\pi\pi} d^{3}x_{K} \langle O_{\pi\pi}(t_{\pi\pi},\vec{x}_{\pi\pi})H_{V} \rangle$$

zero-momentum projection ($e^{P} = I$)

$$= \sum_{\underline{\mathsf{m}},\underline{\mathsf{n}}} \langle 0|O_{\pi\pi}|\pi\pi, \mathsf{m}\rangle \frac{1}{2\mathsf{E}_{\pi\pi,\mathsf{m}}} \langle \pi\pi, \mathsf{m}|\mathsf{H}_{\mathsf{W}}|\mathsf{K}, \mathsf{n}\rangle \frac{1}{2\mathsf{E}_{\mathsf{K},\mathsf{n}}} \langle \mathsf{K}, \mathsf{n}|O_{\mathsf{K}}^{\dagger}|0\rangle e^{-\mathsf{m}_{\pi\pi,\mathsf{m}}(\mathsf{t}_{\pi\pi}-\mathsf{t})} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}(\mathsf{t}-\mathsf{t}_{\mathsf{K}})} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}(\mathsf{t}-\mathsf{t},\mathsf{n})} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}}) e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}(\mathsf{t}-\mathsf{t},\mathsf{n})} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}(\mathsf{t}-\mathsf{t},\mathsf{n})} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}}) e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}(\mathsf{t}-\mathsf{n})} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}(\mathsf{t}-\mathsf{n})}) e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}(\mathsf{t}-\mathsf{n})} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}}) e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}(\mathsf{t}-\mathsf{n})} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}}) e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}(\mathsf{n})} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}}) e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}(\mathsf{n})}) e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}}) e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}})$$

all possible zero-(total)momentum states that have the same quantum numbers as $O_{\pi\pi}/O_{K}$

If the lightest state is interesting... look at large $t_{\pi\pi}$ - t & t - t_K:

$$\rightarrow \langle 0|O_{\pi\pi}|\pi\pi,0\rangle \frac{1}{2\mathsf{E}_{\pi\pi,0}} \langle \pi\pi,0|\mathsf{H}_{\mathsf{W}}|\mathsf{K},0\rangle \frac{1}{2\mathsf{E}_{\mathsf{K},0}} \langle \mathsf{K},0|O_{\mathsf{K}}^{\dagger}|0\rangle e^{-\mathsf{m}_{\pi\pi,0}(\mathsf{t}_{\pi\pi}-\mathsf{t})} e^{-\mathsf{m}_{\mathsf{K},0}(\mathsf{t}-\mathsf{t}_{\mathsf{K}})} \\ \text{Is this what we wanted?}$$

 $W(t, \vec{0})O_{K}(t_{K}, \vec{x}_{K})^{\dagger}$

ΚŻ

Heavier mm state needed

- Kaon lightest state is its physical ground state
- The lightest $\pi\pi$ state off-shell with 2 stationary pions, $E_{\pi\pi,0} \approx 270$ MeV • need to extract $|E_{\pi\pi} = m_{K} \approx 500 \text{ MeV}$
- Possible approaches
 - Finite box \rightarrow individual pion momenta and spectrum not continuous (2nd lightest) can be of interest)
 - Analyze correlation functions considering multiple states
 - Manipulate boundary condition so that the lightest state vanishes (employed)

I = 2 calculation (PRL108 (2012) 141601, PRD91 (2015) 074502) Impose anti-periodic boundary conditions (APBC) on d quark in n directions:

•
$$d(x + L\hat{e}_{x_1,...,x_n}) = -d(x)$$

- Charged pions: anti-periodic on those boundaries: $\pi^{\pm}(\mathbf{x} + \mathbf{L}\hat{\mathbf{e}}_{\mathbf{x}_{1},\dots,\mathbf{x}_{n}}) = -\pi^{\pm}(\mathbf{x})$
- $\tilde{\pi}^{\pm}(\vec{p},t)|_{p_i=0} = 0$, $i = 1, ..., n \rightarrow \text{lightest state energy: } E_{\pi^{\pm}}^2 = m_{\pi}^2 + n^2 (\pi/L)^2$ L (& n) should be tuned so $E_{\pi^+\pi^+} = m_{\kappa}$ Isospin rotation (Wigner-Eckart theorem):
- $\langle (\pi\pi)_{l=2}^{l_3=1} | \mathbf{H}_{\Delta l=3/2}^{\Delta l_3=1/2} | \mathbf{K}^+ \rangle = \frac{3}{2} \langle (\pi\pi)_{l=3/2}^{\Delta l=3/2} | \mathbf{K}^+ \rangle$
 - A₂ can be calculated at on-shell kinematics with APBC d quark

$$|_{I=2}^{I_{3}=2}|H_{\Delta I=3/2}^{\Delta I_{3}=3/2}|K^{+}\rangle$$

 $\pi^{+}|$

G-parity boundary conditions for I = 0

- A₀ must be calculated with $\pi^0\pi^0$ final state \rightarrow APBC useless
- G-parity boundary conditions:

$$f(\mathbf{x} + \mathbf{L}\hat{\mathbf{e}}_{\mathbf{x}_{1},...,\mathbf{x}_{n}}) = \widehat{\mathsf{G}}f(\mathbf{x}) = \underbrace{\widehat{\mathsf{C}}e^{-i\pi\hat{\mathsf{l}}_{y}}}_{\mathbf{A}}f(\mathbf{x}) \qquad \text{(f: isospin representation)}$$

$$\widehat{\mathsf{G}}\begin{pmatrix} u\\ d \end{pmatrix} = \begin{pmatrix} -C\overline{d}^{T}\\ C\overline{u}^{T} \end{pmatrix}, \quad \widehat{\mathsf{G}}\begin{pmatrix} \overline{d}\\ \overline{u} \end{pmatrix} = \begin{pmatrix} -u^{T}C^{-1}\\ d^{T}C^{-1} \end{pmatrix}$$

- ► All pions: G-parity odd → can extract on-shell kinematics
- Dirac matrix mixes u & d → Computationally expensive
- Several other challenges confront

ππ scattering essential T. Wang, C. Kelly, et al (RBC/UKQCD) 2103.15131

- Relations among $\pi\pi$ phase shift δ_0 , energy $E_{\pi\pi}$ and "momenta" k
 - ex: 2-boson system in 1+1-dim w/ periodic BC in spatial direction Relation b/w plane wave at x=L & x=0:

Dispersion relation: $E_n = 2\sqrt{m^2 + k_n^2}$

- Different relation for 3+1-dim & G-parity BC but same steps:
 - Extract a few energy levels E_n from $\pi\pi$ 2pt function (next slide) then corresponding k_n
 - Then $\delta(k_n)$ can be obtained from Lüscher formula
 - Derivative $\delta'(k_{\pi(on-shell}))$ also needed for Lellouch-Lüscher finite-volume factor F

$$\begin{array}{l} : \ e^{ikL+2i\delta(k)} = 1 \\ \stackrel{}{\rightarrow} \frac{k_nL+2\delta(k_n) = 2n\pi}{(cf: \ k_n = 2n\pi/L \ in \ non-interacting \ case)} \end{array}$$

The "mm puzzle"

- Large discrepancy b/w lattice & pheno+exp
 - $\delta_0^{2015} = 23.8(4.9)(2.2)^\circ, \quad \delta_0^{2020'} = 19.1(2.5)(1.2)^\circ$
 - $\delta_0^{\text{ph}+\text{exp}} = 36^\circ$
- Lattice analysis was fairly stable, unchanged by...
 - testing single- & 2-state fits $G(t) = z_0 e^{-E_0 t} \ \& \ G(t) = z_0 e^{-E_0 t} + z_1 e^{-E_1 t}$
 - stable w/ varying fit range in the plateau region
- How it can be explained?
 - A big reason why we needed to retry I=0 calculation
 - our conclusion: excited states still significant

Resolving the $\pi\pi$ puzzle

- Introduce multiple $\pi\pi$ operators
 - ► In 2015 $O_{\pi\pi} = \pi\pi(1, 1, 1)$
 - Additions in 2020 $\pi\pi(3,1,1), \quad \sigma = \frac{1}{\sqrt{2}}(\bar{u}u + \bar{d}d)$
- 2pt functions $G_{ij}(t) = \langle O_i(t)O_j(0)^\dagger \rangle = \sum_n A_{i,n}A_{j,n}^\dagger e^{i\theta_i t}$ n
 - possible to isolate a few lightest states
 - better way to investigate/manage excited-state contamination

Effect of multi operators on $\pi\pi$

0.41

0.40 Result compatible with ph+exp: 0.39 $\delta_{\rm n}^{(1,1,1)} = 19.1(2.5)(1.2)^{\circ}$ 0.38 ^Ĕ 0.37 $\delta_0^{2021}(471 \text{ MeV}) = 32.3(10)(14)^\circ$ 0.36 0.35 0.34 fit result for lightest (on-shell) ππ energy 0.33 in lattice units

$I=0 < \pi \pi |Q_i| K > 3pt functions$

type 1

type 3

$$\mathsf{D}_{\mathsf{A}\mathsf{2}\mathsf{A}}^{-1} = \sum_{\mathsf{I}=1}^{\mathsf{N}_\mathsf{I}} |\phi_\mathsf{I}\rangle \frac{1}{\lambda} \langle \phi_\mathsf{I}| + \frac{1}{\mathsf{N}_\mathsf{h}} \sum_{\mathsf{h}}^{\mathsf{Z}} \langle \phi_\mathsf{I}| + \frac{1}{\mathsf{N}_\mathsf{H}} \sum_{\mathsf{N}}^{\mathsf{Z}} \langle \phi_\mathsf{I}| + \frac{1}{\mathsf{N}} \sum_{\mathsf{N}}^{\mathsf{Z}} \langle \phi_\mathsf{I}| + \frac{1}{\mathsf{N}} \langle \phi_\mathsf{I}| + \frac{1}{\mathsf{N}} \sum_{\mathsf{N}}^{\mathsf{Z}} \langle \phi_\mathsf{I}| + \frac{1}{\mathsf{N}} \langle \phi_\mathsf{I}| + \frac{1}{\mathsf{N}} \sum_{\mathsf{N}}^{\mathsf{Z}} \langle \phi_\mathsf{I}| + \frac{1}{\mathsf{N}} \langle \phi_\mathsf{I}$$

$$= \sum_{i=1}^{N_{i}+N_{h}} |V_{i}\rangle \langle W_{i}|$$

• V & W vectors

$$\begin{split} 1 &\leq i \leq N_{I} \; \Rightarrow \; |V_{i}\rangle = \frac{1}{\lambda} |\phi_{i}\rangle, \ |W_{i}\rangle = |\phi_{i}\rangle \\ N_{I} + 1 &\leq i(=N_{I} + h) \leq N_{I} + N_{h} \; \Rightarrow \; |V_{i}\rangle = \frac{1}{N_{h}} D_{defl}^{-1} |\eta_{h}\rangle, \ |W_{i}\rangle = |\eta_{h}\rangle \end{split}$$

A2A propagators, V & W vectors $\sum_{h=1}^{N_{h}} \left(D^{-1} - \sum_{I=1}^{N_{I}} |\phi_{I}\rangle \frac{1}{\lambda} \langle \phi_{I}| \right) |\eta_{h}\rangle \langle \eta_{h}|$ $-\frac{1}{D_{def'}^{-1}}$

- Spin & color contractions leaving mode indices i, j
- Easily summed over time slice \rightarrow savable data size
- Multiplied with any other meson fields to construct correlation functions

A2A parameters & index

- Random noise vectors
 - spin-color and time dilution

$$\eta_{h;s,c}(\vec{x},t) = \xi(\vec{x})\delta_{h,s+N_s(c+N)}$$

- \blacktriangleright N_s x N_c x N_t = 768 noise vectors
- # of V & W vectors: 1,668 for light quark, 768 for strange quark
- Pion fields: 1,668 x 1,668 matrix; Kaon field: 1,668 x 768 matrix

900 low modes from Lanczos algorithm for light quarks (not for strange)

 $(_{c}t)$

Effective MEs

Tried with 3 $\pi\pi$ sink operators

$$O_{\mathsf{sink}} = O_{\pi\pi(1,1,1)}, \ O_{\sigma}, \ O_{\mathsf{opt}}$$

- Optimal combination of $\pi\pi(1,1,1)$ & σ $O_{opt} = r_1 O_{\pi\pi(1,1,1)} + r_2 O_{\sigma}$
 - $r_1 \& r_2$ determined from $\pi\pi$ 2pt functions
 - Orthogonal to 1st excited state
- Including $\pi\pi(3,1,1) \rightarrow$ unstable
 - 2-state fit with $2 \pi \pi$ operators

Fit results

- Various fits
 - ► t'_{min}: min of (t_{sink} t) [3-8]
 - ► t_{min}: min of (t-t_K) [6-8]
 - (# of operators) x (# of states considered)

 In 2015, effects of excited states were significantly underestimated

Fit results

- Various fits
 - ► t'_{min}: min of (t_{sink} t) [3-8]
 - ► t_{min}: min of (t-t_K) [6-8]
 - (# of operators) x (# of states considered)

 In 2015, effects of excited states were significantly underestimated

G-parity BCs are used to extract on-shell kinematics Significant $\pi\pi$ excited states are treated better than in 2015

Remaining topic: Renormalization

$$-\frac{\mathrm{Im}\,\mathsf{A}_0}{\mathrm{Re}\,\mathsf{A}_0}\Big]\Big\}\qquad\qquad(\omega=\mathrm{Re}\,\mathsf{A}_2/\mathrm{Re}\,\mathsf{A}_0$$

Contents

- ✓ Introduction

Operator renormalization

- RI/SMOM scheme & window problem
- Step scaling
- Our final result
- On going projects

Power divergence

Quadratic divergence (~ a⁻²) appears in MEs from

- due to mixing 4-quark operators with $O(m/a^2)\overline{s}\gamma_5 d$
- Remove by subtraction

Condition: $\langle Q'_i(t_0)K(0) \rangle = 0$ at specific t_0

 $K \rightarrow \pi\pi$ MEs shown earlier are the results after the subtraction

 $Q_i \rightarrow Q'_i = Q_i - \alpha_i \bar{s} \gamma_5 d$ (mixing w/ parity-even operator $\bar{s}d$ is invalid)

Renormalization

- To remove In a² divergence
- To construct appropriate Hamiltonian

RI/SMOM scheme (a common nonperturbative scheme)

$${\mu'}^2 = \mathsf{p}_1^2 = \mathsf{p}_2^2 = (\mathsf{p}_1 -$$

Renormalization

- To remove In a² divergence
- To construct appropriate Hamiltonian

RI/SMOM scheme (a common nonperturbative scheme)

 $\mu' \gg \Lambda_{QCD}$ required $\mu' \ll \pi/a$ required : caused large sys. error in 2015

$${\mu'}^2 = \mathsf{p}_1^2 = \mathsf{p}_2^2 = (\mathsf{p}_1 -$$

Nonperturbative scale evolution technique

$$\mathsf{Z}(\mu_{\mathsf{high}},\mathsf{a}_{\mathsf{coarse}}) = \left(\frac{\mathsf{Z}(\mu_{\mathsf{high}},\mathsf{a}_{\mathsf{fine}})}{\mathsf{Z}(\mu_{\mathsf{low}},\mathsf{a}_{\mathsf{fine}})}\right) \frac{\mathsf{Z}(\mu_{\mathsf{low}},\mathsf{a}_{\mathsf{coarse}})}{\mathsf{used in 2015}}$$

$$a_{fine}^{-1} = 3.148(17) \text{ GeV} \qquad a_{coarse}^{-1} =$$

 $\mu_{
m high} \simeq 4.0 \; {
m GeV}$

Step scaling

- fine lattice ensemble created $(\mu_{high} \ll \pi/a_{fine})$

- = 1.378(7) GeV
- $\mu_{\mathsf{low}}\simeq 1.5\,\,\mathsf{GeV}$

Final result for \varepsilon'

 $\text{Re}(\epsilon'/\epsilon)_{\text{SM},2015} = 1.38(5.15)_{\text{stat}}(4.59)_{\text{sys}} \times 10^{-4}$

$$\operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right)_{\mathrm{SM}} = \operatorname{Re}\left\{\frac{\mathrm{i}\omega\mathrm{e}^{\mathrm{i}(\delta_{2}-\delta_{0})}}{\sqrt{2}\epsilon}\left[\frac{\mathrm{Im}\,A_{2}}{\mathrm{Re}\,A_{2}} - \frac{\mathrm{Im}\,A_{0}}{\mathrm{Re}\,A_{0}}\right]\right\}$$
$$= 21.7(2.6)_{\mathrm{stat}}(6.2)_{\mathrm{sys}}(5.0)_{\mathrm{EM/IB}} \times 10$$

$$\operatorname{Re}(\epsilon'/\epsilon)_{\exp} = 16.6$$

$\approx \Delta I = 1/2$ rule also consistent $(\text{Re}A_0/\text{Re}A_2)_{\text{SM}} = 19.9(2.3)(4)$

J⁻⁴

 $(2.3) \times 10$

4.4)
$$\iff (\text{Re} A_0/\text{Re} A_2)_{\text{exp}} = 22.45(6)$$

Breakdown of sys. errors on A₀

Description

Operator normalisation Wilson coefficients Finite lattice spacing Lellouch - Lüscher factor **Residual FV corrections** Parametric errors Excited state contamination Unphysical kinematics Total

- ¹ As a result of step scaling from $\mu = 1.53 \,\text{GeV} \rightarrow 4.00 \,\text{GeV}$.
- ² Better control of $\pi\pi$ system due to additional operators.
- ³ Largest uncertainty is due to $\tau \sim 5\%$.
- ⁴ Significantly underestimated in 2015.

2015 Error	2020 Error
15%	5% ¹
12%	unchanged
12%	unchanged
11%	1.5% ²
7%	unchanged
5%	6% ³
5%	negligible ⁴
3%	5%
27%	21%

Breakdown of sys. errors on A₀

Description 20 **Operator normalisation** Wilson coefficients Finite lattice spacing Lellouch - Lüscher factor **Residual FV corrections** Parametric errors Excited state contamination Unphysical kinematics Total

- ¹ As a result of step scaling from $\mu = 1.53 \,\text{GeV} \rightarrow 4.00 \,\text{GeV}$.
- ² Better control of $\pi\pi$ system due to additional operators.
- ³ Largest uncertainty is due to $\tau \sim 5\%$.
- ⁴ Significantly underestimated in 2015.

)15 Error	2020 Error	_	NP treatment on going
15%	5% ¹		
12%	unchanged		
12%	unchanged		
11%	1.5% ²		
7%	unchanged		finer lattice & continuum li
5%	6% ³		
5%	negligible ⁴		
3%	5%		
27%	21%	_	

Why changed so much?

Ultimately misestimation of excited-state contaminations

 ${
m Re}(\epsilon'/\epsilon)_{
m SM} = 1.38(5.15)_{
m stat}(4.59)_{
m sys} imes 10^{-4}$

value Doesn't change too much

$$\frac{A_2}{A_2} - \frac{\mathrm{Im}\,A_0}{\mathrm{Re}\,A_0} \Big] \Big\}$$

2015: accidental cancellation by order 2020: A0 part increased by x3.5

Caused more than 10x difference

 $21.7(2.6)_{\rm stat}(6.2)_{\rm sys}(5.0)_{\rm EM/IB}\times 10^{-4}$

Contents

- ✓ Introduction
- $\[\ensuremath{\underline{\mathsf{M}}}\] \to \pi\pi\] \text{matrix elements}$
- Operator renormalization
- On going projects
 - $K \rightarrow \pi\pi$ in periodic boundary conditions
 - New contraction strategy
 - ▶ NP matching of Wilson coefficients from $4 \rightarrow 3$ flavor theory
 - Finer G-parity lattices
 - Introducing QED & IB effects

Why periodic BCs?

- Already have lattice ensembles with physical pion mass
 - 1 GeV, $24^3 \times 64$, 1.4 GeV, $32^3 \times 64$ and ...
 - Continuum limit possible
- Hope to introduce QED/IB effects near future
 - Difficult with G-parity boundary conditions
 - Periodic BC study valuable
- Presence of $E_{\pi\pi} = 2m_{\pi}$ state challenging
 - S/N ratio of $E_{\pi\pi} = m_K$ state should be the same as G-parity BC

type 4 dominates stats. error

G-parity calculation

- types 1,2: averaged over every 8 time translations
- types 3,4: averaged over every time translation
- types 1,2 still expensive but no need of such precision \rightarrow cost reduction?

type 3

RBC/UKQCD, PRD 102,054509 39

Sparsening Hw

- Cost mostly promotional to volume of H_W
- G-parity calculation: summed H_w over whole 3D volume
- types 1 & 2

Plan for this time: reduce the volume of H_W (32³ \rightarrow 8³: 64x speed up) for

full vol. sum sparse vol. sum

Summary

35

More independent calculations desired

- Systematic error
- Isospin breaking effects
- Truncation error of Wilson coefficients
- Finite lattice cutoff

RBC/UKQCD working hard to figure out these & conclude $K \rightarrow \pi\pi$ story

