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What am I?

| am a particle physicist, working on lattice QCD.
| want to apply machine learning on it.

My papers

Detection of phase transition via convolutional neural networks

A Tanaka, A Tomiya . . .
Journal of the Physical Society of Japan 86 (6), 063001 Phase transition detection with NN

Evidence of effective axial I/(1) symmetry restoration at high temperature QCD
A Tomiya, G Cossu, S Aoki, H Fukaya, S Hashimoto, T Kaneko, J Noaki, ...
Physical Review D 96 (3), 034509 Axial anomaly with a chiral fermion

Digital quantum simulation of the schwinger model with topological term via adiabatic

state preparation
B Chakraborty, M Honda, T Izubuchi, Y Kikuchi, A Tomiya Quantum computer

arXiv preprint arXiv:2001.00485
Bio
2010 : University of Hyogo
: PhD in Osaka university

#2018 - 2021 : SPDR in Riken/BNL
2021 - . Intrl. Professional Univ. of Tech. in Osaka
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Lattice QCD

Well-defined quantum field theory




Latti ce Q C D Akio Tomiya

Electromagnetism = U(1) gauge theory
¢ Electromagnetism (in relativistic notation) =w=mssemsemmenmomr,

1
S = jd“x[ — ZFWFW + l/'/(i@ + eA — m)l//]

. A eR ’
r,=9A,-0,A, g 3
u=0,12,3

« This describes Electro& magnetic phenomena: £, is E, F; isB (i, ] = 1,2,3)

e U(1) gauge symmetry controls: S is invariant following local transformation,

A, (x) > A, (x) — 0,82(x) Qx) e R
Quantum E|ectro_Dynamics (QED) e
[E(x), A(y)] ~ o(x —y) Quantization
i lw(®) = ey (0)) H: Hamiltonian from S above

* Quantized electromagnetism
* The most precise theory in the world

DLAP2021 Gauge covariant neural network



Latti ce Q C D Akio Tomiya

QCD = Matrix version of quantum electro dynamics
7 QCD (Quantum Chromo-dynamics) in 3 + 1 dimension mesmewmrm,

1
S = Jd“x[ — Etr F,F"+ lp(i@ + gA — m)l//]

g

F w = aﬂAy — 6VAM — lg [A,u’ Ay] A, (x) € su(3), 3x3 traceless matrix, harmitian f

| p (7)) = e~ | w(0)) H: Hamiltonian from S above

Nk G g B9 LR s A gt g T A XAt e s A i e Ao B Lo b e s el s o) g (2 el o e e o Lo paaa

: o o Generalization of QED, A (x) is matrix (Yang-Mills-
’ _O %&ixgm%&é%“o_ ‘ Uchiyama) .

w e Action above enables us to calculate (in principle)
_ followings:

e Equation of state of neutron star, Tc

d
s
e

e Forces between nuclei

e Scattering of quarks and gluons, Parton
distributions

e Mass of hadrons, etc
e \We cannot use perturbation since g >> 1
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Latti ce Q C D Akio Tomiya

Gauge transf can be defined on the lattice

K. Wilson 1974

1
S = Jd“x[ +5tr F,F,,+ 1/7(@ —1gA + Wl)l//]

4 1 _
Laftice requlation SLU,y, ]l = a Z [— —2Re rU,, + II/(D T m)W]

__ _aigA g
U, = e“&h a is lattice spacing(cutoff = a_l)

Both gives same expectation value (for long range)

—1
Re U, ~— 2a4F2 + 0 a6
(They are same except for infinitely Irrelevant operators) Ky o) 3 24 (@”)

Gauge transformation on the lattice is simpler

A0 = GWA,0G™(x) - G(x)9, G (x) U,(x) = GU, )G\ (n + )

Gauge field on the bonds Gauge trf

Gauge trf on the points A
n n-—+ N
U (n) n n-—+u

G(n) U, (x) G ln+p)
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Latti ce Q C D Akio Tomiya

Regulated theory for QCD

K. Wilson 1974

1
S = Jd“x[ +5tr F,F,,+ 1/7(@ —1gA + m)l//]

4 1 _
Laftice requlation SLU,y, ]l = a 2 [— —2Re rU,, + II/(D T m)W]

aigA g
U, = e84 a is lattice spacing(cutoff = a~!)

Both gives same expectation value (for long range)

—1
Re U, ~— 2614F2 + 0 a6
(They are same except for infinitely Irrelevant operators) Ky o) 3 24 (@”)

f' 1
(0) = — | DUDYDye>0O(U) = ~ J@Ue—Sgauge[U] det(D + m)O(U)

N|—= N[~

DUeV10(U)

This integral gives expectation values (path integral).
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Latti ce Q C D Akio Tomiya

LQCD makes us quantitative, a tool to mvestlgate QFT

2000 —
> A N
arXiv:0906.3599 | Great 'succesées! .o é t’\‘_ Quar c-v' 0 Iuoss g‘
i . - . 7
1500- Pl = y -
Z = Z* = ‘
s LT ==F g
=, 1000 | N S AL
= ' E P @ ‘ %
500 _‘ e K —— experiment . 5
il == width
o input : :
—— TT QCD
0 ¢ 0 1

4
Nuclei Net Baryon Density

Outcome?

- Force between nuclei

- Entanglement

- Form factors

- Parton distribution, etc...
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Latti ce QC D Akio Tomiya

You can start it in 10 minutes

AT & Y. Nagai in prep

We made a public LQCD code by Julia language: o ach
https://github.com/akio-tomiya/LatticeQCD. || JUIla

Easy and quick start on laptop/desktop
HMC/heatbath/SLMC + Measurements
(SU(Nc) Stout, RHMC for staggered, Wilson-Clover)

Compatible speed with a Fortran code

You can start in 3 steps (in 10 min)

1. Download Julia binary

2. Add the package through Julia function
3. Executel!

SU(3), Quenched, L=4"4, Heatbath

0.65

10 g 060 °
8 § 055 4
6 g 050
4 & 045t 2
2 040 {/
a————__""§ 0
0.450.500.550.600.650.70 5 10 15 20 25 00 01 02 03 04 05 06
Plaquette MC time |Polyakov loop|
Polyakov loop =3
g 05 i 01} oo © S 2|
S o4 | K 00° o © ©° o® >,
2 AW ot g
Qo3 R £ 02 i N 8 o
30.2 A— ! — .03 :. go o E 1
[e) \/ | . = - (|
[ B TR _g“; oo 2Ll
| N < 4[|
5 10 15 20 25 -0.10.0 0102030405 5 10 15 20 25
MC time Re MC time
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https://github.com/akio-tomiya/LatticeQCD.jl

Introduction

Machine learning makes map between data
For example: image recognition

How can we deal with data with gauge symmetry?
(Can we embed in full HMC?)

cf.
If data with global symmetry (Ising model),
conventional architectures work well
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MOtivatiOn and results Akio Tomiya

Gauge symmetric neural network
| had wanted make gauge symmetric neural network since 2017

(The first work which appImiac:hin(cieu(l:garn}'ngl;C on field Qgrﬁg\i%urations in the world) | arXiv: 1712.03893

owards re on of atitocorrelation i by machine learning

Akinori Tana,kal’z’?”m and Akio Tomiya‘l’ﬂ

! Mathematical Science Team, RIKEN Center for Advanced Intelligence Project (AIP),
1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
2 Department of Mathematics, Faculty of Science and Technology,

Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
Sinterdisciplinary Theoretical & Mathematical Sciences Program
(iTHEMS) RIKEN 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
“Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics,
Central China Normal University, Wuhan 430079, China

In this paper we propose new algorithm to reduce autoc:

algorithms for euclidean field theories on the lattice. Our px If We Want to use gener at ive mo dels aS lattice Q CD

Carlo algorithm (HMC) with restricted Boltzmann machin
mmetry of a

rithm by employing the phi-fourth theory in three dimensio
» .
s is because,

relation both in symmetric and broken phase as well. Our S ampler ] N ‘_ 1l

central values of expectation values of the action density ax
from the original HMC in both the symmetric phase and b|

On the other hand, two-point Green’s functions have slight prOb ability diSt I‘ibution for t e mo del 2 hi

HMC and one by our proposing algorithm in the symmetric

~
—
-]
N

Q

O
)

m_the ane from | (. _We a

What we found arXiv: 2103.11965

1. “Gauge symmetric neural network” = (trainable ) smearing

% ) U0V = UP0) U,i”(n)[U;”(n)[Uﬂ(n)”

2. Using the neural network, we perform self-learning HMC. Looks good.

25001 II {, | HMC 3000 bt | HMC
() | SLHMC . | SLHMC
000 | i } 2500 1 i
- i J + 2000 ] .
< 1500 1 . =
S .I S 1500 : '|
1000 | A ‘ 1000- I.
500 A r ) 500 | | ?
0 o : I'I-. 0l N | . . "*l.t.l .
0.68 0.70 0.72 0.38 040 042 044 046 0.48 0.50
Plaquette Chiral condensate
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Neural network, filtering and
the convolution

Deep Learning
and Physics

13



What is the neural networks?

Affine transformation + element-wise transformation

Matrix —
[WXx']. = Z W;iX;
J

Matrix can “mimic” any linear map

Component of neural net

Zl.(l) — Z le)xj —+ bl.(l) Affine transf.
— . (b=0 called linear transf.)
ui(xj) = ;

U, = g(l) ( Zi(l)) element-wise (local)

Fully connected neural net
£A(T) = 6 E=EDWEDGI=DW =D 4 =Dy 4 J(=2))

0 is a set of parameters: wg), bl.(l),

Neural network = map between vector to vector

R-CCS seminar Gauge covariant neural network



What is the neural networks?
Neural network is a universal approximator

=1 0.64 Image is a vector

4 AT
36 dimension Neural net

Input “0”=(1,0,0,...)

< 10 dimension “1” =(0,1,0,...)

@ » » “2” =(0,0,1,...)
N Images of “1”

) “9” = (0,0,...,1)

BT $
O

Images of “2”

yno

Fact: neural network can mimic any function!

(Intuitively, # of unit in neural net ~ basis in the Fourier transformation)

In this example, NN mimics image (36-dim vector) and label (10-dim vector)

R-CCS seminar Gauge covariant neural network



What is the neural networks?

Training can be done with a gradient optimizer & delta rule
7D = 1Dy, (=1 u=0 =

u =6z flo) = oW Pe(w=Va(w=x)))

1d example of training

B = (- B =2 . -
L, (1=0) [X W (=D ( )u(l_l) X W L(=2) o( ) L (1=2)

> — > —

S
1

Jo(x)

R-CCS seminar Gauge covariant neural network



What is the neural networks?

Training can be done with a gradient optimizer & delta rule
7D = 1Dy, (=1 u=0 =

1d example of training _ _ _
{u<l+1> =6z J0) = oW oW =Da(w!=0x))

(I=1) : (I=2) :
x| = | =0 X W= o( )u(1=1) X w2 4= o( ) =2 | _| £x)
w — w® _y (Gradient)] Lo= > B ‘yi_fa(xi)‘
a W (l) 3 iEdata
Chain rule gives a recursive formula of the delta (called the delta rule)
(D)
oLy — oLy Oz — 50, (=D 5O = oLy
ow® 0z gw® 0z
(I+1)
Detta rule: 50 = 00 92 _ S50+ Dy D Dy
oz(+1) 9z
=2 I=1 oL, D, (-1
Delta is determined recursively: 6= — §/=1) and we get T = 5Oy =D
W

R-CCS seminar Gauge covariant neural network



What is the neural networks?

Training can be done with a gradient optimizer & delta rule

o) = o(w = o(w=De(w="x)))
_ = 4 lo(- _ (I=2) _» |o( - _
x |=| =0 X W a=n ( )u(l_l) X w2 4= ()| a=2) _| A
>

Training is done with propagating error in backward: “Backprop”

— —

oLy Delta rule:

— s, (-1 eltarule. o) _ s(+1),,,(+1) ()

ow®d o0 u (recursion) 0 =0"w o (z%)
(=1) _ : _ (I=2) - :

1, (=0) Z(I=1) 0(_2 u= | wo 7(=2) o( - ) £o(x) L,

: w® — O _ n oLy
ow ) |
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What is the neural networks?

Convolution layer = Trainable filter

Filter on image

Laplacian filter

O/1]0
>I< 1 -2 1 Edge detection
O/1]0
(Discretization of 0°)
Convolution layer Fukushima, Kunihiko (1980)

- Zhang, Wei (1988) + a lot!

| Trainable filter

Edge detection Gaussian filter

W11 (W12 | W13 | e

—  Smoothing N RRE

>I< Wa1 | W22 | W23 Nk
W31 (W32 | W33

(Training and data determines what kind of filter is realized)
Extract features

R-CCS seminar Gauge covariant neural network



What is the neural networks?

Convolution layers can be nested as well as fully connected

We can make a composite function with the convolutional layers Thang, Wel (1988) + 8 lotl

W11 | W12 [ W13 W11 | W12 | W13 W11 | W12 | W13

W21 | W22 [ W23 * W21 | W22 | W23 * W21 | W22 | W23

W31 | W32 | W33 W31 | W32 | W33 W31 | W32 | W33

1. The convolution layers improves performance of image recognition
2. Convolutional layer = sparsened version of fully connected with “weight sharing”

3. Filtering operation does not care the absolute coordinate = translation symmetry
Both should be recognized as “dog”

v o .
3 " "
W I
LRy
-
Wt
i
= i

Modern viewpoint:

Symmetry improves performance. (T. Cohen+, group equivariant NN)
(Rotational symmetry: Spherical convolution T. Cohen+). Approximator is guaranteed to respect the sym.

In machine learning context, some data has “gauge symmetry”
Info of gauge symmetry is useful to improve performance . Cohen+, gauge equivariant NN)

R-CCS seminar Gauge covariant neural network



What is the neural networks?

Convolution + fully connected

Fukushima, Kunihiko (1980)
Zhang, Wei (1988) + a lot!

e.g.:
fg (7) — 6(l=2)(W(l=2)0(l=1)(W(l=1)7))

_) W11 | W12 | W13 W11 | W12 [ W13 W11 | W12 | W13
‘V —

atten W21 | W22 | W23 * W21 | W22 | W23 W21 | W22 | W23

W31 | W32 | W33 W31 | W32 | W33 W31 | W32 | W33

Parameters in convolutional layers can be trained as same as fully connected ones.

(For modern implementation, it should be multi-channel & use global average pooling but here we ignore it)

We can extract information of physics from configurations: (AT+2016)

R-CCS seminar Gauge covariant neural network



Smearing

Smoothing with gauge symmetry

M. Albanese+ 1987
R. Hoffmann+ 2007
C. Morningster+ 2003

22



Akio Tomiya

Smearing

Smoothing improves global properties
Coarse image Smoothened image

-
_—

Gaussian filter ‘

Numerical derivative is unstable Numerical derivative is stable

It distort microscopic structure
but global structure (topology)
get improved If one wants to study

Topology, we can use
the Gauss-Bonnet

We want to smoothen gauge configuration
with keeping gauge symmetry

APE-type smearing M. Albanese+ 1987
Two types: R. Hoffmann+ 2007

Stout-type smearing C. Morningster+ 2003

R-CCS seminar Gauge covariant neural network



Smea ring Akio Tomiya

1st: smoothing with gauge symmetry

M. Albanese+ 1987

APE_type smearing R. Hoffmann+ 2007
Normalization v
fat — a T — i i
U — Ulmn) =N [(1 —a)U,(n) + EVP‘[U ](n)] N [M] NToT Or projection
VZ[U](H) = Z Uy(n) Uﬂ(n + D) Uj(n + )+ - V;[U](n)& U, (n) shows same transformation
UFv *U;at[U](n) is as well
Schematically,

— =N [o-o—>—+iZF1+14 ]

In the calculation graph,

H{E ()

R-CCS seminar Gauge covariant neural network



Akio Tomiya

Smearing

2nd: smoothing with gauge symmetry
Stout-type smearing

Uy(n) = U,(n) = eU,(n)
= U,(n) + (% — DU, (n) G = exp(Q)

(: anti-hermitian traceless plaquette
This is less obvious but this actually obeys same transformation

/
U [(eQ - 1)U}€L Ufat

C. Morningster+ 2003

Schematically,

\ 4 \ 4

AN
7

|
o

[
ANV
\
—
ANV

In the calculation graph,

R-CCS seminar Gauge covariant neural network



Smea ring Akio Tomiya

Smearing decomposes into two parts

We can generally write smearing as

z,(n) =wU,(n) + w,&[U]  Summation with gauge sym
UM (n) =
U/Eat(n) = N (z,(n)) A local function

R-CCS seminar Gauge covariant neural network



Smea ring Akio Tomiya

Smearing ~ neural network with fixed parameter!

AT Y. Nagai arXiv: 2103.11965

We can generally write smearing as

z,(n) =wU,(n) + w,&[U]  Summation with gauge sym
UM (n) =
U;at(n) = N (z,(n)) A local function

It has similar structure with neural networks,

Zl-(l) — Wl:(]-l)xj + bl-(l) Affine transformation
(X;) = J
U = 0(1)(2(1)) element-wise (local)
l

(Index i in the neural net corresponds to n & g in smearing. Information processing with NN is evolution of scalar field)

Multi-level smearing = Deep learning (with given parameters)

As same as the convolution, we can train weights
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Gauge covariant neural

network

Trainable smearing

AT Y. Nagai arXiv: 2103.11965
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Gauge Covariant neural network Akio Tomiya

= trainable smearing

. _ ] ] AT Y. Nagai arXiv: 2103.11965
Gauge covariant neural network = general smearing with trainable parameters

+D ey = wO 7o D)
z, (M) =w U/ (n)+w, ?é (U]

U;tl+1)(n) [U(l)] —
/V(Z//(tl-l_ 1)(n)) (Behler-Parrinello type neural net)

(Weight “w” can be depend on n and pu = fully connected like. Less symmetric

UNNIUT = U0 | U2 | U U, )

Good properties: Obvious gauge symmetry. Translation, rotational symmetries.
(Analogous to convolutional layer, this fully uses information of the symmetries)

U,(n) = UYN@n) = UNNm)[ U]

Gauge covariant composite function. Input = gauge field, Output = gauge field

Trainable (next page)

R-CCS seminar Gauge covariant neural network



Gauge Covariant neural network Akio Tomiya

Training can be done with (extended) back propagation

AT Y. Nagai arXiv: 2103.11965
Gauge inv. loss function can be constructed by gauge invariant actions

SSN[U1= S [UEN(H)[U]] S: gauge action or fermion action

mini-batch

Loss function Lé?[ Ul=f ( SNN[ U] ) f: mean-square for example,

Training: We can use “gradient descent”. “Adam” (adaptive-momentum) is applicable
oLy U]
06

The second term requires the chain rule with matrix functions, we need extended delta rule

OL[U] oL of oSN ou™h gD
000 9f ASNN gUU+D gz(+D)  9eU)

But actually, matrix derivative is common to the HMC force
(-> Extended delta rule, skipped. implementation is almost same as stout force)

O — ¥ — p

0" is parameters in I-th layer

R-CCS seminar Gauge covariant neural network



Gauge Covariant neural network Akio Tomiya

Neural ODE of Cov-Net = “gradient flow”

Res-Net wd=D Cg w® arXiv: 1512.03385
Continuum
Layer
Limit
\ du®
—
Neural ODE — cg( U (t)) arXiv: 1806.07366
dl. (Neural IPS 2018 best paper)

R-CCS seminar Gauge covariant neural network



Gauge Covariant neural network Akio Tomiya

Neural ODE of Cov-Net = “gradient flow”

Res-Net wd=D Cg w® ariv: 1512.03385
Continuum
Layer
Limit
\ du® |
Neural ODE — cg( U (t)) arXiv: 1806.07366
dl. (Neural IPS 2018 best paper)
Gauge-cov net U(l) ( 0 [J{+1) AT Y. Nagai arXiv: 2103.11965
Continuum L ?
Layer
Limit

(7)
Neural ODE dU,u (n)
for Gauge-cov net
dt

“Continuous stout smearing is the Gradient flow”

2010 M. Luscher

_ @l77(0) “Gradient” flow
=g (U/,t (I”l)) (not has to be gradient of S)
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Gauge covariant neural network

Short summary

Akio Tomiya

) Continuum ]
mmet .
Sy etry Fixed parameter limit of layers How to Train
Conventional Convolution: Convolution: Res-Net: DGQ?CLU;OZM
neural network Translation Filtering Neural ODE Gradient opt.
c t Gauge symmetry, Exterzlo(laeslngelta
au e COV. ne : . 1 . 1]
ATY. Nagg arXiv: 2103.11965 Trsgf;?;[(l)?]n’ Smearing Gradient” flow backprop

Gradient opt.

Next, | show a demonstration

(Q. Gauge cov. net works? Useful?)

R-CCS seminar

Gauge covariant neural network



Demonstration

An application for
configuration generation

AT Y. Nagai arXiv: 2103.11965
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Akio Tomiya

Demonstration

Lattice path integral > 1000 dim, Trapezoidal int is impossible

K. Wilson 1974

1
S = Jd“x[ +5tr F,F,,+ 1/7(@ —1gA + Wl)l//]

Lattice requlation

U,u — eaigAﬂ

S[U, ol = a* Y [— %Re tr U, + (D + m)l//]

8
a is lattice spacing(cutoff = a‘l)
Both gives same expectation value (for long range —1
g P on: ( g g)ReUUN—g2a4F2y+0(a6)
(They are same except for infinitely Irrelevant operators) H 2 H

” 1
DUDGDye > O(U) = ~ J@Ue‘sgaugew] det(D + m)O(U)

DUeV10(U)

(d
1

4
H HdUﬂ(n) >1000 dim. We cannot use Newton-Cotes

type integral like Trapezoid, Simpson etc.
(Calculation time is longer Thant the age of the universe if one
wants to control the error.)

ne{zZ/L}* u=1
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Akio Tomiya

Demonstration

Monte-Carlo integration is available

M. Creutz 1980

1 —Setl U]
(@)zE DUe™“10(U) SeilU1 = Sqaugel U1 — log det(D[U] + m)

Monte-Carlo: Generate field configurations with “P|[U| = Ee_Seff[U]”. It gives expectation value

HMC: Hybrid (Hamiltonian) Monte-Carlo ]
De-facto standard algorithm £

1
S(x,y) = 5()62 + y* + xy)

R-CCS seminar Gauge covariant neural network



DemOnStratiOn Akio Tomiya

Monte-Carlo integration is available

M. Creutz 1980

1 —Setl U]
(@)zE DUe™“10(U) SeilU1 = Sqaugel U1 — log det(D[U] + m)

Monte-Carlo: Generate field configurations with “P|[U| = Ee_Seff[U]”. It gives expectation value

R-CCS seminar Gauge covariant neural network



DemOnStratiOn Akio Tomiya

Monte-Carlo integration is available

M. Creutz 1980

L —Seil U]
(@)zE DUe™nt“10O(U) SeilU] = Sqaueel U1 — log det(D[U] + m)

Monte-Carlo: Generate field configurations with “P|[U| = Ee_Seff[U]”. It gives expectation value

If an algorithm is not exact (exact = average approaches to the expectation value),
we cannot use the results to the other calculation for experiments

However, a neural network is an approximator
How can it be exact?

R-CCS seminar Gauge covariant neural network



DemOnStration Akio Tomiya

Configuration generation with machine learning

Some history:

Restricted Boltzmann machine + HMC: 2d scalar A. Tanaka, AT 2017
The first challenge, machine learning + configuration generation. Wrong at critical pt. Not exact.

GAN (Generative adversarial network ): 2d scalar J. Pawlowski+ 2018
Results look OK. No proof of exactness (impossible?) G. Endrodi+ 2018
Flow based model: 2d scalar, pure U(1), pure SU(N) MIT+ %o Google Brain 2019 ...

Mimicking a trvializing map using a neural net which is reversible and has tractable Jacobian.
Exact algorithm, no dynamical fermions. Gauge equivariant layers. SU(N) is treated with diagonalization. All in 2d.

Self-learning Monte Carlo for lattice QCD arxiv 2010.11900 Y. Nagal AT, A. Tanaka

Non-abelian gauge theory with dynamical fermion in 4d
Using gauge invariant action with linear regression
Exact. Costly (Diagonalize Dirac operator)

Self-learning Hybrid Monte Carlo for lattice QCD (next page) arxiv 2103.11965 Y. Nagal AT

Non-abelian gauge theory with dynamical fermion in 4d o) 7’;
Using covariant neural network to parametrize the gauge invariant ac’uonA H
Exact. Cheaper than the previous SLMC work

R-CCS seminar Gauge covariant neural network



Akio Tomiya

Demonstration

Problems to solve

arXiv: 2103.11965
Target Two color QCD (plaquette + staggered(not rooted) )

(Artificial) Q1:
Can we perform simulation of QCD using different action form
the target (but variational parametrized)?

Q2: To get non-zero acceptance, the training must be done
successfully. It is possible?

HMC: Molecular dynamics + Metropolis test
SLHMC: Molecular dynamics (parametrized action) + Metropolis test

R-CCS seminar Gauge covariant neural network



Gauge covariant net& SL MC

SLHMC for gauge system with dynamical fermions

arXiv: 2103.11965 and reference therein

m Metropolis

Both use

Non-conservation of H cancels since
the molecular dynamics is reversible

Metropolis E

Metropolis

H=Y r*+S$,+ 5[V

H=Y r*+S+S{UNN[U]]

Neural net approximated
fermion action but exact

Metropolis &
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DemOnStratiOn Akio Tomiya

Lattice setup and question

arXiv: 2103.11965

Target Two color QCD (plaquette + staggered(not rooted) )
Algorithms SLHMC, HMC (comparison)
Parameter L=4, m = 0.3, beta = 2.7
Targetaction  S[U] =S, |U| + S;|¢p, U;m = 03], For Metropolis Test
i SU1 = S, |U| + S¢|p, UNNUT; my, = 0.4
Approximated olU] = g[ ] + f[¢, o LUl my =04, For MD
Action

Observables Plaquette, Polyakov loop, Chiral condensate (i7y)

Code Fully written in Julia :i LattiCEQCDJI AT+ (in prep)

(But we added some function on the public version)
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Network: trainable stout (plag+poly)

arXiv: 2103.11965

(1) poly o . .
Structure of NN Q0 (n) = p OP(n) + {/’poly.404 (n) (=4, All p is weight

z o .
(Polyakov loop+plaq P;(m)ny,s()f Y(n), (u=1i=1,2,3) O meas an loop operator
In the stout smearing

Reducing rot. sym.) fo)(n) = Q[Qg)(n)]TA TA: Traceless, anti-hermitian operation

We randomly choose this NN. A+ — ) )
We can do better. U, (n) = exp(Q, (m) U, "(n)

2- layered stout

NN _ 772 (D
U U] =U;"(n) [Uu (”)[Uﬂ(”)” with 6 trainable parameters

Neural network NN Action is a function of a
_ . S)IUl=S8_|U Selh, U Ul; = 04|, i
Parametrized action: olU] gl ] + f[¢ 0 LU my, ] ﬁeu?:a}‘ilidit .

2
SH[Ua ¢] — S[U’ ¢]

b

Loss function: LU = %

Training strategy: 1.Train the network in prior HMC (online training+SDG)
2.Perform SLHMC with fixed parameter

R-CCS seminar Gauge covariant neural network
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Results: Loss decreases along with the training

) arXiv: 2103.11965

Loss function: 1
L@[U] — 5 SQ[Ua ¢] - S[U’ ¢] ’
Prior HMC run (=training) History of loss function
101 — mh=0.4
JLy(D) 03 aC .
e —— = 2Re tr U(l,)T(m)A '
6«6 n 90 : 8p§l) MZ;I M u apgz) o
OLy(D)  OL¢(D) Sy Q: sum of un-traced loops ?
—_— 7 — S 40
Bwa_l) Sy waL_l) C: one U removed Q
A: A polynomial of U. 20 -
(Same object in stout)
0- T T T T
0 20 40 60 80 100
MD time (= training steps)
Layer Loop Value of p
1 Plaquette —0.011146476388409423

2 Plaquette —0.011164492428633698
1 Spatial Polyakov loop | —0.0030283193221172216
2 Spatial Polyakov loop | —0.0029984533773388094
1 Temporal Polyakov loop | 0.004248021727233112
2 Temporal Polyakov loop | 0.004195253380373369

We perform SLHMC with these values!
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Demonstration

Akio Tomiya

Results are consistent with each other

2500 -
2000 - | I

1500 1

Count

1000 - ;

500 1 , a

0.70
Plaquette

0.68

3000 -
| |

2500 - i

+ 2000 {

c

2

3 1500
1000 1 |

500 -

0 . - r kl'l.c-

038 040 042 044 0.46 0.48
Chiral condensate

0.50

arXiv: 2103.11965

| HMC |
40001 | SLHMC ¥
J
., 30001 1
c
2 i
© 2000 - I
| '.
1000 - ‘ A
Lanaiel
0 . bt b I" " . .
-1.0 -0.5 0.0 0.5 1.0
Polyakov loop
Expectation value
Algorithm Observable Value
HMC Plaquette 0.7025(1)
SLHMC Plaquette 0.7023(2)
HMC |Polyakov loop| 0.82(1)
SLHMC  |Polyakov loop| 0.83(1)
HMC Chiral condensate 0.4245(5)

SLHMC  Chiral condensate 0.4241(5)

Acceptance = 40%

Gauge covariant neural network



Summary and future work 1/2

We construct and use gauge covariant neural net

arXiv: 2103.11965

 (Convolutional layers = Trainable filters
 (Covariant neural network = Trainable smearing

 We develop the delta rule for rank-2 variables(skipped) One can implement this on a

code with smeared HMC (training part is mostly common to the stout force)

 Gauge invariant loss function

e If we choose U(1), ape-type net, expand in a, stop weight sharing
— |t becomes fully connected neural net (skipped).

 Neural ODE for covariant net = “gradient flow” (but it does not have to be a gradient)
e Self-learning HMC = HMC+ neural network parametrized molecular dynamics, exact
* Training: it has only 6parameters but loss decreases to O(1).

* Results of SLHMC consistent with HMC. We successfully generated configurations with
4 dimensional non-abelian gauge theory with dynamical fermions
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Summary and future work 2/2

Future works

arXiv: 2103.11965
e Cov-net: What kind of function can it approximate? Does it have universality for deep limit?

e (Cov-net: Application for machine learning? (c.f. T. Cohen et al uses data with discrete gauge sym.)

e (Cov-net: Can we convert coarse configurations to finer ones? We can do same thing for images with
neural nets

e Cov-net: As in (A. Tanaka AT 2016), can we define or find a new order parameter for confinement? How
about topological charge estimation (Kitazawa+ 2020) ?

e Cov-net: Can we construct GAN 7 RBM with it?, combining flow based algortihm?
* Cov-net: Does it have interpretation like AdS/DL (K. Hashimoto 2020) ?

e (Cov-net: Can we construct better1st level smearing than HISQ(Highly improved staggered quark,
level-2)?

e (Cov-net: neural net ~ Gradient flow. Can we use QFT techniques to neural net as (J. Halverson+
2020 7?),

e SLHMC: S = overlap, SA"NN = domain-wall fermion with neural net? It could be better than the reweighing.
e SLHMC: Improves acceptance with complicated neural network

» SLHMC: Measure topological charge in larger system. Topology changing action with neural net?

R-CCS seminar Gauge covariant neural network



