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What am I?
I am a particle physicist, working on lattice QCD. 

I want to apply machine learning on it.
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Lattice QCD
Well-defined quantum field theory



Electromagnetism (in relativistic notation)

Fμν = ∂μAν − ∂νAμ

S = ∫ d4x[ − 1
4 FμνFμν + ψ̄(i∂/ + eA/ − m)ψ]

• This describes Electro& magnetic phenomena:  is E,   is B ( )

• U(1) gauge symmetry controls: S is invariant following local transformation,

F0i Fij i, j = 1,2,3

Aμ(x) → Aμ(x) − ∂μΩ(x)
Quantum Electro-Dynamics (QED)

[E(x), A(y)] ∼ δ(x − y)

|ψ(t)⟩ = e−iHt |ψ(0)⟩ : Hamiltonian from S above H

• Quantized electromagnetism

• The most precise theory in the world

Aμ(x) ∈ ℝ

Ω(x) ∈ ℝ

Quantization

μ = 0,1,2,3

5

Lattice QCD
Electromagnetism = U(1) gauge theory

DLAP2021

Akio Tomiya

Gauge covariant neural network
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Lattice QCD
QCD = Matrix version of quantum electro dynamics

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

QCD (Quantum Chromo-dynamics) in 3 + 1 dimension

Fμν = ∂μAν − ∂νAμ − ig[Aμ, Aν]

S = ∫ d4x[ − 1
2 tr FμνFμν + ψ̄(i∂/ + gA/ − m)ψ]

|ψ(t)⟩ = e−iHt |ψ(0)⟩

• Generalization of QED,  is matrix (Yang-Mills-
Uchiyama)


• Action above enables us to calculate (in principle) 
followings:

• Equation of state of neutron star, Tc 

• Forces between nuclei

• Scattering of quarks and gluons, Parton 

distributions

• Mass of hadrons, etc


• We cannot use perturbation since g >> 1

Aμ(x)
12 Rajan Gupta

D- K0
d

W e

ν−

-
c s

Fig. 3. The Feynman diagram for the semi-leptonic decay D− → K0e−νe. The QCD
corrections are illustrated by the various gluons being exchanged between the initial and
final hadrons. The leptonic vertex can be calculated reliably using perturbation theory,
whereas the hadronic vertex requires non-perturbative methods.

The second area in which perturbative estimates are not reliable is in
the calculation of the matrix elements occurring in the weak decays of
hadrons. The reason is that the non-perturbative QCD corrections to the
basic weak process can be large due to the exchange of soft gluons between
the initial and final states. This is illustrated in Fig. 3 for the case of
the semi-leptonic decay D → Klν. In this case the matrix element of
the weak interactions Hamiltonian between the initial D meson and final
kaon receives large corrections from QCD which cannot be estimated using
PQCD.

The result of the experiment is a number, i.e. the decay rate. To check
whether the Standard Model prediction is in agreement with this number
theorists must derive an analytical expression for the same process. This
expression, in general, consists of a product of three parts: a combination
of the parameters in the SM , matrix elements (ME) of the interaction
Hamiltonian between the initial and final states, and kinematic factors.
(This is the well-known Fermi’s golden rule.) Schematically one can write
this “master” equation as follows.

Expt.# =
(
SM parameters

)(
matrix elements

)(
kinematic factors

)
. (3.2)

Thus, for each such experimental number one gets a constraint on one
particular combination of the SM parameters provided the ME are known.

, 3x3 traceless matrix, harmitianAμ(x) ∈ su(3)

: Hamiltonian from S above H
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Gauge transf can be defined on the lattice

R-CCS seminar
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Gauge covariant neural network

Lattice QCD

n

Aμ(x) → G(x)Aμ(x)G−1(x) − G(x)∂μG−1(x)
Gauge transformation on the lattice is simpler

G(n) Uμ(x) G−1(n + ̂μ)
Uμ(n)

n + ̂μ n
⟶

n + ̂μ

Lattice reg.

K. Wilson 1974

Uμ(x) → G(n)Uμ(x)G−1(n + ̂μ)

Gauge field on the bonds

Gauge trf on the points

Gauge trf

S[U, ψ, ψ̄] = a4 ∑
n

[− 1
g2 Re tr Uμν + ψ̄(D/ + m)ψ]

Re Uμν ∼ −1
2 g2a4F2

μν + O(a6)

S = ∫ d4x[ + 1
2 tr FμνFμν + ψ̄(∂/ − igA/ + m)ψ]

Uμ = eaigAμ

(They are same except for infinitely Irrelevant operators)
Both gives same expectation value (for long range)

Lattice regulation

 is lattice spacing(cutoff = )a a−1
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Regulated theory for QCD

R-CCS seminar
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Gauge covariant neural network

Lattice QCD
K. Wilson 1974

This integral gives expectation values (path integral).

= 1
Z ∫ +Ue−Seff[U]-(U)

⟨-⟩ = 1
Z ∫ +U+ψ̄+ψe−S-(U)

S[U, ψ, ψ̄] = a4 ∑
n

[− 1
g2 Re tr Uμν + ψ̄(D/ + m)ψ]

Re Uμν ∼ −1
2 g2a4F2

μν + O(a6)

= 1
Z ∫ +Ue−Sgauge[U] det(D + m)-(U)

S = ∫ d4x[ + 1
2 tr FμνFμν + ψ̄(∂/ − igA/ + m)ψ]

Uμ = eaigAμ

(They are same except for infinitely Irrelevant operators)
Both gives same expectation value (for long range)

Lattice regulation

 is lattice spacing(cutoff = )a a−1

K. Wilson 1974
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LQCD makes us quantitative, a tool to investigate QFT

Akio Tomiya

Great successes!arXiv:0906.3599

Outcome? 

- Force between nuclei

- Entanglement

- Form factors

- Parton distribution,      etc…

Lattice QCD

R-CCS seminar Gauge covariant neural network
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You can start it in 10 minutes

Akio Tomiya

We made a public LQCD code by Julia language:

https://github.com/akio-tomiya/LatticeQCD.jl


Easy and quick start on laptop/desktop

HMC/heatbath/SLMC + Measurements


(SU(Nc) Stout, RHMC for staggered, Wilson-Clover)

You can start in 3 steps (in 10 min)
1. Download Julia binary

2. Add the package through Julia function

3. Execute!

Lattice QCD

Compatible speed with a Fortran code

A.T. Y. Nagai

R-CCS seminar Gauge covariant neural network

AT & Y. Nagai in prep

https://github.com/akio-tomiya/LatticeQCD.jl
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Machine learning makes map between data

Akio TomiyaIntroduction

R-CCS seminar Gauge covariant neural network

Dog

Cat

How can we deal with data with gauge symmetry?

(Can we embed in full HMC?)

cf.

If data with global symmetry (Ising model), 

conventional architectures work well

For example: image recognition
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Motivation and results
Gauge symmetric neural network

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

I had wanted make gauge symmetric neural network since 2017

1. “Gauge symmetric neural network” = (trainable ) smearing

(The first work which apply machine learning on field configurations in the world)

UNN
μ (n)[U ] = U(3)

μ (n)[U(2)
μ (n)[U(1)

μ (n)[Uμ(n)]]]
2. Using the neural network, we perform self-learning HMC. Looks good.

What we found

arXiv: 1712.03893

arXiv: 2103.11965

(Privite) motivation
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Neural network, filtering and 
the convolution
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Affine transformation + element-wise transformation
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Gauge covariant neural network

Matrix [W ⃗x ]i = ∑
j

wijxj

z(l)
i = ∑

j
w(l)

ij xj + b(l)
iui(xj) = {

Component of neural net

ui = σ(l)(z(l)
i )

Matrix can “mimic” any linear map

Affine transf.

element-wise (local)

fθ( ⃗x ) = σ(l=2)(W(l=2)σ(l=1)(W(l=1) ⃗x + ⃗b (l=1)) + ⃗b (l=2))
Fully connected neural net

Neural network = map between vector to vector
 is a set of parameters: θ w(l)

ij , b(l)
i , ⋯

What is the neural networks?

(b=0 called linear transf.)
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What is the neural networks?
Neural network is a universal approximator

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

1

2

Neural net

Images of “1”

Images of “2”

=

0.000
0.000
0.8434
0.756
0.3456
0.64
0.251
0.11
0.23

⋮

Image is a vector

Fact: neural network can mimic any function!

In this example, NN mimics image (36-dim vector)  and label (10-dim vector)

36 dimension
10 dimension

Input

~

(Intuitively、# of unit in neural net ~ basis in the Fourier transformation)

6x6

“0” = (1,0,0,…) 
“1” = (0,1,0,…) 
“2” = (0,0,1,…) 
… 
“9” = (0,0,…,1)
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What is the neural networks?
Training can be done with a gradient optimizer & delta rule

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

z(l) = w(l)u(l−1)

u(l+1) = σ(z(l)) fθ(x) = σ(w(l=2)σ(w(l=1)σ(w(l=0)x))){1d example of training
u(l=0) = x

z(l=1)× w(l=1)
x u(l=0)= u(l=1)σ( ⋅ ) z(l=2)× w(l=2)

u(l=2)σ( ⋅ )
= fθ(x)
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What is the neural networks?
Training can be done with a gradient optimizer & delta rule

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

Lθ = ∑
i∈data

1
2 yi − fθ(xi)

2
w(l) ← w(l) − η

∂Lθ

∂w(l)

z(l) = w(l)u(l−1)

u(l+1) = σ(z(l)) fθ(x) = σ(w(l=2)σ(w(l=1)σ(w(l=0)x)))

∂Lθ

∂w(l) = ∂Lθ

∂z(l)
∂z(l)

∂w(l) = δ(l)u(l−1)

δ(l) = ∂Lθ

∂z(l+1)
∂z(l+1)

∂z(l) = δ(l+1)w(l+1)σ′ (z(l))

Chain rule gives a recursive formula of the delta (called the delta rule)

{1d example of training
u(l=0) = x

z(l=1)× w(l=1)
x u(l=0)= u(l=1)σ( ⋅ ) z(l=2)× w(l=2)

u(l=2)σ( ⋅ )
= fθ(x)

δ(l) ≡ ∂Lθ

∂z(l)

Training:

Delta rule:

(Gradient)

Delta is determined recursively: , and we get δ(l=2) → δ(l=1) ∂Lθ

∂w(l) = δ(l)u(l−1)
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What is the neural networks?
Training can be done with a gradient optimizer & delta rule

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

Forward process

z(l=1)× w(l=1)
x u(l=0)= u(l=1)σ( ⋅ ) z(l=2)× w(l=2)

u(l=2)σ( ⋅ )
= fθ(x)

z(l=1)w(l=1)
u(l=1)σ( ⋅ ) z(l=2)w(l=2) fθ(x)σ( ⋅ ) Lθ

δ(l=1)

Training is done with propagating error in backward: “Backprop”

Delta rule: 

(recursion)

∂Lθ

∂w(l) = δ(l)u(l−1)

u(l=0)

δ(l) = δ(l+1)w(l+1)σ′ (z(l))

w(l) ← w(l) − η
∂Lθ

∂w(l)

Training:

δ(l=2) = ∂Lθ

∂fθ
σ′ (z(l=2))

fθ(x) = σ(w(l=2)σ(w(l=1)σ(w(l=0)x)))
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What is the neural networks?
Convolution layer = Trainable filter

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

0 1 0

1 -2 1

0 1 0* =
Filter on image

w11 w12 w13

w21 w22 w23

w31 w32 w33*
Convolution layer

Laplacian filter

Edge detection

Trainable filter

=
Edge detection
Smoothing
…

(Training and data determines what kind of filter is realized) 
Extract features

Fukushima, Kunihiko (1980)
Zhang, Wei (1988) + a lot!

1 2 1

2 4 2

1 2 1

1
16

Gaussian filter

(Discretization of )∂2
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What is the neural networks?
Convolution layers can be nested as well as fully connected

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

( )w11 w12 w13

w21 w22 w23

w31 w32 w33* w11 w12 w13

w21 w22 w23

w31 w32 w33* ) w11 w12 w13

w21 w22 w23

w31 w32 w33*(
2. Convolutional layer = sparsened version of fully connected with “weight sharing”

3. Filtering operation does not care the absolute coordinate = translation symmetry
Both should be recognized as “dog”

We can make a composite function with the convolutional layers

Symmetry improves performance.

In machine learning context, some data has “gauge symmetry” 

Info of gauge symmetry is useful to improve performance

(T. Cohen+, group equivariant NN)

Fukushima, Kunihiko (1980)
Zhang, Wei (1988) + a lot!

(T. Cohen+, gauge equivariant NN)

1. The convolution layers improves performance of  image recognition

Modern viewpoint:

(Rotational symmetry: Spherical convolution T. Cohen+). Approximator is guaranteed to respect the sym.
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What is the neural networks?
Convolution + fully connected

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

fθ( ⃗x ) = σ(l=2)(W(l=2)σ(l=1)(W(l=1) ⃗v ))

( )w11 w12 w13

w21 w22 w23

w31 w32 w33* w11 w12 w13

w21 w22 w23

w31 w32 w33* ) w11 w12 w13

w21 w22 w23

w31 w32 w33*(( )Flatten(⃗v =

Parameters in convolutional layers can be trained as same as fully connected ones.

Fukushima, Kunihiko (1980)
Zhang, Wei (1988) + a lot!

e.g.:

We can extract information of physics from configurations: (AT+ 2016)

(For modern implementation, it should be  multi-channel & use global average pooling but here we ignore it)
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Smearing
Smoothing with gauge symmetry

M. Albanese+ 1987
R. Hoffmann+ 2007

C. Morningster+ 2003



23

Smearing
Smoothing improves global properties

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

Eg. Coarse image Smoothened image

Numerical derivative is unstable Numerical derivative is stable

It distort microscopic structure

but global structure (topology)

get improved

We want to smoothen gauge configuration

with keeping gauge symmetry

APE-type smearing

Stout-type smearing
Two types:

M. Albanese+ 1987
R. Hoffmann+ 2007

C. Morningster+ 2003

If one wants to study 

Topology, we can use 
the Gauss-Bonnet 
argument

1 2 1

2 4 2

1 2 1

1
16

Gaussian filter
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Smearing
1st: smoothing with gauge symmetry

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

APE-type smearing

Uμ(n) → Ufat
μ (n) = 6 [(1 − α)Uμ(n) + α

6 V†
μ[U](n)]

V†
μ[U](n) = ∑

μ≠ν
Uν(n)Uμ(n + ̂ν)U†

ν (n + ̂μ) + ⋯

6 [M] = M

M†M

= + ∑
ν

α
66[ ]

Schematically,

V α /6 6 [⋯] U(1)U Mult

Sum

(1 − α)

1 − α

In the calculation graph,

+

Or projection

M. Albanese+ 1987
R. Hoffmann+ 2007

&   shows same transformationV†
μ[U ](n) Uμ(n)

→  is as wellU fat
μ [U ](n)

+

Normalization
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Smearing
2nd: smoothing with gauge symmetry

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

Stout-type smearing
Uμ(n) → Ufat

μ (n) = eQUμ(n)
8 = exp(Q)

: anti-hermitian traceless plaquetteQ

(eQ − 1)U UfatU +

= e
= Uμ(n) + (8 − 1)Uμ(n)

( )
= e( −1)+

C. Morningster+ 2003

This is less obvious but  this actually obeys same transformation

Schematically,

In the calculation graph,
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Smearing
Smearing decomposes into two parts

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

We can generally write smearing as

zμ(n) = w1Uμ(n) + w28[U]

Ufat
μ (n) = 6(zμ(n)){Ufat

μ (n) =
A local function

Summation with gauge sym
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Smearing
Smearing ～ neural network with fixed parameter!

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

It has similar structure with neural networks,

(Index i in the neural net corresponds to n & μ in smearing. Information processing with NN is evolution of scalar field)

z(l)
i = ∑

j
w(l)

ij xj + b(l)
iui(xj) = {ui = σ(l)(z(l)

i )

AT Y. Nagai arXiv: 2103.11965
We can generally write smearing as

zμ(n) = w1Uμ(n) + w28[U]

Ufat
μ (n) = 6(zμ(n)){Ufat

μ (n) =
A local function

Summation with gauge sym

Affine transformation

element-wise (local)

Multi-level smearing = Deep learning (with given parameters)

As same as the convolution, we can train weights
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Gauge covariant neural 
network
Trainable smearing

AT Y. Nagai arXiv: 2103.11965
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Gauge covariant neural network
= trainable smearing

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

Gauge covariant neural network = general smearing with trainable parameters

z(l+1)
μ (n) = w(l)

1 U(l)
μ (n) + w(l)

2 8(l)
θ̄

[U]

6(z(l+1)
μ (n)){U(l+1)

μ (n)[U(l)] =

UNN
μ (n)[U] = U(3)

μ (n)[U(2)
μ (n)[U(1)

μ (n)[Uμ(n)]]]
Good properties: Obvious gauge symmetry. Translation, rotational symmetries.

Uμ(n) ↦ UNN
μ (n) = UNN

μ (n)[U]

(Behler-Parrinello type neural net)

Gauge covariant composite function. Input = gauge field, Output = gauge field

(Analogous to convolutional layer, this fully uses information of the symmetries)

(Weight “ ” can be depend on  and  = fully connected like. Less symmetricw n μ

AT Y. Nagai arXiv: 2103.11965

Trainable (next page)
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Gauge covariant neural network
Training can be done with (extended) back propagation

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

Gauge inv. loss function can be constructed by gauge invariant actions

SNN[U] = S [UNN
μ (n)[U]]

Lθ[U] = f (SNN[U])

∂Lθ[U]
∂θ(l) = ∂L

∂f
∂f

∂SNN
∂SNN

∂U(l+1)
∂U(l+1)

∂z(l+1)
∂z(l+1)

∂θ(l)

 : mean-square for example,  
     mini-batch
f

θ(l) ← θ(l) − η
∂Lθ[U]

∂θ(l)

Training: We can use “gradient descent”. “Adam” (adaptive-momentum) is applicable

But actually, matrix derivative is common to the HMC force

The second term requires the chain rule with matrix functions, we need extended delta rule

 is parameters in -th layerθ(l) l

(-> Extended delta rule, skipped. implementation is almost same as stout force)

S: gauge action or fermion action

Loss function

AT Y. Nagai arXiv: 2103.11965
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Gauge covariant neural network
Neural ODE of Cov-Net = “gradient flow”

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

⃗u (l)\⃗u (l−1)
+8

d ⃗u (t)

dt
= 8( ⃗u (t))

Res-Net

Neural ODE
(Neural IPS 2018 best paper)

arXiv: 1806.07366

arXiv: 1512.03385

Continuum

Layer 

Limit
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Gauge covariant neural network
Neural ODE of Cov-Net = “gradient flow”

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

U(l)
+

⃗u (l)\⃗u (l−1)
+8

d ⃗u (t)

dt
= 8( ⃗u (t))

Res-Net

dU(t)
μ (n)
dt

= 8θ̄(U(t)
μ (n)) “Gradient” flow 

(not has to be gradient of S)

U(l+1)8θ̄

“Continuous stout smearing is the Gradient flow”

AT Y. Nagai arXiv: 2103.11965

Neural ODE

Gauge-cov net

Neural ODE

for Gauge-cov net 

arXiv: 1806.07366

arXiv: 1512.03385

2010 M. Luscher

(Neural IPS 2018 best paper)

Continuum

Layer 

Limit

Continuum

Layer 

Limit
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Gauge covariant neural network
Short summary

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

Symmetry Fixed parameter Continuum 
limit of layers How to Train

Conventional 
neural network

Convolution: 
Translation

Convolution: 
Filtering

Res-Net:

 Neural ODE

Delta rule and 
backprop


Gradient opt.

Gauge cov. net 
AT Y. Nagai arXiv: 2103.11965

Gauge symmetry,

Translation, 

Rotation
Smearing “Gradient” flow

Extended Delta 
rule and 

backprop

Gradient opt.

Next, I show a demonstration
(Q. Gauge cov. net works? Useful?)
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Demonstration
An application for 
configuration generation

AT Y. Nagai arXiv: 2103.11965



= 1
Z ∫ +Ue−Seff[U]-(U)

35

Lattice path integral > 1000 dim, Trapezoidal int is impossible

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

= ∏
n∈{ℤ/L}4

4

∏
μ=1

dUμ(n) >1000 dim. We cannot use Newton–Cotes 

type integral like Trapezoid, Simpson etc.

(Calculation time is longer Thant the age of the universe if one 

wants to control the error.)

⟨-⟩ = 1
Z ∫ +U+ψ̄+ψe−S-(U)

S[U, ψ, ψ̄] = a4 ∑
n

[− 1
g2 Re tr Uμν + ψ̄(D/ + m)ψ]

Re Uμν ∼ −1
2 g2a4F2

μν + O(a6)

= 1
Z ∫ +Ue−Sgauge[U] det(D + m)-(U)

S = ∫ d4x[ + 1
2 tr FμνFμν + ψ̄(∂/ − igA/ + m)ψ]

Demonstration

Uμ = eaigAμ

(They are same except for infinitely Irrelevant operators)
Both gives same expectation value (for long range)

Lattice regulation

 is lattice spacing(cutoff = )a a−1

K. Wilson 1974
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Monte-Carlo integration is available

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

サンプ サンプ サンプ→ → → …

U1 U2 U3

Monte-Carlo: Generate field configurations with  “ ”. It gives expectation valueP[U] = 1
Z

e−Seff[U]

⟨-⟩ = 1
Z ∫ +Ue−Seff[U]-(U) Seff[U] = Sgauge[U] − log det(D/ [U] + m)

Demonstration

S(x, y) = 1
2 (x2 + y2 + xy)

HMC: Hybrid (Hamiltonian) Monte-Carlo

De-facto standard algorithm

M. Creutz 1980
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Monte-Carlo integration is available

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

サンプ サンプ サンプ→ → → …

U1 U2 U3

Monte-Carlo: Generate field configurations with  “ ”. It gives expectation valueP[U] = 1
Z

e−Seff[U]

⟨-⟩ = 1
Z ∫ +Ue−Seff[U]-(U) Seff[U] = Sgauge[U] − log det(D/ [U] + m)

Demonstration
M. Creutz 1980

Error of integration is determined by the number of sampling

⟨-⟩ = 1
Nsample

Nsample

∑
k

-[Uk] ± O( 1
Nsample

)
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Monte-Carlo integration is available

R-CCS seminar

Akio Tomiya

Gauge covariant neural network

サンプ サンプ サンプ→ → → …

U1 U2 U3

Monte-Carlo: Generate field configurations with  “ ”. It gives expectation valueP[U] = 1
Z

e−Seff[U]

⟨-⟩ = 1
Z ∫ +Ue−Seff[U]-(U) Seff[U] = Sgauge[U] − log det(D/ [U] + m)

Demonstration
M. Creutz 1980

If an algorithm is not exact (exact = average approaches to the expectation value),  
we cannot use the results to the other calculation for experiments

However, a neural network is an approximator 
How can it be exact?
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Restricted Boltzmann machine + HMC: 2d scalar

GAN (Generative adversarial network ): 2d scalar

Flow based model: 2d scalar, pure U(1), pure SU(N)
Mimicking a trvializing map using a neural net which is reversible and has tractable Jacobian.

Exact algorithm, no dynamical fermions. Gauge equivariant layers. SU(N) is treated with diagonalization. All in 2d.

Self-learning Monte Carlo for lattice QCD
Non-abelian gauge theory with dynamical fermion in 4d

Using gauge invariant action with linear regression

Exact. Costly (Diagonalize Dirac operator)

Results look OK. No proof of exactness (impossible?)

The first challenge, machine learning + configuration generation. Wrong at critical pt. Not exact.

Some history:

MIT+

A. Tanaka,  AT 2017

J. Pawlowski+ 2018

G. Endrodi+ 2018

Demonstration
Configuration generation with machine learning

R-CCS seminar Gauge covariant neural network

arxiv 2010.11900 Y. Nagai, AT, A. Tanaka

Self-learning Hybrid Monte Carlo for lattice QCD (next page) arxiv 2103.11965 Y. Nagai, AT

2019 …

Non-abelian gauge theory with dynamical fermion in 4d

Using covariant neural network to parametrize the gauge invariant action

Exact. Cheaper than the previous SLMC work
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Problems to solve
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Two color QCD (plaquette + staggered(not rooted) )

Demonstration

Target
arXiv: 2103.11965

(Artificial) Q1: 
Can we perform simulation of QCD using different action form  
the target (but variational parametrized)? 

Q2: To get non-zero acceptance, the training must be done 
successfully. It is possible?

HMC: Molecular dynamics + Metropolis test 
SLHMC: Molecular dynamics (parametrized action) + Metropolis test
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SLHMC for gauge system with dynamical fermions
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Gauge covariant net& SLHMC

HMC U U U U U U

U′ U

π

ϕ

π′ 

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom Metropolis

Both use 
HHMC = ∑ π2 + Sg + Sf

SLHMC U U U U U U

U′ U

π

ϕ

π′ 

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom

Metropolis
H = ∑ π2 + Sg + Sf[U]

H = ∑ π2 + Sg+Sf[UNN[U]]
Neural net approximated 

fermion action but exact

Non-conservation of H cancels since

the molecular dynamics is reversible

arXiv: 2103.11965 and reference therein
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Lattice setup and question
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Two color QCD (plaquette + staggered(not rooted) )

L=4, m = 0.3, beta = 2.7

Plaquette, Polyakov loop, Chiral condensate ⟨ψ ψ⟩

Demonstration

Fully written in Julia

Observables

(But we added some function on the public version)

Parameter

Target

Code

Approximated 
Action

Sθ[U] = Sg[U] + Sf[ϕ, UNN
θ [U]; mh = 0.4],

Target action S[U] = Sg[U] + Sf[ϕ, U; m = 0.3],

For MD

For Metropolis Test

AT+ (in prep)

SLHMC, HMC (comparison)Algorithms

arXiv: 2103.11965
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Demonstration
Network: trainable stout (plaq+poly)

R-CCS seminar Gauge covariant neural network

Lθ[U ] = 1
2 Sθ[U, ϕ] − S[U, ϕ]

2
,Loss function:

Structure of NN

U(l+1)
μ (n) = exp(Q(l)

μ (n))U(l)
μ (n)

Sθ[U] = Sg[U] + Sf[ϕ, UNN
θ [U]; mh = 0.4],

UNN
μ (n)[U] = U(2)

μ (n)[U(1)
μ (n)[Uμ(n)]] 2- layered stout

All  is weightρ
(Polyakov loop+plaq 
In  the stout smearing 
Reducing rot. sym.)

We randomly choose this NN.

We can do better.

Training strategy: 1.Train the network in prior HMC (online training+SDG)

2.Perform SLHMC with fixed parameter

Neural network  
Parametrized action:

Action is a function of a 
gauge field

We realize it with NN

with 6 trainable parameters

TA: Traceless, anti-hermitian operation

 meas an loop operatorO

arXiv: 2103.11965
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Demonstration
Results: Loss decreases along with the training

R-CCS seminar Gauge covariant neural network

Lθ[U ] = 1
2 Sθ[U, ϕ] − S[U, ϕ]

2
,Loss function:

Prior HMC run (=training) History of loss function

We perform SLHMC with these values!

arXiv: 2103.11965

C: one U removed Ω
Λ: A polynomial of U.  
(Same object in stout)

Ω: sum of un-traced loops
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Demonstration
Results are consistent with each other
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Acceptance = 40%

Expectation value

arXiv: 2103.11965
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Summary and future work 1/2
We construct and use gauge covariant neural net
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• Convolutional layers = Trainable filters


• Covariant neural network = Trainable smearing


• We develop the delta rule for rank-2 variables(skipped)。One can implement this on a 
code with smeared HMC (training part is mostly common to the stout force)


• Gauge invariant loss function


• If we choose U(1), ape-type net, expand in , stop weight sharing  
→It becomes fully connected neural net (skipped).


• Neural ODE for covariant net = “gradient flow” (but it does not have to be a gradient)


• Self-learning HMC = HMC+ neural network parametrized molecular dynamics, exact


• Training: it has only 6parameters  but loss decreases to O(1). 


• Results of SLHMC consistent with HMC. We successfully generated configurations with 
4 dimensional non-abelian gauge theory with dynamical fermions

a

arXiv: 2103.11965



47

Summary and future work 2/2
Future works
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• Cov-net: What kind of function can it approximate? Does it have universality for deep limit?


• Cov-net: Application for machine learning? (c.f. T. Cohen et al uses data with discrete gauge sym.)


• Cov-net: Can we convert coarse configurations to finer ones? We can do same thing for images with 
neural nets


• Cov-net: As in (A. Tanaka AT 2016), can we define or find a new order parameter for confinement? How 
about topological charge estimation (Kitazawa+ 2020)？


• Cov-net: Can we construct GAN？ RBM with it?, combining flow based algortihm?


• Cov-net: Does it have interpretation like AdS/DL (K. Hashimoto 2020)？


• Cov-net: Can we construct  better1st level smearing than HISQ(Highly improved staggered quark, 
level-2)?


• Cov-net: neural net ~ Gradient flow. Can we use QFT techniques to neural net as  (J. Halverson+ 
2020？)。


• SLHMC: S = overlap, S^NN = domain-wall fermion with neural net? It could be better than the reweighing.


• SLHMC: Improves acceptance with complicated neural network 


• SLHMC: Measure topological charge in larger system. Topology changing action with neural net?

arXiv: 2103.11965


