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Gauge theory with a 6 term

v O term: topological property of the gauge theory, nonperturbative
10 4
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e strong CP problem of QCD
The experimental bound of 8 is extremely small: | 6| < 10-10
— no reason for it theoretically

Sp = —i0Q = —

 phase structure of 4D SU(N) YM around 6 =nr
interesting prediction by the 't Hooft anomaly matching




Numerical study of the 8 term

Monte Carlo simulation of the lattice gauge theory with a 6 term
« O term is purely imaginary — the action “S” is complex
e impossible to interpret Boltzmann weight “e->" as a probability

— sign problem

[t arises in various cases...
 finite density QCD
e chiral fermion
e real time dynamics
e etc.



Approach to complex action systems

»Reweighting method
 treat the phase of e as an observable
« does not work if the phase oscillates rapidly

» Lefschetz thimble method

« reduce the phase oscillation by deforming the integral path in the complex plane

»Complex Langevin method
* low computational cost
 has to meet a condition to justify the result

> Tensor renormalization group

e easy to increase the system size
* higher dimension is difficult



Complex Langevin methoa

complex Langevin method (CLM) [G. Parisi (1983)] [J. R. Klauder (1983)]
« Langevin equation: fictitious time evolution of dynamical variables
* real variable — complex variable ~4

dz (t a9 (t =

Zdi):— ai)Jr??(t) rT— 2=+ 1y §

drift term |—1 L{ Gaussian noise %
« do not use “probability” — sigimewedilem - \

.

e condition required to be satisfied log| drift term |

The distribution of the drift term falls off exponentially or faster.
[K. Nagata, J. Nishimura, S. Shimasaki (2016)] ,
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?D U(1) gauge theory

e total action = kinetic term + 6 term
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« exactly solvable on a finite lattice — good test ground
e |lattice gauge action
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n—l—é,l n,2

« topological charge --- two types of definition
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Topological charge on a 2D lattice

e exactly integer for a finite lattice spacing

. log P, aZe, F. . — changes discontinuously
[ g Z i — e ] at the branch cut (arg P,=m)

logz =log|z| +1argz —rm<argz <m P gia®Fu
+ 7

Y log Py =log || Pn + 2miZ [[P. =1 W
-1l

e approaches integer in the continuum limit

i — analogy of “clover leaf”
sin — P P Fn . .
[ ¢ Ar ( Zsm @ P 2) ] in the 4D lattice
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CLM for the lattice gauge theory

e discretized complex Langevin equation for t

Un,pu (t + €) = exp [—ieDnKS(w +iven, (t),

Un, € C\{0} drift term

e gauge group is extended: U(1) = C\ {0}

ne link variable U, ,

Un,pu ()

—1
Unp = Un.p

o drift term and observables have to respect holomorphicity

e control the non-unitarity by gauge cooling

e gauge transformation to keep the link variable close to unitary

« not affect gauge invariant observables

[E. Seiler, D. Sexty, |.-O. Stamatescu (2013)] [K. Nagata, J. Nishimura, S. Shimasaki (2016)]
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Drift term from S,

on a torus...
definition value drift term
_ integer for a finite . .
l0g = Qo itiics spaciis iIll-detined
. approaches an integer i
Sl & Qi in the continuum limit el ~geine
If we use Sy=-10Q ... D, ,Sg isill-defined on the branch cut

and is always zero elsewhere.
— We use Sy= -0 Q,, naively for CLM on a 2D torus.



Result of the naive implementation

e small B (coarse lattice): wrong convergence of CLM
 The condition for correct convergence is not satisfied.
ﬁ trade-off

 large B (fine lattice): “freezing” of the topological charge
 The configuration is confined in a single topological sector.
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Sehavior of the topological charge

o distribution of Qg
at 6 =0 for the fixed
physical volume
V/B =128

CQShl — 4iT (}) '[) )

in the continuum limit

e Q4 , — integer
e topology freezing
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Observable

1 0 1
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Large drift term and topology change

« Each configuration can be classified into topological sectors

by measuring Q.
» transition among topological sectors = change of Q)

change of Qe

ﬁcorrelation

large drift term
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Origin of large drift terms

« Transition among topological sectors is caused by branch crossing
of the phase of plaquette ¢ = -i logP,..

« When ¢ approaches the branch cut,
it flows to the imaginary direction.

« As Im @ increases,

|drift term| increases exponentially.
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Introducing a puncture on the torus

prescription for avoiding the freezing of O
v< introduce a puncture on the torus — Q is no longer an integer
topological charge can change frequently — freezing is resolved

S,= -5 3 (Pt By

n#K
X o o
. Qsin = 4 (Pn P )

n=K eliminate a plaquette
from the action
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Dritt term for the punctured model

on a punctured torus...

definition value drift term
log : Q not an integer siell-elzrines
& - Nlog & (if B is large enough)
sin : Qg not an integer well-defined
» We can use Sy= -i 0 Q),z on the punctured torus.

e The links around the puncture get non-zero drift terms.



Property of the punctured model

 The punctured model does not have 2 7 -periodicity of 6.

e since the topological charge is not an integer

 The punctured model is equivalent to the infinite volume limit of
the original (non-punctured) model for | 8 |< .
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Result of the punctured model

« The condition for the correct convergence is satisfied for large 5.
* The topology freezing does not occur.
v¢ Both of the problem are resolved if 8 is large enough.

(B, L) =(12, 20)

10° 9 =T 051
04} i .
(i .
107 £ g agrees with
0.3} ﬁﬁ %}} - .
7 ¢ the analytical result
107 0.2f f {%% 1 (at 6 =0)
0.1¢f gﬁfﬁ %%%
107 ' ; \
i | 10 700 005 06 1 2z 3
u Re Qg

distribution of the drift term distribution of Qg,

23



Result of the punctured model
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- ffect of the puncture

« The phase of the puncture (eliminated plaqguette) changes freely.
— The topological charge can change easily.

« | B is large enough, branch crossing of the plaguettes included in
the action is suppressed.

— The source of large drift is absent.
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Phase structure at 8 =17

v 't Hooft anomaly matching of 4D SU(2) YM
— constrain the phase structure at 8 =m

mixed 't Hooft anomaly between
CP symmetry & Z, 1-form center symmetry at 6 =n

\ 4

[D. Gaiotto, A. Kapustin, Z. Komargodski, N. Seiberg (2017)]

e SSB of CP ! deconfined
+ SSB of 7, —
g gapless ? confined
e topological QF T
- 0




Tdec VS TCP

v¢ anomaly matching — Tg.. = Tep (assuming SSB of CP at T = 0)
examples of possible (8, T ) phase diagram

Tgec = Tep Tgee < Tep
T deconfined T deconfined
CP confined CP confined
broken broken
> O > 0
Il It
holography for large N supports soft SUSY breaking of SYM supports

[F. Bigazzi, A. L. Cotrone, R. Sisca (2015)] [S. Chen, K. Fukushima, H. Nishimura, Y. Tanizaki (2020)]
28



AD SU(2) lattice gauge theory

» kinetic term : standard Wilson action

5 u -
=-£ Z ZTr [PHY] PH¥ - plaquette b= 72
N puFv

* topological charge : clover leaf
[P. Di Vecchia, K. Fabricius, G. C. Rossi, G. Veneziano (1981)]
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CLM on the 4D periodic lattice

« The condition for the correct convergence is not satisfied
around the critical S.
— try to see the high temperature (large B) region first
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CP symmetry at

* In the high temperatures region,
CP is expected to be restored at 8 =r1.

« The topological charge is CP odd.
— (Q) =0 if CPis restored

 dilute instanton gas approximation

Im(Q) ~ xsin6

(Q% — (@) = —~ 9 1oy 7

1% V 062

Im Q




Soundary condition of the 4D lattice

* large B — topology freezing

v< consider three types of boundary condition
@ periodic

2 spatially localized 23 puncture

(3 open boundary for three spatial directions
The translational symmetry for the temporal direction is respected.

e start from random configurations (hot start)
e check the initial configuration dependence of Q at 6 =10
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Sehavior of the topological charge

(L, B) = (16, 3), periodic

10
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periodic puncture

0 1b 2b 30
t

3 open boundary

(L, B) = (16, 6), periodic
10 , :

20 30 40 50
t

(L, B) = (16, 6), puncture

20 30

(L, B) = (16, 6), 3 open

3 open boundary

20 30 40 50
t

33



Sehavior of the topological charge

« 5=3.0
« Q is far from an integer
* no significant difference

e 3=06.0

« periodic — frozen in different topological sectors
e puncture — severe autocorrelation still exists

« open boundary — thermalize slowly



Result Tor large

(L, LuB)=(16,4,35)

 We found Im Qo 6 in most cases. [l pr———— | e
« Im Q is related e 7
to the topological susceptibility * /
0
%Iﬂﬂ@ =xV

e The result for open boundary
satisfies this relation.

« 2T -periodicity is absent

_ periodic 3 open
in both cases.

gradient of Im Q 0.11733(14) 0.17567(48)

xVat 6=0 0.1015(47) 0.184(14)

35



Problem
« CLM works only in the large 8 region (and B8 = 1.0).

periodic lattice

« topology freezing for large 8

open lattice
 severe finite volume eftect
« Q is not an integer — CP symmetry at 6 =m is manifestly broken

— a new technique is necessary

36
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Summary

e The recent work on 't Hooft anomaly matching for 4D SU(2) YM
predicted a nontrivial phase structure at 6 =m.

« We use the complex Langevin method to simulate the theory with
the 6 term, avoiding the sign problem.

« For 2D U(1), CLM works on the punctured torus where the topology
freezing is absent.

« For 4D SU(2), CLM works in some cases, but it seems to be
difficult to investigate the phase structure using the usual periodic
or open lattice.
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Discussion

new technique

* The distinct topological sectors need be smoothly connected.
— avoid the topology freezing
— well-defined drift terms

« The 2 m -periodicity of 8 should be respected.
— CP symmetry at 86 =m

 Modify the boundary condition
but recover the 2 m-periodicity somehow ?



New technigue

 Introduce an additional d.o.f. x which makes two adjacent
plaguettes independent.

« Constrain x by the delta function.

- dk .
Un,, = M (x) Un.u M) =1 6(x) = By ethe
i /dUe_S(O) :/ddee_S(x)(S(x)
n,
B e R — — / dU dxdk =5 (@) Fika
U’I’L 9% Unnu
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Toy model

e Gaussian + delta function

S = ma® +ik(x — a)

em=1.0
cea=14+2]
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Thank you!



