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Gauge theory with a θ term
☆ θ term: topological property of the gauge theory, nonperturbative

• strong CP problem of QCD
The experimental bound of θ is extremely small: |θ| < 10-10
→ no reason for it theoretically

• phase structure of 4D SU(N) YM around θ=π
interesting prediction by the ʼt Hooft anomaly matching
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Numerical study of the θ term
Monte Carlo simulation of the lattice gauge theory with a θ term
• θ term is purely imaginary → the action “S” is complex
• impossible to interpret Boltzmann weight “e-S” as a probability

→ sign problem

• It arises in various cases...
• finite density QCD
• chiral fermion
• real time dynamics
• etc.
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Approach to complex action systems
ØReweighting method

• treat the phase of e-S as an observable
• does not work if the phase oscillates rapidly

ØLefschetz thimble method
• reduce the phase oscillation by deforming the integral path in the complex plane

ØComplex Langevin method
• low computational cost
• has to meet a condition to justify the result

ØTensor renormalization group
• easy to increase the system size
• higher dimension is difficult
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Complex Langevin method
complex Langevin method (CLM)
• Langevin equation: fictitious time evolution of dynamical variables
• real variable → complex variable

• do not use “probability” → sign problem
• condition required to be satisfied

[G. Parisi (1983)]  [J. R. Klauder (1983)]
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[K. Nagata, J. Nishimura, S. Shimasaki (2016)]

The distribution of the drift term falls off exponentially or faster. 
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2D U(1) gauge theory
• total action = kinetic term + θ term

• exactly solvable on a finite lattice → good test ground
• lattice gauge action

• topological charge … two types of definition
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Topological charge on a 2D lattice
• exactly integer for a finite lattice spacing

• approaches integer in the continuum limit
← analogy of “clover leaf”

in the 4D lattice

← changes discontinuously
at the branch cut (arg Pn=π)
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CLM for the lattice gauge theory
• discretized complex Langevin equation for the link variable Un,μ

• gauge group is extended:
• drift term and observables have to respect holomorphicity
• control the non-unitarity by gauge cooling
• gauge transformation to keep the link variable close to unitary
• not affect gauge invariant observables

drift term
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[E. Seiler, D. Sexty, I.-O. Stamatescu (2013)] [K. Nagata, J. Nishimura, S. Shimasaki (2016)]



Drift term from Sθ
on a torus...

If we use Sθ= -iθQlog ... Dn,μSθ is ill-defined on the branch cut
and is always zero elsewhere.
→ We use Sθ= -iθQsin naively for CLM on a 2D torus.
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definition value drift term

log : Qlog
integer for a finite

lattice spacing ill-defined

sin : Qsin
approaches an integer
in the continuum limit well-defined



Result of the naive implementation
• small β (coarse lattice): wrong convergence of CLM
• The condition for correct convergence is not satisfied.

trade-off
• large β (fine lattice): “freezing” of the topological charge
• The configuration is confined in a single topological sector.
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Behavior of the topological charge

• distribution of Qsin
at θ= 0 for the fixed
physical volume
V /β = 128

in the continuum limit
• Qsin → integer
• topology freezing
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Observable
average plaquette
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Large drift term and topology change 
• Each configuration can be classified into topological sectors

by measuring Qlog.
• transition among topological sectors = change of Qlog
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Origin of large drift terms
• Transition among topological sectors is caused by branch crossing

of the phase of plaquette φ= -i logPn.
• When φ approaches the branch cut,

it flows to the imaginary direction.
• As Imφ increases,

|drift term| increases exponentially.
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Introducing a puncture on the torus
prescription for avoiding the freezing of Q
☆ introduce a puncture on the torus → Q is no longer an integer

topological charge can change frequently → freezing is resolved

n = K eliminate a plaquette 
from the action
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Drift term for the punctured model
on a punctured torus...

• We can use Sθ= -iθQlog on the punctured torus.
• The links around the puncture get non-zero drift terms.
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definition value drift term

log : Qlog not an integer well-defined
(if β is large enough)

sin : Qsin not an integer well-defined



Property of the punctured model
• The punctured model does not have 2π-periodicity of θ.
• since the topological charge is not an integer

• The punctured model is equivalent to the infinite volume limit of 
the original (non-punctured) model for |θ|<π.
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Result of the punctured model
• The condition for the correct convergence is satisfied for large β.
• The topology freezing does not occur.
☆ Both of the problem are resolved if β is large enough.
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Result of the punctured model
average plaquette
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Effect of the puncture
• The phase of the puncture (eliminated plaquette) changes freely.

→ The topological charge can change easily.
• If β is large enough, branch crossing of the plaquettes included in 

the action is suppressed.
→ The source of large drift is absent.
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Phase structure at θ=π
☆ ʼt Hooft anomaly matching of 4D SU(2) YM
→ constrain the phase structure at θ=π
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[D. Gaiotto, A. Kapustin, Z. Komargodski, N. Seiberg (2017)]

mixed ʼt Hooft anomaly between
CP symmetry & Z2 1-form center symmetry at θ=π

• SSB of CP
• SSB of Z2(1)
• gapless
• topological QFT
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Tdec vs TCP
☆ anomaly matching → Tdec ≦ TCP (assuming SSB of CP at T = 0)

examples of possible (θ, T ) phase diagram
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4D SU(2) lattice gauge theory
• kinetic term : standard Wilson action

• topological charge : clover leaf
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[P. Di Vecchia, K. Fabricius, G. C. Rossi, G. Veneziano (1981)]
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CLM on the 4D periodic lattice
• The condition for the correct convergence is not satisfied

around the critical β.
→ try to see the high temperature (large β) region first
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CP symmetry at θ=π

• In the high temperatures region,
CP is expected to be restored at θ=π.
• The topological charge is CP odd.

→〈Q〉= 0  if CP is restored
• dilute instanton gas approximation 
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Boundary condition of the 4D lattice
• large β → topology freezing
☆ consider three types of boundary condition
① periodic
② spatially localized 23 puncture
③ open boundary for three spatial directions

The translational symmetry for the temporal direction is respected.

• start from random configurations (hot start)
• check the initial configuration dependence of Q at θ= 0
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Behavior of the topological charge
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Behavior of the topological charge
• β= 3.0
• Q is far from an integer 
• no significant difference

• β= 6.0
• periodic → frozen in different topological sectors
• puncture → severe autocorrelation still exists
• open boundary → thermalize slowly
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Result for large β
• We found Im Q∝θ in most cases.
• Im Q is related

to the topological susceptibility

• The result for open boundary
satisfies this relation.
• 2π-periodicity is absent

in both cases.
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Problem
• CLM works only in the large β region (and β≦ 1.0).

periodic lattice
• topology freezing for large β

open lattice
• severe finite volume effect
• Q is not an integer → CP symmetry at θ=π is manifestly broken

→ a new technique is necessary
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Summary

• The recent work on ʼt Hooft anomaly matching for 4D SU(2) YM 
predicted a nontrivial phase structure at θ=π.
• We use the complex Langevin method to simulate the theory with 

the θ term, avoiding the sign problem.
• For 2D U(1), CLM works on the punctured torus where the topology 

freezing is absent.
• For 4D SU(2), CLM works in some cases, but it seems to be 

difficult to investigate the phase structure using the usual periodic 
or open lattice.
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Discussion
new technique
• The distinct topological sectors need be smoothly connected.

→ avoid the topology freezing
→ well-defined drift terms
• The 2π-periodicity of θ should be respected.

→ CP symmetry at θ=π

• Modify the boundary condition
but recover the 2π-periodicity somehow ?
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New technique
• Introduce an additional d.o.f. 𝑥 which makes two adjacent 

plaquettes independent.
• Constrain 𝑥 by the delta function.
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Toy model
• Gaussian + delta function

• m = 1.0
• a = 1 + 2 i
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